Skip to main content

Emerging technologies for microbial control in food processing

  • Chapter
  • First Online:
Book cover Green Technologies in Food Production and Processing

Part of the book series: Food Engineering Series ((FSES))

Abstract

Food safety is one the pivotal concepts that have driven development of modern food processing. Conventional methods of microbial control mostly rely on refrigeration, heat, and/or chemical preservatives. Although these techniques are largely successful, their major drawbacks are related to their effect on freshness and nutritional quality of processed food as well as their high energy demand. In recent years, there has been a strong demand for high-quality foods that retain most of their natural freshness and other organoleptic properties. This has led to the development of several novel and innovative methods of microbial control in food processing, the most notable being microwave and radiofrequency heating (MW/RF), pulsed electric fields (PEFs), high pressure processing (HPP), and ionizing radiation. Other emerging technologies include ohmic heating (OH), ultraviolet light, and ozonization. After a brief overview of the conventional methods of food preservation currently employed, this chapter provides an in-depth analysis of the current state-of-the-art, applications, and challenges for these novel technologies. Although many of these emerging methods have generated considerable interest among researchers, food producers, and consumers alike, several challenges need to be overcome before they obtain complete industrial and consumer adoption. In all likelihood, the future and success of these novel technologies will be driven by consumer demand for processed food that is safe yet fresh and the need for sustainable and energy-efficient practices in the food industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aalto, T.R., M.C. Firman, and N.E. Rigler. 1953. p-Hydroxybenzoic acid esters as preservatives. I. Uses, antibacterial and antifungal studies, properties and determination. Journal of the American Pharmacists Association 42(8): 449–457.

    CAS  Google Scholar 

  • Adedeji, A.A., T.K. Gachovska, M.O. Ngadi, and G.S.V. Raghavan. 2008. Effect of pretreatments on drying characteristics of okra. Drying Technology 26(10): 1251–1256.

    Article  Google Scholar 

  • Adekunte, A.O., B.K. Tiwari, P.J. Cullen, A.G.M. Scannell, and C.P. O’Donnell. 2010. Effect of sonication on colour, ascorbic acid and yeast inactivation in tomato juice. Food Chemistry 122(3): 500–507.

    Article  CAS  Google Scholar 

  • Ade-Omowaye, B.I., N.K. Rastogi, A. Angersbach, and D. Knorr. 2003. Combined effects of pulsed electric field pre-treatment and partial osmotic dehydration on air drying behaviour of red bell pepper. Journal of Food Engineering 60(1): 89–98.

    Article  Google Scholar 

  • Agar, I.T., J. Streif, and F. Bangerth. 1997. Effect of high CO2 and controlled atmosphere (CA) on the ascorbic and dehydroascorbic acid content of some berry fruits. Postharvest Biology and Technology 11(1): 47–56.

    Article  CAS  Google Scholar 

  • Aguilo-Aguayo, I., I. Odriozola-Serrano, L.J. Quintao-Teixeira, and O. Martin-Belloso. 2008. Inactivation of tomato juice peroxidase by high-intensity pulsed electric fields as affected by process conditions. Food Chemistry 107(2): 949–955.

    Article  CAS  Google Scholar 

  • Akin, E., and G.A. Evrendilek. 2009. Effect of pulsed electric fields on physical, chemical, and microbiological properties of formulated carrot juice. Food Science and Technology International 15(3): 275–282.

    Article  CAS  Google Scholar 

  • Alvarez, I., P. Manas, F.J. Sala, and S. Condon. 2003. Inactivation of Salmonella enterica serovar enteritidis by ultrasonic waves under pressure at different water activities. Applied and Environmental Microbiology 69(1): 668–672.

    Article  CAS  Google Scholar 

  • Amami, E., E. Vorobiev, and N. Kechaou. 2005. Effect of pulsed electric field on the osmotic dehydration and mass transfer kinetics of apple tissue. Drying Technology 23(3): 581–595.

    Article  CAS  Google Scholar 

  • Arevalo, P., M.O. Ngadi, M.I. Bazhal, and G.S.V. Raghavan. 2004. Impact of pulsed electric fields on the dehydration and physical properties of apple and potato slices. Drying Technology 22(5): 1233–1246.

    Article  Google Scholar 

  • Aronsson, K., U. Ronner, and E. Borch. 2005. Inactivation of Escherichia coli, Listeria innocua and Saccharomyces cerevisiae in relation to membrane permeabilization and subsequent leakage of intracellular compounds due to pulsed electric field processing. International Journal of Food Microbiology 99(1): 19–32.

    Article  CAS  Google Scholar 

  • Bajgai, T.R., and F. Hashinaga. 2001. Drying of spinach with a high electric field. Drying Technology 19(9): 2331–2341.

    Article  Google Scholar 

  • Balasubramaniam, V.M., and D. Farkas. 2008. High-pressure food processing. Food Science and Technology International 14(5): 413–418.

    Article  Google Scholar 

  • Barbosa-Cánovas, G.V., and G.W. Gould. 2000. Innovations in food processing. Boca Raton, FL: CRC.

    Google Scholar 

  • Barsotti, L., P. Merle, and J.C. Cheftel. 1999. Food processing by pulsed electric fields. I. Physical aspects. Food Reviews International 15(2): 163–180.

    Article  Google Scholar 

  • Bayliss, C.E., and W.M. Waites. 1979. The combined effect of hydrogen peroxide and ultraviolet irradiation on bacterial spores. Journal of Applied Bacteriology 47(2): 263–269.

    Article  CAS  Google Scholar 

  • Berejka, A.J. 1995. Irradiation processing in the ‘90’s: energy savings and environmental benefits. Radiation Physics and Chemistry 46(4-6, Part 1): 429–437.

    Article  CAS  Google Scholar 

  • Bengtson, R., E. Birdsall, S. Feilden, S. Bhattiprolu, S. Bhale and M. Lima. 2006. Ohmic and inductive heating. Handbook of food science, technology, and engineering. Y. H. Hui. Boca Raton, Taylor & Francis.

    Article  CAS  Google Scholar 

  • Bermúdez-Aguirre, D., and G.V. Barbosa-Cánovas. 2008. Study of butter fat content in milk on the inactivation of Listeria innocua ATCC 51742 by thermo-sonication. Innovative Food Science and Emerging Technologies 9(2): 176–185.

    Article  CAS  Google Scholar 

  • Bermudez-Aguirre, D., R. Mawson, K. Versteeg, and G.V. Barbosa-Canovas. 2009. Composition properties, physicochemical characteristics and shelf life of whole milk after thermal and thermo-sonication treatments. Journal of Food Quality 32(3): 283–302.

    Article  CAS  Google Scholar 

  • Betts, G., and L. Everis. 2005. Modeling systems and impact on food microbiology. In Novel food processing technologies, ed. G.V. Barbosa-Cánovas, M.P. Cano, and M.S. Tapia. Boca Raton, FL: CRC.

    Google Scholar 

  • Bialka, K.L., and A. Demirci. 2007. Decontamination of Escherichia coli O157:H7 and Salmonella enterica on blueberries using ozone and pulsed UV-light. Journal of Food Science 72(9): M391–M396.

    Article  CAS  Google Scholar 

  • Bialka, K.L., and A. Demirci. 2008. Efficacy of pulsed UV-light for the decontamination of Escherichia coli O157:H7 and Salmonella spp. on raspberries and strawberries. Journal of Food Science 73(5): M201–M207.

    Article  CAS  Google Scholar 

  • Bintsis, T., E. Litopoulou-Tzanetaki, and R.K. Robinson. 2000. Existing and potential applications of ultraviolet light in the food industry: a critical review. Journal of the Science of Food and Agriculture 80: 637–645.

    Article  CAS  Google Scholar 

  • Borsa, J. 2006. Introduction: food irradiation moving on. In Food irradiation research and technology, ed. C.H. Sommers and X. Fan. Ames, IA: Blackwell.

    Google Scholar 

  • Boyce, R.P., and P. Howard-Flanders. 1964. Release of ultraviolet light-induced thymine dimers from DNA in E. coli K-12. Proceedings of the National Academy of Sciences of the United States of America 51(2): 293–300.

    Article  CAS  Google Scholar 

  • Brandriff, K.M., and National Agricultural Library Food Safety Research Information Office. 2003. A focus on Hazard Analysis and Critical Control Points. http://hdl.handle.net/1030.28/NAL00000027.

  • Branen, A.L., and P.M. Davidson. 1983. Antimicrobials in foods. New York: Dekker.

    Google Scholar 

  • Brennan, J.G. 2006. Food processing handbook. Weinheim, Germany: Wiley-VCH.

    Google Scholar 

  • Broda, D.M. 2007. The effect of peroxyacetic acid-based sanitizer, heat and ultrasonic waves on the survival of Clostridium estertheticum spores in vitro. Letters in Applied Microbiology 45(3): 336–341.

    Article  CAS  Google Scholar 

  • Bull, M.K., S.A. Olivier, R.J. van Diepenbeek, F. Kormelink, and B. Chapman. 2009. Synergistic inactivation of spores of proteolytic Clostridium botulinum strains by high pressure and heat is strain and product dependent. Applied and Environmental Microbiology 75(2): 434–445.

    Article  CAS  Google Scholar 

  • Calderón-Miranda, M.L., G.V. Barbosa-Cánovas, and B.G. Swanson. 1999. Inactivation of Listeria innocua in liquid whole egg by pulsed electric fields and nisin. International Journal of Food Microbiology 51(1): 7–17.

    Article  Google Scholar 

  • Cameron, M., L.D. McMaster, and T.J. Britz. 2009. Impact of ultrasound on dairy spoilage microbes and milk components. Dairy Science and Technology 89(1): 83–98.

    Article  CAS  Google Scholar 

  • Cammack, R., C.L. Joannou, X.-Y. Cui, C. Torres Martinez, S.R. Maraj, and M.N. Hughes. 1999. Nitrite and nitrosyl compounds in food preservation. Biochimica et Biophysica Acta: Bioenergetics 1411(2–3): 475–488.

    Article  CAS  Google Scholar 

  • Carlez, A., T. Veciana-Nogues, and J.-C. Cheftel. 1995. Changes in colour and myoglobin of minced beef meat due to high pressure processing. Food Science and Technology 28(5): 528–538.

    CAS  Google Scholar 

  • Castro, I. 2007. Ohmic heating as an alternative to conventional thermal treatment. Dissertation, University of Minho, Portugal.

    Google Scholar 

  • Chang, J.C., S.F. Ossoff, D.C. Lobe, M.H. Dorfman, C.M. Dumais, R.G. Qualls, and J.D. Johnson. 1985. UV inactivation of pathogenic and indicator microorganisms. Applied and Environmental Microbiology 49(6): 1361–1365.

    CAS  Google Scholar 

  • Cheftel, J.C. 1992. Effects of high hydrostatic pressure on food constituents: an overview. In High pressure and biotechnology, ed. C. Balny, R. Hayashi, K. Heremans, and P. Masson. Paris, France: INSERM.

    Google Scholar 

  • Cheftel, J.C. 1995. High pressure, microbial inactivation and food preservation. Food Science and Technology International 1(2): 75–90.

    Article  Google Scholar 

  • Chen, J.L., J. Zhang, Z.S. Feng, L.J. Song, J.H. Wu, and X.S. Hu. 2009. Influence of thermal and dense-phase carbon dioxide pasteurization on physicochemical properties and flavor compounds in hami melon juice. Journal of Agricultural and Food Chemistry 57(13): 5805–5808.

    Article  CAS  Google Scholar 

  • Cheng, X.D. 2007. Apparatus for ohmic heating e.g. to pasteurize or sterilize product such as milk comprises electrode clearing device having scrapper that contacts surface of electrodes and moves continuously over a cylindrical surface during ohmic heating, Auckland Uniservices Ltd. (AUCK-Non-standard): 30.

    Google Scholar 

  • Cho, H.Y., A.E. Yousef, and S.K. Sastry. 1996. Growth kinetics of Lactobacillus acidophilus under ohmic heating. Biotechnology and Bioengineering 49(3): 334–340.

    Article  CAS  Google Scholar 

  • Cho, H.Y., A.E. Yousef, and S.K. Sastry. 1999. Kinetics of inactivation of Bacillus subtilis spores by continuous or intermittent ohmic and conventional heating. Biotechnology and Bioengineering 62(3): 368–372.

    Article  CAS  Google Scholar 

  • Cinquanta, L., D. Albanese, G. Cuccurullo, and M.D. Matteo. 2010. Effect on orange juice of batch pasteurization in an improved pilot-scale microwave oven. Journal of Food Science 75(1): E46–E50.

    Article  CAS  Google Scholar 

  • Coleman, W.H., D. Chen, Y-q Li, A.E. Cowan, and P. Setlow. 2007. How moist heat kills spores of Bacillus subtilis. Journal of Bacteriology 189(23): 8458–8466.

    Article  CAS  Google Scholar 

  • Condón, S., J. Raso, and R. Pagán. 2005. Microbial inactivation by ultrasound. In Novel food processing technologies, ed. G.V. Barbosa-Cánovas, M.P. Cano, and M.S. Tapia. Boca Raton, FL: CRC.

    Google Scholar 

  • Cotter, P.D., C. Hill, and R.P. Ross. 2005. Bacteriocins: developing innate immunity for food. Nature Reviews Microbiology 3(10): 777–788.

    Article  CAS  Google Scholar 

  • D’Amico, D.J., T.M. Silk, J.R. Wu, and M.R. Guo. 2006. Inactivation of microorganisms in milk and apple cider treated with ultrasound. Journal of Food Protection 69(3): 556–563.

    Google Scholar 

  • Davidson, P.M., and T.M. Taylor. 2007. Chemical preservatives and natural antimicrobial compounds. In Food microbiology: fundamentals and frontiers, ed. L.R. Beuchat and M.P. Doyle. Washington, DC: ASM.

    Google Scholar 

  • Davidson, P.M., J.N. Sofos, and A.L. Branen. 2005. Antimicrobials in food. Boca Raton, FL: Taylor & Francis.

    Book  Google Scholar 

  • Dawson, P.L., S. Mangalassary, and B.W. Sheldon. 2006. Thermal processing of poultry products. In Thermal food processing: new technologies and quality issues, ed. D.-W. Sun. Boca Raton, FL: CRC/Taylor & Francis.

    Google Scholar 

  • Day, L., and I. McNeil. 1996. Biographical dictionary of the history of technology. London/New York: Routledge.

    Google Scholar 

  • De Alwis, A.A.P., and P.J. Fryer. 1990. A finite-element analysis of heat generation and transfer during ohmic heating of food. Chemical Engineering Science 45(6): 1547–1559.

    Article  Google Scholar 

  • DeCareau, R.V. 1994. The microwave sterilization process. Microwave World 15(2): 12.

    Google Scholar 

  • Del Pozo-Insfran, D., M.O. Balaban, and S.T. Talcott. 2006. Microbial stability, phytochemical retention, and organoleptic attributes of dense phase CO2 processed muscadine grape juice. Journal of Agricultural and Food Chemistry 54(15): 5468–5473.

    Article  CAS  Google Scholar 

  • Delgado, A.E., D.W. Sun, and A.C. Rubiolo. 2006. Thermal physical properties of foods. In Thermal food processing: new technologies and quality issues, ed. D.-W. Sun. Boca Raton, FL: CRC/Taylor & Francis.

    Google Scholar 

  • Dell’Amore, C. 2009. Cooking gave humans edge over apes? Chigago National Geographic News. http://www.nationalgeographic.com.

  • Delves-Broughton, J. 2005. Nisin as a food preservative. Food Australia 57(12): 525–527.

    CAS  Google Scholar 

  • Demirdöven, A., and T. Baysal. 2009. The use of ultrasound and combined technologies in food preservation. Food Reviews International 25(1): 1–11.

    Article  CAS  Google Scholar 

  • Deng, S., R. Ruan, C.K. Mok, G. Huang, X. Lin, and P. Chen. 2007. Inactivation of Escherichia coli on almonds using nonthermal plasma. Journal of Food Science 72(2): M62–M66.

    Article  CAS  Google Scholar 

  • Dev, S.R.S., T. Padmini, A. Adedeji, Y. Gariepy, and G.S.V. Raghavan. 2008a. A comparative study on the effect of chemical, microwave, and pulsed electric pretreatments on convective drying and quality of raisins. Drying Technology 26(10): 1238–1243.

    Article  CAS  Google Scholar 

  • Dev, S.R.S., G.S.V. Raghavan, and Y. Gariepy. 2008b. Dielectric properties of egg components and microwave heating for in-shell pasteurization of eggs. Journal of Food Engineering 86(2): 207–214.

    Article  Google Scholar 

  • Doona, C.J., and F.E. Feeherry. 2007. High pressure processing of foods. Ames, IA; Chicago, IL: Blackwell, IFT.

    Google Scholar 

  • Duncan, C.L., and E.M. Foster. 1968. Effect of sodium nitrite, sodium chloride, and sodium nitrate on germination and outgrowth of anaerobic spores. Applied Microbiology 16(2): 406–411.

    CAS  Google Scholar 

  • Earnshaw, R.G., J. Appleyard, and R.M. Hurst. 1995. Understanding physical inactivation processes: combined preservation opportunities using heat, ultrasound and pressure. International Journal of Food Microbiology 28(2): 197–219.

    Article  CAS  Google Scholar 

  • Elez-Martinez, P., and O. Martin-Belloso. 2007. Effects of high intensity pulsed electric field processing conditions on vitamin C and antioxidant capacity of orange juice and gazpacho, a cold vegetable soup. Food Chemistry 102(1): 201–209.

    Article  CAS  Google Scholar 

  • Espachs-Barroso, A., G.V. Barbosa-Canovas, and O. Martin-Belloso. 2003. Microbial and enzymatic changes in fruit juice induced by high-intensity pulsed electric fields. Food Reviews International 19: 253–274.

    Article  CAS  Google Scholar 

  • Evrendilek, G.A., F.M. Tok, E.M. Soylu, and S. Soylu. 2009. Effect of pulsed electric fields on germination tube elongation and spore germination of Botrytis cinerea inoculated into sour cherry juice, apricot and peach nectars. Italian Journal of Food Science 21(2): 171–182.

    Google Scholar 

  • Farkas, J. 2007. Physical methods of food preservation. In Food microbiology: fundamentals and frontiers, ed. M.P. Doyle and L.R. Beuchat. Washington, DC: ASM.

    Google Scholar 

  • FDA (Food and Drug Administration) and HHS (Health and Human Services). 2008. Irradiation in the production, processing and handling of food. Final rule. Food and Drug Administration and Health and Human Services. Federal Register 73: 49593–49603.

    Google Scholar 

  • Feng, P. 2007. Rapid methods for the detection of foodborne pathogens: current and next-generation technologies. In Food microbiology: fundamentals and frontiers, ed. L.R. Beuchat and M.P. Doyle. Washington, DC: ASM.

    Google Scholar 

  • Feng, P., and N. Heredia. 2009. Rapid methods for foodborne bacterial enumeration and pathogen detection. In Microbiologically safe foods, ed. N. Heredia, I. Wesley, and S. García. Hoboken, NJ: Wiley.

    Google Scholar 

  • Feng, H., W. Yang, and T. Hielscher. 2008. Power ultrasound. Food Science and Technology International 14(5): 433–436.

    Article  Google Scholar 

  • Fennema, O.R., W.D. Powrie, and E.H. Marth. 1973. Low-temperature preservation of foods and living matter. New York: Marcel Dekker.

    Google Scholar 

  • Ferrante, S., S. Guerrero, and S.M. Alzamora. 2007. Combined use of ultrasound and natural antimicrobials to inactivate Listeria monocytogenes in orange juice. Journal of Food Protection 70(8): 1850–1856.

    CAS  Google Scholar 

  • Ferrentino, G., M.L. Plaza, M. Ramirez-Rodrigues, G. Ferrari, and M.O. Balaban. 2009. Effects of dense phase carbon dioxide pasteurization on the physical and quality attributes of a red grapefruit juice. Journal of Food Science 74(6): E333–E341.

    Article  CAS  Google Scholar 

  • Fields, F.O. 1996. Use of bacteriocins in food: regulatory considerations. Journal of Food Protection 59(3)Suppl: 72–77.

    Google Scholar 

  • Fillaudeau, L., P. Winterton, J.C. Leuliet, J.P. Tissier, V. Maury, F. Semet, P. Debreyne, M. Berthou, and F. Chopard. 2006. Heat treatment of whole milk by the direct joule effect—experimental and numerical approaches to fouling mechanisms. Journal of Dairy Science 89(12): 4475–4489.

    Article  CAS  Google Scholar 

  • Fito, P., A. Chiralt, and M.E. Martin. 2005. Current state of microwave applications to food processing. In Novel food processing technologies, ed. G.V. Barbosa-Cánovas, M.P. Cano, and M.S. Tapia. Boca Raton, FL: CRC.

    Google Scholar 

  • Funebo, T., and T. Ohlsson. 1998. Microwave-assisted air dehydration of apple and mushroom. Journal of Food Engineering 38(3): 353–367.

    Article  Google Scholar 

  • Gachovska, T.K., A.A. Adedeji, M. Ngadi, and G.V. Raghavan. 2008a. Drying characteristics of pulsed electric field-treated carrot. Drying Technology 26(10): 1244–1250.

    Article  Google Scholar 

  • Gachovska, T.K., S. Kumar, H. Thippareddi, J. Subbiah, and F. Williams. 2008b. Ultraviolet and pulsed electric field treatments have additive effect on inactivation of E. coli in apple juice. Journal of Food Science 73(9): 412–417.

    Article  CAS  Google Scholar 

  • Garcia-Gonzalez, L., A.H. Geeraerd, K. Elst, L. Van Ginneken, J.F. Van Impe, and F. Devlieghere. 2009. Inactivation of naturally occurring microorganisms in liquid whole egg using high pressure carbon dioxide processing as an alternative to heat pasteurization. Journal of Supercritical Fluids 51(1): 74–82.

    Article  CAS  Google Scholar 

  • Gentry, T.S., and J.S. Roberts. 2005. Design and evaluation of a continuous flow microwave pasteurization system for apple cider. Lebensmittel-Wissenschaft und - Technologie 38(3): 227–238.

    CAS  Google Scholar 

  • Giese, J. 1992. Advances in microwave food processing. Food Technology 46(9): 118–123.

    Google Scholar 

  • Goldblith, S.A., L. Rey, and W.W. Rothmayr. 1975. Freeze drying and advanced food technology. London/New York: Academic.

    Google Scholar 

  • Goldstein, H. 2004. Surebeam Goes Under. IEEE Spectrum.

    Google Scholar 

  • Gómez-López, V.M., F. Devlieghere, V. Bonduelle, and J. Debevere. 2005. Intense light pulses decontamination of minimally processed vegetables and their shelf-life. International Journal of Food Microbiology 103(1): 79–89.

    Article  Google Scholar 

  • Gómez-López, V.M., L. Orsolani, A. Martínez-Yépez, and M.S. Tapia. 2010. Microbiological and sensory quality of sonicated calcium-added orange juice. Lebensmittel-Wissenschaft und - Technologie 43(5): 808–813.

    Google Scholar 

  • Gordon, G. 1995. The chemistry and reactions of ozone in our environment. Progress in Nuclear Energy 29(Suppl 1): 89–96.

    Article  CAS  Google Scholar 

  • Goresline, H.E., M. Ingram, P. Macuch, G. Mocquot, D.A.A. Mossel, C.F. Niven, and F.S. Thatcher. 1964. Tentative classification of food irradiation processes with microbiological objectives. Nature 204(4955): 237–238.

    Article  Google Scholar 

  • Graham, D. 1997. Use of ozone for food processing. Food Technology 51(6): 72–73.

    Google Scholar 

  • Guan, D.S., V.C.F. Plotka, S. Clark, and J.M. Tang. 2002. Sensory evaluation of microwave treated macaroni and cheese. Journal of Food Processing and Preservation 26(5): 307–322.

    Article  Google Scholar 

  • Guan, D., P. Gray, D.-H. Kang, J. Tang, B. Shafer, K. Ito, F. Younce, and T.C.S. Yang. 2003. Microbiological validation of microwave-circulated water combination heating technology by inoculated pack studies. Journal of Food Science 68(4): 1428–1432.

    Article  CAS  Google Scholar 

  • Guerrero-Beltrán, J., and G. Barbosa-Cánovas. 2004. Advantages and limitations on processing foods by UV light. Food Science and Technology International 10(3): 137–147.

    Article  Google Scholar 

  • Guerrero-Beltrán, J.A., D.R. Sepulveda, M.M. Góngora-Nieto, B. Swanson, and G.V. Barbosa-Cánovas. 2010. Milk thermization by pulsed electric fields (PEF) and electrically induced heat. Journal of Food Engineering 100(1): 56–60.

    Article  Google Scholar 

  • Guillou, S., F. Leroi, N. Orange, A. Bakhrouf, M. Federighi, and N. Elmnasser. 2007. Pulsed-light system as a novel food decontamination technology: a review. Canadian Journal of Microbiology 53: 813–821.

    Article  Google Scholar 

  • Guzel-Seydim, Z.B., A.K. Greene, and A.C. Seydim. 2004. Use of ozone in the food industry. Lebensmittel-Wissenschaft und - Technologie 37(4): 453–460.

    CAS  Google Scholar 

  • Harlfinger, L. 1992. Microwave sterilization. Food Technology 46(12): 57–60.

    Google Scholar 

  • Hartman, P.A. 2001. The evolution of food microbiology. In Food microbiology: fundamentals and frontiers, ed. L.R. Beuchat, M.P. Doyle, and T.J. Montville. Washington, DC: ASM.

    Google Scholar 

  • Hayashi, R. 1995. Advances in high pressure processing technology in Japan. In Food processing: recent developments, ed. A.G. Gaonkar. Amsterdam/Lausanne/New York: Elsevier.

    Google Scholar 

  • Hazan, R., A. Levine, and H. Abeliovich. 2004. Benzoic acid, a weak organic acid food preservative, exerts specific effects on intracellular membrane trafficking pathways in Saccharomyces cerevisiae. Applied and Environmental Microbiology 70(8): 4449–4457.

    Article  CAS  Google Scholar 

  • Hendrickx, M.E.G., and D.W. Knorr. 2002. Ultra high pressure treatments of foods. New York: Kluwer Academic/Plenum Publishers.

    Book  Google Scholar 

  • Hoover, D.G., C. Metrick, A.M. Papineau, D.F. Farkas, and D. Knorr. 1989. Biological effects of high hydrostatic pressure on food microorganisms. Food Technology 43(3): 99–107.

    Google Scholar 

  • Hou, H., R.K. Singh, P.M. Muriana, and W.J. Stadelman. 1996. Pasteurization of intact shell eggs. Food Microbiology 13(2): 93–101.

    Article  Google Scholar 

  • Huffman, D.E., T.R. Slifko, K. Salisbury, and J.B. Rose. 2000. Inactivation of bacteria, virus and Cryptosporidium by a point-of-use device using pulsed broad spectrum white light. Water Research 34(9): 2491–2498.

    Article  CAS  Google Scholar 

  • Hui, Y.H. 2006. Handbook of food science, technology, and engineering, vol. 1. Boca Raton, FL: Taylor & Francis.

    Google Scholar 

  • Hutton, M.T., P.A. Chehak, and J.H. Hanlin. 1991. Inhibition of botulinum toxin production by Pediococcus acidilactici in temperature abused refrigerated foods. Journal of Food Safety 11(4): 255–267.

    Article  CAS  Google Scholar 

  • IFT and FDA. 2000. Kinetics of microbial inactivation for alternative food processing technologies—ohmic and inductive heating. Retrieved 20 March 2011, from http://www.fda.gov/Food/ScienceResearch/ResearchAreas/SafePracticesforFoodProcesses/ucm101246.htm.

  • Imai, T., K. Uemura, N. Ishida, and S. Yoshizaki. 1995. Ohmic heating of Japanese white radish Rhaphanus sativus L. International Journal of Food Science and Technology 30(4): 461.

    Google Scholar 

  • International Commission on Microbiological Specifications for Foods (ICMSF). 1980. Microbial ecology of foods: Factors affecting life and death of microorganims, vol. 1. New York: Academic.

    Google Scholar 

  • International Commission on Microbiological Specifications for Foods (ICMSF), and J.H. Silliker. 1980. Factors affecting life and death of microorganisms. New York: Academic.

    Google Scholar 

  • International Dairy Food Association. 2009. Pasteurization: definition and methods. Retrieved 13 June 2010, from http://www.idfa.org/files/249_Pasteurization%20Definition%20and%20Methods.pdf.

  • Josephson, E.S., and M.S. Peterson. 1983. Preservation of food by ionizing radiation. Boca Raton FL: CRC.

    Google Scholar 

  • Karaca, H., and Y.S. Velioglu. 2007. Ozone applications in fruit and vegetable processing. Food Reviews International 23(1): 91–106.

    Article  CAS  Google Scholar 

  • Karel, M. 2003. Freezing. In Physical principles of food preservation, ed. M. Karel and D.B. Lund. New York: M. Dekker.

    Chapter  Google Scholar 

  • Keklik, N.M., A. Demirci, P.H. Patterson, and V.M. Puri. 2009. Decontamination of shell-eggs with pulsed UV-light. ASABE Paper No. 095974. American Society of Agricultural Engineers. St. Joseph, MI.

    Google Scholar 

  • Kelch, F., and X. Bühlmann. 1958. Effect of commercial phosphates on the growth of microorganisms. Fleischwirtschaft 10: 325–328.

    CAS  Google Scholar 

  • Kelly, A.L., N. Datta, and H.C. Deeth. 2006. Thermal processing of dairy products. In Thermal food processing: new technologies and quality issues, ed. D.-W. Sun. Boca Raton, FL: CRC/Taylor & Francis.

    Google Scholar 

  • Kelly, A.L., and M. Zeece. 2009. Applications of novel technologies in processing of functional foods. Australian Journal of Dairy Technology 64(1): 12–15.

    Chapter  Google Scholar 

  • Kim, J.-G., A.E. Yousef, and S. Dave. 1999a. Application of ozone for enhancing the microbiological safety and quality of foods: a review. Journal of Food Protection 62(9): 1071.

    CAS  Google Scholar 

  • Kim, S.S., J.H. Lee, and S.Y. Kim. 1999b. Pasteurization efficiency of a continuous microwave HTST system for milk. Korean Journal of Food Science and Technology 31: 1392–1396.

    Google Scholar 

  • Kim, J.-G., A.E. Yousef, and M.A. Khadre. 2003. Ozone and its current and future application in the food industry. In Advances in food and nutrition research, vol 45. San Diego: Academic, pp. 167–218.

    Google Scholar 

  • Klaenhammer, T.R. 1993. Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiology Reviews 12(1–3): 1–3.

    Google Scholar 

  • Knorr, D., M. Zenker, V. Heinz, and D.-U. Lee. 2004. Applications and potential of ultrasonics in food processing. Trends in Food Science and Technology 15(5): 261–266.

    Article  CAS  Google Scholar 

  • Koutchma, T. 2009. Traditional and high-technology approaches to microbial safety in foods. In Microbiologically safe foods, ed. N. Heredia, I. Wesley, and S. García. Hoboken: Wiley.

    Google Scholar 

  • Kozempel, M., O.J. Scullen, R. Cook, and R. Whiting. 1997. Preliminary investigation using a batch flow process to determine bacteria destruction by microwave energy at low temperature. Lebensmittel-Wissenschaft und - Technologie 30(7): 691–696.

    CAS  Google Scholar 

  • Krishnamurthy, K., A. Demirci, and J. Irudayaraj. 2004. Inactivation of Staphylococcus aureus by pulsed UV-light sterilization. Journal of Food Protection 67(5): 1027–1030.

    Google Scholar 

  • Krishnamurthy, K., A. Demirci, and J.M. Irudayaraj. 2007. Inactivation of Staphylococcus aureus in milk using flow-through pulsed UV-light treatment system. Journal of Food Science 72(7): M233–M239.

    Article  CAS  Google Scholar 

  • Lacroix. K. 2001. Dielectric heating for antimicrobial treatment of fresh meats. Dissertation, McGill University, Montreal, QC.

    Google Scholar 

  • Lambert, R.J., and M. Stratford. 1999. Weak-acid preservatives: modelling microbial inhibition and response. Journal of Applied Microbiology 86(1): 157–164.

    Article  CAS  Google Scholar 

  • Lebovka, N.I., N.V. Shynkaryk, and E. Vorobiev. 2007. Pulsed electric field enhanced drying of potato tissue. Journal of Food Engineering 78(2): 606–613.

    Article  Google Scholar 

  • Lee, J., and G. Kaletunç. 2002. Evaluation of the heat inactivation of Escherichia coli and Lactobacillus plantarum by differential scanning calorimetry. Applied and Environmental Microbiology 68(11): 5379–5386.

    Article  CAS  Google Scholar 

  • Lee, H., B. Zhou, W. Liang, H. Feng, and S.E. Martin. 2009. Inactivation of Escherichia coli cells with sonication, manosonication, thermosonication, and manothermosonication: microbial responses and kinetics modeling. Journal of Food Engineering 93(3): 354–364.

    Article  Google Scholar 

  • Leistner, L., and L.G.M. Gorris. 1995. Food preservation by hurdle technology. Trends in Food Science and Technology 6(2): 41–46.

    Article  CAS  Google Scholar 

  • Leistner, L., and L.G.M. Gorris, Eds. 1994. Food Preservation by Combined Processes. Final Report of FLAIR Concerted Action No. 7, Subgroup B, EUR 1577 EN. Brussels, European Commission, Directorate-General XII, Brussels, Belgium, p. 100.

    Google Scholar 

  • Leizerson, S., and E. Shimoni. 2005a. Effect of ultrahigh-temperature continuous ohmic heating treatment on fresh orange juice. Journal of Agricultural and Food Chemistry 53(9): 3519–3524.

    Article  CAS  Google Scholar 

  • Leizerson, S., and E. Shimoni. 2005b. Stability and sensory shelf life of orange juice pasteurized by continuous ohmic heating. Journal of Agricultural and Food Chemistry 53(10): 4012–4018.

    Article  CAS  Google Scholar 

  • Li, M., J.H. Qu, and Y.Z. Peng. 2004. Sterilization of Escherichia coli cells by the application of pulsed magnetic field. Journal of Environmental Sciences (Beijing) 16(2): 348–352.

    CAS  Google Scholar 

  • Loghavi, L., S.K. Sastry, and A.E. Yousef. 2009. Effect of moderate electric field frequency and growth stage on the cell membrane permeability of Lactobacillus acidophilus. Biotechnology Progress 25(1): 85–94.

    Article  CAS  Google Scholar 

  • Löndahl, G., and T.E. Nilsson. 1978. Microbiological aspects of the freezing of meat and prepared foods. International Journal of Refrigeration 1(1): 47–52.

    Article  Google Scholar 

  • Lopez-Malo, A., E. Palou, M. Jimenez-Fernandez, S.M. Alzamora, and S. Guerrero. 2005. Multifactorial fungal inactivation combining thermosonication and antimicrobials. Journal of Food Engineering 67(1–2): 87–93.

    Article  Google Scholar 

  • Luechapattanaporn, K., Y. Wang, J. Wang, M. Al-Holy, D.H. Kang, J. Tang, and L.M. Hallberg. 2004. Microbial safety in radio-frequency processing of packaged foods. Journal of Food Science 69(7): M201–M206.

    Article  CAS  Google Scholar 

  • Lund, B.M., T.C. Baird-Parker, and G.W. Gould. 2000. The microbiological safety and quality of food. Gaithersburg, MD: Aspen Publishers.

    Google Scholar 

  • MacGregor, S.J., N.J. Rowan, L. McIlvaney, J.G. Anderson, R.A. Fouracre, and O. Farish. 1998. Light inactivation of food-related pathogenic bacteria using a pulsed power source. Letters in Applied Microbiology 27(2): 67–70.

    Article  CAS  Google Scholar 

  • Machado, L.F., R.N. Pereira, R.C. Martins, J.A. Teixeira, and A.A. Vicente. 2010. Moderate electric fields can inactivate Escherichia coli at room temperature. Journal of Food Engineering 96(4): 520–527.

    Article  Google Scholar 

  • Madigan, M.T., and T.D. Brock. 2009. Brock biology of microorganisms. San Francisco, CA: Pearson/Benjamin Cummings.

    Google Scholar 

  • Mahapatra, A.K., K. Muthukumarappan, and J.L. Julson. 2005. Applications of ozone, bacteriocins and irradiation in food processing: a review. Critical Reviews in Food Science and Nutrition 45(6): 447–461.

    Article  CAS  Google Scholar 

  • Manas, P., R. Pagan, and J. Raso. 2000a. Predicting lethal effect of ultrasonic waves under pressure treatments on Listeria monocytogenes ATCC 15313 by power measurements. Journal of Food Science 65(4): 663–667.

    Article  CAS  Google Scholar 

  • Manas, P., R. Pagan, J. Raso, F.J. Sala, and S. Condon. 2000b. Inactivation of Salmonella enteritidis, Salmonella Typhimurium and Salmonella Senftenberg by ultrasonic waves under pressure. Journal of Food Protection 63(4): 451–456.

    CAS  Google Scholar 

  • Marquenie, D., J. Lammertyn, A.H. Geeraerd, C. Soontjens, J.F. Van Impe, B.M. Nicolaï, and C.W. Michiels. 2002. Inactivation of conidia of Botrytis cinerea and Monilinia fructigena using UV-C and heat treatment. International Journal of Food Microbiology 74(1–2): 27–35.

    Article  CAS  Google Scholar 

  • Marquenie, D., A.H. Geeraerd, J. Lammertyn, C. Soontjens, J.F. Van Impe, C.W. Michiels, and B.M. Nicolaï. 2003a. Combinations of pulsed white light and UV-C or mild heat treatment to inactivate conidia of Botrytis cinerea and Monilia fructigena. International Journal of Food Microbiology 85(1–2): 185–196.

    Article  CAS  Google Scholar 

  • Marquenie, D., C.W. Michiels, J.F. Van Impe, E. Schrevens, and B.N. Nicolaï. 2003b. Pulsed white light in combination with UV-C and heat to reduce storage rot of strawberry. Postharvest Biology and Technology 28(3): 455–461.

    Article  Google Scholar 

  • Marra, F., J. Lyng, V. Romano, and B. McKenna. 2007. Radio-frequency heating of foodstuff: solution and validation of a mathematical model. Journal of Food Engineering 79(3): 998–1006.

    Article  Google Scholar 

  • Masanet, E., E. Worrell, W. Graus, and C. Galitsky. 2008. Energy efficiency improvement and cost saving opportunities for the fruit and vegetable processing industry—an energy star guide for energy and plant managers. Berkeley, CA: Ernest Orlando Lawrence Berkeley National Laboratory.

    Google Scholar 

  • McLean, R.A., H.D. Lilly, and J.A. Alford. 1968. Effects of meat-curing salts and temperature on production of Staphylococcal enterotoxin B. Journal of Bacteriology 95(4): 1207–1211.

    CAS  Google Scholar 

  • McNamee, C., F. Noci, D.A. Cronin, J.G. Lyng, D.J. Morgan, and A.G.M. Scannell. 2010. PEF based hurdle strategy to control Pichia fermentans, Listeria innocua and Escherichia coli k12 in orange juice. International Journal of Food Microbiology 138(1–2): 13–18.

    Article  CAS  Google Scholar 

  • MDS Nordion. 2010. The history of food irradiation. Retrieved 15 June 2010, from http://www.nordion.com/documents/The-History-of-Food-Irradiation.pdf.

  • Metaxas, A.C., and R.J. Meredith. 1983. Industrial microwave heating. London, UK: P. Peregrinus on behalf of the Institution of Electrical Engineers.

    Google Scholar 

  • Mezquida, G.M., G.E. Dede, M.J. Jordan, and M.P. Moratalla. 2009. Induction heating system for demolding e.g. ice creams, has induction coils that are moved closer to and/or away from molds to couple and uncouple with respect to molds or to fix with the molds, MEZQUIDA G M (MEZQ-Individual) DEDE G E (DEDE-Individual): 6.

    Google Scholar 

  • Milly, P.J., R.T. Toledo, M.A. Harrison, and D. Armstead. 2007. Inactivation of food spoilage microorganisms by hydrodynamic cavitation to achieve pasteurization and sterilization of fluid foods. Journal of Food Science 72(9): M414–M422.

    Article  CAS  Google Scholar 

  • Min, S., Z.T. Jin, S.X. Min, H. Yeom, and Q.H. Zhang. 2003. Commercial-scale pulsed electric field processing of orange juice. Journal of Food Science 68(4): 1265–1271.

    Article  CAS  Google Scholar 

  • Molins, R.A. 2001. Global status of food irradiation in 2000. In Food irradiation: principles and applications, ed. R.A. Molins. New York: Wiley.

    Google Scholar 

  • Monfort, S., E. Gayan, G. Saldana, E. Puertolas, S. Condon, J. Raso, and I. Alvarez. 2010. Inactivation of Salmonella typhimurium and Staphylococcus aureus by pulsed electric fields in liquid whole egg. Innovative Food Science and Emerging Technologies 11(2): 306–313.

    Article  CAS  Google Scholar 

  • Montenegro, J., R. Ruan, H. Ma, and P. Chen. 2002. Inactivation of E. coli O157:H7 using a pulsed nonthermal plasma system. Journal of Food Science 67(2): 646–648.

    Article  CAS  Google Scholar 

  • Montville, T.J., and M.L. Chikundas. 2007. Biopreservation of foods. In Food microbiology: fundamentals and frontiers, ed. L.R. Beuchat and M.P. Doyle. Washington, DC: ASM.

    Google Scholar 

  • Montville, T.J., and K.R. Mathews. 2007. Growth, survival, and death of microbes in foods. In Food microbiology: fundamentals and frontiers, ed. L.R. Beuchat and M.P. Doyle. Washington, DC: ASM.

    Google Scholar 

  • Montville, T.J., and K.R. Matthews. 2008. Food microbiology: an introduction. Washington, DC: ASM.

    Google Scholar 

  • Mosqueda-Melgar, J., P. Elez-Martínez, R.M. Raybaudi-Massilia, and O. Martín-Belloso. 2008a. Effects of pulsed electric fields on pathogenic microorganisms of major concern in fluid foods: a review. Critical Reviews in Food Science and Nutrition 48(8): 747–759.

    Article  Google Scholar 

  • Mosqueda-Melgar, J., R.M. Raybaudi-Massilia, and O. Martin-Belloso. 2008b. Non-thermal pasteurization of fruit juices by combining high-intensity pulsed electric fields with natural antimicrobials. Innovative Food Science and Emerging Technologies 9(3): 328–340.

    Article  CAS  Google Scholar 

  • Moy, J.H. 2005. Food irradiation—an emerging technology. In Novel food processing technologies, ed. G.V. Barbosa-Cánovas, M.P. Cano, and M.S. Tapia. Boca Raton, FL: CRC.

    Google Scholar 

  • Mudgett, R.E. 1985. Dielectrical properties of foods. In Microwaves in the food processing industry, ed. R.V. DeCareau and R.E. Mudgett. Orlando, FL: Academic.

    Google Scholar 

  • Niemira, B.A., and J. Sites. 2008. Cold plasma inactivates Salmonella stanley and Escherichia coli O157:H7 inoculated on golden delicious apples. Journal of Food Protection 71(7): 1357–1365.

    Google Scholar 

  • Nikdel, S., and D.G. Mackellar. 1992. A microwave system for continuous pasteurization of orange juice. Proceedings of the Florida State Horticultural Society 105: 108–110.

    Google Scholar 

  • Nikdel, S., C.S. Chen, M.E. Parish, D.G. Mackellar, and L.M. Friedrich. 1993. Pasteurization of citrus juice with microwave energy in a continuous-flow unit. Journal of Agricultural and Food Chemistry 41(11): 2116–2119.

    Article  CAS  Google Scholar 

  • Noci, F., J. Riener, M. Walkling-Ribeiro, D.A. Cronin, D.J. Morgan, and J.G. Lyng. 2008. Ultraviolet irradiation and pulsed electric fields (PEF) in a hurdle strategy for the preservation of fresh apple Juice. Journal of Food Engineering 85(1): 141–146.

    Article  Google Scholar 

  • Noci, F., M. Walkling-Ribeiro, D.A. Cronin, D.J. Morgan, and J.G. Lyng. 2009. Effect of thermosonication, pulsed electric field and their combination on inactivation of Listeria innocua in milk. International Dairy Journal 19(1): 30–35.

    Article  Google Scholar 

  • Novak, J.S., and J.T.C. Yuan. 2007. The ozonization concept: advantages of ozone treatment and commercial developments. In Advances in thermal and non-thermal food preservation, ed. G. Tewari and V.K. Juneja. Ames, IA: Blackwell.

    Google Scholar 

  • O’Bryan, C.A., P.G. Crandall, S.C. Ricke, and D.G. Olson. 2008. Impact of irradiation on the safety and quality of poultry and meat products: a review. Critical Reviews in Food Science and Nutrition 48(5): 442–457.

    Article  CAS  Google Scholar 

  • Olson, E.R. 1993. Influence of pH on bacterial gene expression. Molecular Microbiology 8(1): 5–14.

    Article  CAS  Google Scholar 

  • Oms-Oliu, G., O. Martín-Belloso, and R. Soliva-Fortuny. 2010. Pulsed light treatments for food preservation: a review. Food and Bioprocess Technology 3(1): 13–23.

    Article  Google Scholar 

  • Orfeuil, M. 1987. Electric process heating: technologies, equipment, applications. Columbus, OH: Battelle.

    Google Scholar 

  • Ozer, N.P., and A. Demirci. 2006. Inactivation of Escherichia coli O157:H7 and Listeria monocytogenes inoculated on raw salmon fillets by pulsed UV-light treatment. International Journal of Food Science and Technology 41(4): 354–360.

    Article  CAS  Google Scholar 

  • Palaniappan, S., S.K. Sastry, and E.R. Richter. 1992. Effects of electroconductive heat treatment and electrical pretreatment on thermal death kinetics of selected microorganisms. Biotechnology and Bioengineering 39(2): 225–232.

    Article  CAS  Google Scholar 

  • Palou, E., A. López-Malo, and J. Welti-Chanes. 2002. Innovative fruit preservation methods using high pressure. In Engineering and food for the 21st century, ed. J. Welti-Chanes, G.V. Barbosa-Cánovas, and J.M. Aguilera. Boca Raton, FL: CRC.

    Google Scholar 

  • Palumbo, S.A. 1986. Is refrigeration enough to restrain foodborne pathogens? Journal of Food Protection 49(12): 1003–1009.

    Google Scholar 

  • Pascual, A., I. Llorca, and A. Canut. 2007. Use of ozone in food industries for reducing the environmental impact of cleaning and disinfection activities. Trends in Food Science and Technology 18(Suppl 1): S29–S35.

    Article  CAS  Google Scholar 

  • Patterson, M.F., M. Linton, and C.J. Doona. 2007. Introduction to high pressure processing of foods. In High pressure processing of foods, ed. C.J. Doona and F.E. Feeherry. Ames, IA/Chicago: Blackwell/IFT.

    Google Scholar 

  • Pereira, R.N., and A.A. Vicente. 2010. Environmental impact of novel thermal and non-thermal technologies in food processing. Food Research International 43(7): 1936–1943.

    Article  Google Scholar 

  • Perni, S., D.W. Liu, G. Shama, and M.G. Kong. 2008a. Cold atmospheric plasma decontamination of the pericarps of fruit. Journal of Food Protection 71(2): 302–308.

    CAS  Google Scholar 

  • Perni, S., G. Shama, and M.G. Kong. 2008b. Cold atmospheric plasma disinfection of cut fruit surfaces contaminated with migrating microorganisms. Journal of Food Protection 71(8): 1619–1625.

    Google Scholar 

  • Pflug, I.J., and G.W. Gould. 2000. Heat treatment. In The microbiological safety and quality of food, ed. B.M. Lund, T.C. Baird-Parker, and G.W. Gould. Gaithersburg, MD: Aspen.

    Google Scholar 

  • Piyasena, P., E. Mohareb, and R.C. McKellar. 2003. Inactivation of microbes using ultrasound: a review. International Journal of Food Microbiology 87(3): 207–216.

    Article  CAS  Google Scholar 

  • Pothakamury, U.R., G.V. Barbosa-Cánovas, and B.G. Swanson. 1993. Magnetic-field inactivation of microorganisms and generation of biological changes. Food Technology 47(12): 85–93.

    CAS  Google Scholar 

  • Potter, N.N., and J.H. Hotchkiss. 1998. Food science. Gaithersburg, MD: Aspen.

    Google Scholar 

  • Raichel, D.R. 2006. The science and applications of acoustics. New York: Springer Science+Business Media.

    Google Scholar 

  • Rajkovic, A., I. Tomasevic, N. Smigic, M. Uyttendaele, R. Radovanovic, and F. Devlieghere. 2010. Pulsed UV light as an intervention strategy against Listeria monocytogenes and Escherichia coli O157:H7 on the surface of a meat slicing knife. Journal of Food Engineering 100(3): 446–451.

    Article  Google Scholar 

  • Ramaswamy, H.S., and T. Pillet-Will. 1992. Temperature distribution in microwave-heated food models. Journal of Food Quality 15(6): 435–448.

    Article  Google Scholar 

  • Ramaswamy, H., and J. Tang. 2008. Microwave and radio frequency heating. Food Science and Technology International 14(5): 423–427.

    Article  Google Scholar 

  • Ramaswamy, R., T. Jin, V.M. Balasubramaniam, and H. Zhang. 2007. Pulsed electric field processing: fact sheet for food processors. Retrieved 13 June 2010, from http://ohioline.osu.edu/fse-fact/pdf/0002.pdf.

  • Ramesh, M.N. 2003. Sterilization of foods. In Encyclopedia of food sciences and nutrition, ed. B. Cabellero. Oxford, UK: Academic.

    Google Scholar 

  • Raso, J., and G.V. Barbosa-Cánovas. 2003. Nonthermal preservation of foods using combined processing techniques. Critical Reviews in Food Science and Nutrition 43(3): 265–285.

    Article  Google Scholar 

  • Raso, J., A. Palop, R. Pagán, and S. Condón. 1998. Inactivation of Bacillus subtilis spores by combining ultrasonic waves under pressure and mild heat treatment. Journal of Applied Microbiology 85(5): 849–854.

    Article  CAS  Google Scholar 

  • Raso, J., P. Mañas, R. Pagán, and F.J. Sala. 1999. Influence of different factors on the output power transferred into medium by ultrasound. Ultrasonics Sonochemistry 5(4): 157–162.

    Article  CAS  Google Scholar 

  • Rastogi, N.K. 2003. Application of high-intensity pulsed electrical fields in food processing. Food Reviews International 19(3): 229–251.

    Article  Google Scholar 

  • Ravishankar, S., H. Zhang, and M.L. Kempkes. 2008. Pulsed electric fields. Food Science and Technology International 14(5): 429–432.

    Article  Google Scholar 

  • Riener, J., F. Noci, D.A. Cronin, D.J. Morgan, and J.G. Lyng. 2009a. Effect of high intensity pulsed electric fields on enzymes and vitamins in bovine raw milk. International Journal of Dairy Technology 62(1): 1–6.

    Article  CAS  Google Scholar 

  • Riener, J., F. Noci, D.A. Cronin, D.J. Morgan, and J.G. Lyng. 2009b. The effect of thermosonication of milk on selected physicochemical and microstructural properties of yoghurt gels during fermentation. Food Chemistry 114(3): 905–911.

    Article  CAS  Google Scholar 

  • Roberts, P., and A. Hope. 2003. Virus inactivation by high intensity broad spectrum pulsed light. Journal of Virological Methods 110(1): 61–65.

    Article  CAS  Google Scholar 

  • Rodríguez, J.M., M.I. Martínez, N. Horn, and H.M. Dodd. 2003. Heterologous production of bacteriocins by lactic acid bacteria. International Journal of Food Microbiology 80(2): 101–116.

    Article  Google Scholar 

  • Rodriguez-Romo, L.A., and A.E. Yousef. 2005. Inactivation of Salmonella enterica serovar Enteritidis on shell eggs by ozone and UV radiation. Journal of Food Protection 68(4): 711–717.

    Google Scholar 

  • Roodenburg, B., S.W.H. de Haan, L.B.J. van Boxtel, V. Hatt, P.C. Wouters, P. Coronel, and J.A. Ferreira. 2010. Conductive plastic film electrodes for Pulsed Electric Field (PEF) treatment: a proof of principle. Innovative Food Science and Emerging Technologies 11(2): 274–282.

    Article  CAS  Google Scholar 

  • Rose, A.H. 1983. Food Microbiology. London/New York: Academic.

    Google Scholar 

  • Rose, D. 1995. Advances and potential for aseptic processing. In New methods of food preservation, ed. G.W. Gould. London; New York: Blackie Academic & Professional.

    Google Scholar 

  • Rosenbauer, G., M. Rudolph, and F. Traub. 1996. Gentle thermal treatment of liquids by induction heating. Chemie-Ingenieur-Technik 68(3): 287–289.

    Article  CAS  Google Scholar 

  • Ross, A.I.V., M.W. Griffiths, G.S. Mittal, and H.C. Deeth. 2003. Combining nonthermal technologies to control foodborne microorganisms. International Journal of Food Microbiology 89(2–3): 125–138.

    Article  Google Scholar 

  • Rowan, N.J., S.J. MacGregor, J.G. Anderson, R.A. Fouracre, L. McIlvaney, and O. Farish. 1999. Pulsed-light inactivation of food-related microorganisms. Applied and Environmental Microbiology 65(3): 1312–1315.

    CAS  Google Scholar 

  • Russell, N.J., and G.W. Gould. 1991. Food preservatives. Glasgow/New York: Blackie/AVI.

    Google Scholar 

  • Ryan, K., K. McCabe, N. Clements, M. Hernandez, and S. Miller. 2010. Inactivation of airborne microorganisms using novel ultraviolet radiation sources in reflective flow-through control devices. Aerosol Science and Technology 44(7): 541–550.

    Article  CAS  Google Scholar 

  • Ryynanen, S., and T. Ohlsson. 1996. Microwave heating uniformity of ready meals as affected by placement, composition, and geometry. Journal of Food Science 61(3): 620–624.

    Article  Google Scholar 

  • Saldana, G., E. Puertolas, S. Condon, I. Alvarez, and J. Raso. 2010. Inactivation kinetics of pulsed electric field-resistant strains of Listeria monocytogenes and Staphylococcus aureus in media of different pH. Food Microbiology 27(4): 550–558.

    Article  CAS  Google Scholar 

  • Sampedro, F., M. Rodrigo, A. Martinez, D. Rodrigo, and G.V. Barbosa-Cánovas. 2005. Quality and safety aspects of PEF application in milk and milk products. Critical Reviews in Food Science and Nutrition 45(1): 25–47.

    Article  CAS  Google Scholar 

  • Sampedro, F., D. Rodrigo, A. Martinez, G.V. Barbosa-Canovas, and M. Rodrigo. 2006. Review: application of pulsed electric fields in egg and egg derivatives. Food Science and Technology International 12(5): 397–405.

    Article  CAS  Google Scholar 

  • Sanchez-Moreno, C., B. De Ancos, L. Plaza, P. Elez-Martinez, and M.P. Cano. 2009. Nutritional approaches and health-related properties of plant foods processed by high pressure and pulsed electric fields. Critical Reviews in Food Science and Nutrition 49(6): 552–576.

    Article  CAS  Google Scholar 

  • Sapp, S.G., and T. Downing-Matibag. 2009. Consumer acceptance of food irradiation: a test of the recreancy theorem. International Journal of Consumer Studies 33(4): 417–424.

    Article  Google Scholar 

  • Sarang, S.S. 2007. Ohmic heating for thermal processing of low-acid foods containing solid particulates. Columbus, OH: Ohio State University.

    Google Scholar 

  • Sastry, S.K. 2005. Advances in ohmic heating and moderate electric field (MEF) processing. In Novel food processing technologies, ed. G.V. Barbosa-Cánovas, M.P. Cano, and M.S. Tapia. Boca Raton, FL: CRC.

    Google Scholar 

  • Sastry, S. 2008. Ohmic heating and moderate electric field processing. Food Science and Technology International 14(5): 419–422.

    Article  Google Scholar 

  • Sastry, S.K., and J.T. Barach. 2000. Ohmic and inductive heating. Journal of Food Science65(4): 46.

    Article  Google Scholar 

  • Sastry, S.K., and Q. Li. 1996. Modeling the ohmic heating of foods. Food technology 50(5): 246–248.

    Google Scholar 

  • Schilling, S., S. Schmid, H. Jaeger, M. Ludwig, H. Dietrich, S. Toepfl, D. Knorr, S. Neidhart, A. Schieber, and R. Carlet. 2008. Comparative study of pulsed electric field and thermal processing of apple juice with particular consideration of juice quality and enzyme deactivation. Journal of Agricultural and Food Chemistry 56(12): 4545–4554.

    Article  CAS  Google Scholar 

  • Schlegel, W. 1992. Commercial pasteurization and sterilization of food products using microwave technology. Food Technology 46(12): 62–63.

    Google Scholar 

  • Scurrah, K.J., R.E. Robertson, H.M. Craven, L.E. Pearce, and E.A. Szabo. 2006. Inactivation of Bacillus spores in reconstituted skim milk by combined high pressure and heat treatment. Journal of Applied Microbiology 101(1): 172–180.

    Article  CAS  Google Scholar 

  • Sen Gupta, B., F. Masterson, and T.R.A. Magee. 2005. Inactivation of E-coli in cranberry juice by a high voltage pulsed electric field. Engineering in Life Sciences 5(2): 148–151.

    Article  CAS  Google Scholar 

  • Sharma, R.R., and A. Demirci. 2003. Inactivation of Escherichia coli O157:H7 on inoculated alfalfa seeds with pulsed ultraviolet light and response surface modeling. Journal of Food Science 68(4): 1448–1453.

    Article  CAS  Google Scholar 

  • Shynkaryk, M.V., N.I. Lebovka, and E. Vorobiev. 2008. Pulsed electric fields and temperature effects on drying and rehydration of red beetroots. Drying Technology 26(6): 695–704.

    Article  Google Scholar 

  • Sierra, I., and C. Vidal-Valverde. 2001. Vitamin B1 and B6 retention in milk after continuous-flow microwave and conventional heating at high temperatures. Journal of Food Protection 64(6): 890–894.

    CAS  Google Scholar 

  • Smith, W.L., M.C. Lagunas-Solar, and J.S. Cullor. 2002. Use of pulsed ultraviolet laser light for the cold pasteurization of bovine milk. Journal of Food Protection 65: 1480–1482.

    Google Scholar 

  • Sofos, J.N. 1984. Antimicrobial effects of sodium and other ions in foods: a review. Journal of Food Safety 6(1): 45–78.

    Article  CAS  Google Scholar 

  • Sofos, J.N. 1986. Use of phosphates in low-sodium meat products. Food Technology 40(9): 52–68.

    CAS  Google Scholar 

  • Stadelman, W.J., R.K. Singh, P.M. Muriana, and H. Hou. 1996. Pasteurization of eggs in the shell. Poultry Science 75(9): 1122–1125.

    CAS  Google Scholar 

  • Starkweather, K.A. 2000. Radio frequency thermal inactivation of Listeria innocua in salmon caviar. Pullmann, WA: Washington State University.

    Google Scholar 

  • Sun, D.-W. 2006. Thermal food processing: new technologies and quality issues. Boca Raton, FL: CRC/Taylor & Francis.

    Google Scholar 

  • Tahiri, I., J. Makhlouf, P. Paquin, and I. Fliss. 2006. Inactivation of food spoilage bacteria and Escherichia coli O157: H7 in phosphate buffer and orange juice using dynamic high pressure. Food Research International 39(1): 98–105.

    Article  CAS  Google Scholar 

  • Takeshita, K., H. Yamanaka, T. Sameshima, S. Fukunaga, S. Isobe, K. Arihara, and M. Itoh. 2002. Sterilization effect of pulsed light on various microorganisms. Journal of Antibacterial and Antifungal Agents, Japan 30(5): 277–284.

    Google Scholar 

  • Takeshita, K., J. Shibato, T. Sameshima, S. Fukunaga, S. Isobe, K. Arihara, and M. Itoh. 2003. Damage of yeast cells induced by pulsed light irradiation. International Journal of Food Microbiology 85(1–2): 151–158.

    Article  Google Scholar 

  • Tamplin, M.L. 2009. Predictive microbiology: growth in silico. In Microbiologically safe foods, ed. N. Heredia, I. Wesley, and S. García. Hoboken, NJ: Wiley.

    Google Scholar 

  • Tang, J., F. Hao, and M. Lau. 2002. Microwave heating in food processing. In Advances in bioprocessing engineering, ed. X.H. Yang and J. Tang. River Edge, NJ: World Scientific.

    Google Scholar 

  • Tang, J., Y. Wang, and T.V.C.T. Chan. 2005. Radio-frequency heating in food processing. In Novel food processing technologies, ed. G.V. Barbosa-Cánovas, M.P. Cano, and M.S. Tapia. Boca Raton, FL: CRC.

    Google Scholar 

  • Tannahill, R. 1973. Food in history. New York: Stein and Day.

    Google Scholar 

  • Tauscher, B. 1995. Pasteurization of food by hydrostatic high pressure: chemical aspects. Zeitschrift für Lebensmittel-Untersuchung und -Forschung 200(1): 3–13.

    Article  CAS  Google Scholar 

  • Teixeira, A.A. 2005. Simulating thermal food processes using deterministic models. In Novel food processing technologies, ed. G.V. Barbosa-Cánovas, M.P. Cano, and M.S. Tapia. Boca Raton, FL: CRC.

    Google Scholar 

  • Terebiznik, M., R. Jagus, P. Cerrutti, M.S. de Huergo, and A.M. Pilosof. 2002. Inactivation of Escherichia coli by a combination of nisin, pulsed electric fields, and water activity reduction by sodium chloride. Journal of Food Protection 65(8): 1253–1258.

    CAS  Google Scholar 

  • Tewari, G. 2007. High-pressure processing of foods. In Advances in thermal and non-thermal food preservation, ed. G. Tewari and V.K. Juneja. Ames, IA: Blackwell.

    Chapter  Google Scholar 

  • Toepfl, S., A. Mathys, V. Heinz, and D. Knorr. 2006. Potential of high hydrostatic pressure and pulsed electric fields for energy efficient and environmentally friendly food processing. Food Reviews International 22(4): 405–423.

    Article  CAS  Google Scholar 

  • Toussaint-Samat, M. 1992. A history of food. Oxford, UK: Blackwell Reference.

    Google Scholar 

  • Troller, J.A., and J.H.B. Christian. 1978. Water activity and food. New York: Academic.

    Google Scholar 

  • Tsong, T.Y. 1991. Electroporation of cell membranes. Biophysical Journal 60(2): 297–306.

    Article  CAS  Google Scholar 

  • Ugarte-Romero, E., H. Feng, and S.E. Martin. 2007. Inactivation of Shigella boydii 18 IDPH and Listeria monocytogenes Scott A with power ultrasound at different acoustic energy densities and temperatures. Journal of Food Science 72(4): M103–M107.

    Article  CAS  Google Scholar 

  • Ukuku, D.O., and D.J. Geveke. 2010. A combined treatment of UV-light and radio frequency electric field for the inactivation of Escherichia coli K-12 in apple juice. International Journal of Food Microbiology 138(1–2): 1–2.

    Google Scholar 

  • Unal, R., J.G. Kim, and A.E. Yousef. 2001. Inactivation of Escherichia coli O1 57:H7, Listeria monocytogenes, and Lactobacillus leichmannii by combinations of ozone and pulsed electric field. Journal of Food Protection 64(6): 777–782.

    CAS  Google Scholar 

  • Valero, E., M. Villamiel, J. Sanz, and I. Martinez-Castro. 2000. Chemical and sensorial changes in milk pasteurised by microwave and conventional systems during cold storage. Food Chemistry 70(1): 77–81.

    Article  CAS  Google Scholar 

  • Valero, M., N. Recrosio, D. Saura, N. Muñoz, N. Martí, and V. Lizama. 2007. Effects of ultrasonic treatments in orange juice processing. Journal of Food Engineering 80(2): 509–516.

    Article  Google Scholar 

  • Vandenbergh, P.A. 1993. Lactic acid bacteria, their metabolic products and interference with microbial growth. FEMS Microbiology Reviews 12(1/3): 221–238.

    Article  CAS  Google Scholar 

  • Vega-Mercado, H., O. Martin-Belloso, F.J. Chang, G.V. Barbosa-Canovas, and B.G. Swanson. 1996. Inactivation of Escherichia coli and Bacillus subtilis suspended in pea soup using pulsed electric fields. Journal of Food Processing and Preservation 20(6): 501–510.

    Article  Google Scholar 

  • Vicente AA, Castro I, Teixeira JA (2006) Ohmic heating for food processing. In: Sun D-W (ed) Thermal food processing: new technologies and quality issues. CRC/Taylor & Francis: Boca Raton, FL

    Google Scholar 

  • Villamiel, M., and P. de Jong. 2000. Influence of high-intensity ultrasound and heat treatment in continuous flow on fat, proteins, and native enzymes of milk. Journal of Agricultural and Food Chemistry 48(2): 472–478.

    Article  CAS  Google Scholar 

  • Wageningen, U.R. 2006. Cold Plasma. Retrieved 27 July 2010, from http://www.ftc.wur.nl/EN/PullDown3/KO_2_12.asp.

  • Wagner, M.K., and F.F. Busta. 1985. Inhibition of Clostridium botulinum 52A toxicity and protease activity by sodium acid pyrophosphate in media systems. Applied and Environmental Microbiology 50(1): 16–20.

    CAS  Google Scholar 

  • Walkling-Ribeiro, M., F. Noci, D.A. Cronin, J.G. Lyng, and D.J. Morgan. 2009a. Antimicrobial effect and shelf-life extension by combined thermal and pulsed electric field treatment of milk. Journal of Applied Microbiology 106(1): 241–248.

    Article  CAS  Google Scholar 

  • Walkling-Ribeiro, M., F. Noci, D.A. Cronin, J.G. Lyng, and D.J. Morgan. 2009b. Shelf life and sensory evaluation of orange juice after exposure to thermosonication and pulsed electric fields. Food and Bioproducts Processing 87(2): 102–107.

    Article  Google Scholar 

  • Wang, W.-C. 1995. Ohmic heating of foods: Physical properties and applications, Ohio State University. PhD.

    Google Scholar 

  • Wang, Y., T.D. Wig, J. Tang, and L.M. Hallberg. 2003. Sterilization of foodstuffs using radio frequency heating. Journal of Food Science 68(2): 539–544.

    Article  CAS  Google Scholar 

  • Welti-Chanes, J., A. López-Malo, E. Palou, D. Bermúdez, J.A. Guerrero-Beltrán, and G.V. Barbosa-Cánovas. 2005. Fundamentals and applications of high pressure processing of foods. In Novel food processing technologies, ed. G.V. Barbosa-Cánovas, M.P. Cano, and M.S. Tapia. Boca Raton, FL: CRC.

    Google Scholar 

  • Werner, B.G., and J.H. Hotchkiss. 2006. Continuous flow nonthermal CO2 processing: the lethal effects of subcritical and supercritical CO2 on total microbial populations and bacterial spores in raw milk. Journal of Dairy Science 89(3): 872–881.

    Article  CAS  Google Scholar 

  • Whiting, R.C. 1995. Microbial modeling in foods. Critical Reviews in Food Science and Nutrition 35(6): 464–494.

    Article  CAS  Google Scholar 

  • Wood, O.B., and C.M. Bruhn. 2000. Position of the American Dietetic Association: food irradiation. Journal of American Dietetic Association 100(2): 246–253.

    Article  CAS  Google Scholar 

  • Woods, R.J. 1994. Food irradiation. Endeavour 18(3): 104–108.

    Article  CAS  Google Scholar 

  • World Health Organization. 1999. High-dose irradiation: wholesomeness of food irradiated with doses above 10 kGy. Technical report series; 890.

    Google Scholar 

  • Wouters, P.C., and J.P.P.M. Smelt. 1997. Inactivation of microorganisms with pulsed electric fields: potential for food preservation. Food Biotechnology 11(3): 193–229.

    Article  Google Scholar 

  • Wrangham, R.W. 2009. Catching fire: how cooking made us human. New York: Basic Books.

    Google Scholar 

  • Wu, J., T.V. Gamage, K.S. Vilkhu, L.K. Simons, and R. Mawson. 2008. Effect of thermosonication on quality improvement of tomato juice. Innovative Food Science and Emerging Technologies 9(2): 186–195.

    Article  CAS  Google Scholar 

  • Yoon, S.W., C.Y.J. Lee, K.M. Kim, and C.H. Lee. 2002. Leakage of Cellular Materials from Saccharomyces cerevisiae by Ohmic Heating. Journal of Microbiology and Biotechnology 12: 183–188.

    Article  CAS  Google Scholar 

  • Yongsawatdigul, J., J.W. Park, and E. Kolbe. 1995. Electrical conductivity of pacific whiting surimi paste during ohmic heating. Journal of Food Science 60(5): 922–925.

    Article  CAS  Google Scholar 

  • Yuk, H.G., D.J. Geveke, and H.Q. Zhang. 2010. Efficacy of supercritical carbon dioxide for nonthermal inactivation of Escherichia coli K12 in apple cider. International Journal of Food Microbiology 138(1–2): 91–99.

    Article  CAS  Google Scholar 

  • Zaika, L.L., and A.H. Kim. 1993. Effect of sodium polyphosphates on growth of Listeria monocytogenes. Journal of Food Protection 56(7): 577–580.

    CAS  Google Scholar 

  • Zeldes, L.A. 2009. Eat this! Old-fashioned eggnog, made safer, thanks to Chicago-area eggs. Dining Chicago. Chicago, IL. www.diningchicago.com.

  • Zell, M., J.G. Lyng, D.A. Cronin, and D.J. Morgan. 2009. Ohmic cooking of whole beef muscle: optimisation of meat preparation. Meat Science 81(4): 693–698.

    Article  Google Scholar 

  • Zenker, M., V. Heinz, and D. Knorr. 2003. Application of ultrasound-assisted thermal processing for preservation and quality retention of liquid foods. Journal of Food Protection 66(9): 1642–1649.

    CAS  Google Scholar 

  • Zhang, H., and G. Mittal. 2008. Effects of high-pressure processing (HPP) on bacterial spores: an overview. Food Reviews International 24(3): 330–351.

    Article  CAS  Google Scholar 

  • Zhang, Q., G.V. Barbosa-Cánovas, and B.G. Swanson. 1995. Engineering aspects of pulsed electric field pasteurization. Journal of Food Engineering 25(2): 261–281.

    Article  Google Scholar 

  • Zhao, Y. 2006. Radio frequency dielectric heating. In Thermal food processing: new technologies and quality issues, ed. D.-W. Sun. Boca Raton, FL: CRC/Taylor & Francis.

    Google Scholar 

  • Zhao, Y., B. Flugstad, E. Kolbe, J.W. Park, and J.H. Wells. 2000. Using capacitive (radio frequency) dielectric heating in food processing and preservation—a review. Journal of Food Process Engineering 23: 25–56.

    Article  Google Scholar 

  • Zhong, Q., K.P. Sandeep, and K.R. Swartzel. 2003. Continuous flow radio frequency heating of water and carboxymethylcellulose solutions. Journal of Food Science 68(1): 217–223.

    Article  CAS  Google Scholar 

  • Zhong, Q., K.P. Sandeep, and K.R. Swartzel. 2004. Continuous flow radio frequency heating of particulate foods. Innovative Food Science and Emerging Technologies 5(4): 475–483.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael O. Ngadi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Her Majesty the Queen, in Right of Canada

About this chapter

Cite this chapter

Ngadi, M.O., Latheef, M.B., Kassama, L. (2012). Emerging technologies for microbial control in food processing. In: Boye, J., Arcand, Y. (eds) Green Technologies in Food Production and Processing. Food Engineering Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1587-9_14

Download citation

Publish with us

Policies and ethics