Skip to main content

Green separation technologies in food processing: supercritical-CO2 fluid and subcritical water extraction

  • Chapter
  • First Online:
Green Technologies in Food Production and Processing

Part of the book series: Food Engineering Series ((FSES))

Abstract

Application of separation technologies is done to recover high value components from agricultural commodities and is an important operation in food processing, especially for the development of health-promoting food ingredients. There is significant interest from the scientific community and increasing industrial demand to perform research and development on extraction and separation technologies, with the goal of eliminating the use of organic chemicals. This is primarily because these products are increasingly used in producing functional ingredients and natural products that must respect regulations for safety, health, and environmental impacts. In fact, one of the most important trends in the food industry today is the demand for “natural” foods and ingredients that are free from toxic-chemical additives. A number of newer separation techniques such as supercritical-CO2 fluid extraction technology and subcritical water extraction are possible alternative methods providing environmentally friendly “green” processing techniques for new or improved food processing applications. Many potential high-value products can be developed from natural resources using these “green” environmentally friendly separation technologies and processes. The use of “green” separation technologies and processes have the potential to provide phytochemicals from plant materials, while retaining or even improving their bioactivity and functionality, meeting food regulation guidelines, as well as ensuring that the separation is done effectively and economically. Utilization of natural agricultural materials for the production of high value-added products using “green” separation technologies and processes will likely continue to be of great interest to the food and biotechnology industries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ammann, A., D.C. Hinz, R.S. Addleman, M. Wai Chien, and B.W. Wenclawiak. 1999. Superheated water extraction, steam distillation and SFE of peppermint oil. Fresenius’ Journal of Analytical Chemistry 364: 650–653.

    Article  CAS  Google Scholar 

  • Basile, A., M.M. Jimenez Carmona, and A.A. Clifford. 1998. Extraction of rosemary by superheated water. Journal of Agricultural and Food Chemistry 46: 5204–5209.

    Article  Google Scholar 

  • Brunner, G. 2009. Near critical and supercritical water. Part I. Hydrolytic and hydrothermal processes. The Journal of Supercritical Fluids 47(3): 373–381.

    Article  CAS  Google Scholar 

  • Cacace, J.E., and G. Mazza. 2006. Pressurized low polarity water extraction of lignans from whole flaxseed. Journal of Food Engineering 77: 1087–1095.

    Article  CAS  Google Scholar 

  • Chang, C.H., C.C. Chyau, C.L. Hsieh, Y.Y. Wu, Y.B. Ker, H.Y. Tsen, and R.Y. Peng. 2008. Relevance of phenolic diterpene constituents to antioxidant activity of supercritical CO2 extract from the leaves of rosemary. Natural Product Research 22: 76–90.

    Article  CAS  Google Scholar 

  • Chen, C.R., C.H. Wang, L.Y. Wang, Z.H. Hong, S.H. Chen, W.J. Ho, and C.M.J. Chang. 2008. Supercritical carbon dioxide extraction and deacidification of rice bran oil. The Journal of Supercritical Fluids 45: 322.

    Article  CAS  Google Scholar 

  • Chen, J., J. Shi, C. Yi, S. Xue, Y. Jiang, and X. Ye. 2009. Effects of supercritical CO2 fluid parameters on chemical composition and yield of carotenoids extracted from pumpkin. Food Science and Technology/Lebensmittel-Wissenschaft und-Technologie 43: 39–44.

    Google Scholar 

  • Clifford, A.A., A. Basile, and S.H.R. Al Saidi. 1999. A comparison of the extraction of clove buds with supercritical carbon dioxide and superheated water. Fresenius’ Journal of Analytical Chemistry 364: 635–637.

    Article  CAS  Google Scholar 

  • Curren, M.S.S., and J.W. King. 2001. Ethanol-modified subcritical water extraction combined with solid-phase microextraction for determining atrazine in beef kidney. Journal of Agricultural and Food Chemistry 49: 2175–2180.

    Article  CAS  Google Scholar 

  • Eisenmenger, M., and N.T. Dunford. 2008. Bioactive components of commercial and supercritical carbon dioxide processed wheat germ oil. Journal of the American Oil Chemists’ Society 85: 55–61.

    Article  CAS  Google Scholar 

  • Glisic, S.B., D.R. Misic, D. Stamenic, I.T. Zizovic, R.M. Asamin, and D.U. Skala. 2007. Supercritical carbon dioxide extraction of carrot fruit essential oil: Chemical composition and antimicrobial activity. Food Chemistry 105(1): 346–352.

    Article  CAS  Google Scholar 

  • González, J.C., O.I. Fontal, R. Mercedes, J. Vieytes, M. Vieites, and L.M. Botana. 2002. Basis for a new procedure to eliminate diarrheic shellfish toxins from a contaminated matrix. Journal of Agricultural and Food Chemistry 50(2): 400–405.

    Article  Google Scholar 

  • Gracia, I., J.F. Rodriguez, M.T. Garcia, A. Alvarez, and A. Garcia. 2007. Isolation of aroma compounds from sugar cane spirits by supercritical CO2. The Journal of Supercritical Fluids 43: 37–42.

    Article  CAS  Google Scholar 

  • Güçlü-Üstündag, O., J. Balsevich, and G. Mazza. 2007. Pressurized low polarity water extraction of saponins from cow cockle seed. Journal of Food Engineering 80: 619–630.

    Article  Google Scholar 

  • Hadolin, M., M. Skerget, Z. Knez, and D. Bauman. 2001. High pressure extraction of vitamin E-rich oil from Silybum marianum. Food Chemistry 74: 355–364.

    Article  CAS  Google Scholar 

  • Herrero, M., E. Ibáñez, J. Señoráns, and A. Cifuentes. 2004. Pressurized liquid extracts from Spirulina platensis microalga: Determination of their antioxidant activity and preliminary analysis by micellar electro-kinetic chromatography. Journal of Chromatography A 1047(2): 195–203.

    CAS  Google Scholar 

  • Herrero, M., A. Cifuentes, and E. Ibáñez. 2006. Sub- and supercritical fluid extraction of functional ingredients from different natural sources: Plants, food-by-products, algae and microalgae: A review. Food Chemistry 98: 136–148.

    Article  CAS  Google Scholar 

  • Herrero, M., J.A. Mendiola, A. Cifuentes, and E. Ibáñez. 2010. Supercritical fluid extraction: Recent advances and applications. Journal of Chromatography A 1217: 2495–2511.

    Article  CAS  Google Scholar 

  • Huang, W., Q. Deng, B. Xie, J. Shi, F. Huang, B. Tian, R. Liu, Q. Huang, and S. Xue. 2010. Purification and characterization of an antioxidant protein from ginkgo biloba seeds. Food Research International 43(1): 86–94.

    Article  CAS  Google Scholar 

  • Ibáñez, E., A. Oca, G. de Murga, S. Lopez-Sebastian, J. Tabera, and G. Reglero. 1999. Supercritical fluid extraction and fractionation of different pre-processed rosemary plants. Journal of Agricultural and Food Chemistry 47: 1400–1404.

    Article  Google Scholar 

  • Ibáñez, E., A.K. Tovaa, J. Señoráns, S. Cavero, G. Reglero, and S.B. Hawthorne. 2003. Subcritical water extraction of antioxidant compounds from rosemary plants. Journal of Agricultural and Food Chemistry 51: 375–382.

    Article  Google Scholar 

  • Japón-Lujána, R., and M.D. Luque de Castro. 2006. Superheated liquid extraction of oleuropein and related biophenols from olive leaves. Journal of Chromatography A 1136: 185–191.

    Article  Google Scholar 

  • Jimenez-Carmona, M.M., J.L. Ubera, and M.D. Luque de Castro. 1999. Comparison of continuous subcritical water extraction and hydrodistillation of marjoram essential oil. Journal of Chromatography A 855: 625–632.

    Article  CAS  Google Scholar 

  • Ju, Z.Y., and L.R. Howard. 2005. Effects of solvent and temperature on pressured liquid extraction of anthocyanins and total phenolics from dried red grape skin. Journal of Agricultural and Food Chemistry 51: 5207–5213.

    Article  Google Scholar 

  • Kasamma, L., J. Shi, and G. Mittal. 2008. Response surface analysis of lycopene yield from tomato using supercritical CO2 fluid extraction. Separation and Purification Technology 60: 278–284.

    Article  Google Scholar 

  • Khajenoori, M., A. Haghighi Asl, and F. Hormozi. 2009. Proposed models for subcritical water extraction of essential oils. Chinese Journal of Chemical Engineering 17: 359–365.

    Article  CAS  Google Scholar 

  • Kronholm, J., K. Hartonen, and M.L. Riekkola. 2007. Analytical extractions with water at elevated temperatures and pressures. Trends in Analytical Chemistry 26(5): 396–412.

    Article  CAS  Google Scholar 

  • Kubatova, A., A.J.M. Lagadec, D.M. Miller, and S.B. Hawthorne. 2001. Selective extraction of oxygenates from savory and peppermint using subcritical water. Flavour and Fragrance Journal 16: 64–73.

    Article  CAS  Google Scholar 

  • Li-Hsun, C., C. Ya-Chuan, and C. Chieh-Ming. 2004. Extracting and purifying isoflavones from defatted soybean flakes using superheated water at elevated pressure. Food Chemistry 84: 279–284.

    Article  Google Scholar 

  • Liu, G., X. Xu, Q. Hao, and Y. Gao. 2009a. Supercritical CO2 extraction optimization of pomegranate (Punica granatum L.) seed oil using response surface methodology. Food Science and Technology/Lebensmittel-Wissenschaft und-Technologie 42: 1491–1495.

    Article  CAS  Google Scholar 

  • Liu, S., F. Yang, C. Zhang, H. Ji, P. Hong, and C. Deng. 2009b. Optimization of process parameters for supercritical carbon dioxide extraction of Passiflora seed oil by response surface methodology. The Journal of Supercritical Fluids 48(1): 9–14.

    Article  CAS  Google Scholar 

  • Lucien, F.P., and N.R. Foster. 2000. Solubilities of solid mixtures in supercritical carbon dioxide. The Journal of Supercritical Fluids 17: 111–134.

    Article  CAS  Google Scholar 

  • Luque de Castro, M.D. and Jiménez-Carmona, M.M. 1998. Potential of water for continuous automated sample-leaching. Trends in Analytical Chemistry 17(7): 441–447.

    Google Scholar 

  • Marcus, Y. 2006. Are solubility parameters relevant to supercritical fluids? The Journal of Supercritical Fluids 38: 7–12.

    Article  CAS  Google Scholar 

  • Martinez, M.L., M.A. Mattea, and D.M. Maestri. 2008. Pressing and supercritical carbon dioxide extraction of walnut oil. Journal of Food Engineering 88: 399–404.

    Article  CAS  Google Scholar 

  • Mendiola, J.A., M. Herrero, A. Cifuentes, and E. Ibáñez. 2007. Use of compressed fluids for sample preparation: Food applications. Journal of Chromatography A 1152(1–2): 234–246.

    Article  CAS  Google Scholar 

  • Miki, W., K. Nakahara, T. Fujii, K. Nagami, and K. Arai. 1999. Process for producing essential oil via treatment with supercritical water and essential oil obtained by treatment with supercritical water. Int. Patent Appl. WO99/53002A1.

    Google Scholar 

  • Mitra, P., G.S. Ramaswamy, and K.S. Chang. 2009. Pumpkin (Cucurbita maxima) seed oil extraction using supercritical carbon dioxide and physicochemical properties of the oil. Journal of Food Engineering 95: 208–213.

    Article  CAS  Google Scholar 

  • Miyawaki, T., A. Kawashima, and K. Honda. 2008. Development of supercritical carbon dioxide extraction with a solid phase trap for dioxins in soils and sediments. Chemosphere 70(4): 648–655.

    Article  CAS  Google Scholar 

  • Montañés, F., N. Corzo, A. Olano, G. Regiero, E. Ibáñez, and T. Fornari. 2008. Selective fractionation of carbohydrate complex mixtures by supercritical extraction with CO2 and different cosolvents. The Journal of Supercritical Fluids 45(2): 189–194.

    Article  Google Scholar 

  • Montañés, F., A. Olano, G. Regiero, E. Ibáñez, and T. Fornari. 2009. Supercritical technology as an alternative to fractionate prebiotic galactooligosaccharides. Separation and Purification Technology 66(2): 383–389.

    Article  Google Scholar 

  • Mortazavi, S.V., M.H. Eikani, H. Mirzaei, M. Jafari, and F. Golmohammad. 2010. Extraction of essential oils from Bunium persicum Boiss. using superheated water. Food and Bioproducts Processing 88: 222–226.

    Article  CAS  Google Scholar 

  • Ollanketo, M., A. Peltoketo, K. Hartonen, R. Hiltunen, and M.L. Riekkola. 2002. Extraction of sage (Salvia officinalis L.) by pressurized hot water and conventional methods: Antioxidant activity of the extracts. European Food Research and Technology 215: 158–163.

    Article  CAS  Google Scholar 

  • Ong, E.S., and S.M. Len. 2003. Pressurized hot water extraction of berberine, baicalein and glycyrrhizin in medicinal plants. Analytica Chimica Acta 482: 81–89.

    Article  CAS  Google Scholar 

  • Ozel, M.Z., F. Gogus, and A.C. Lewis. 2003. Subcritical water extraction of essential oil from Thymbra spicata. Food Chemistry 82: 381–386.

    Article  CAS  Google Scholar 

  • Ozlem, G. U., Mazza, G. 2008. Extraction of saponins and cyclopeptides from cow cockle seed with pressurized low polarity water. LWT-Food Science and Technology 41(9): 1600–1606.

    Google Scholar 

  • Pawlowski, T.M., and C.F. Poole. 1998. Extraction of thiabendazole and carbendazim from foods using pressurized hot (subcritical) water for extraction: A feasibility study. Journal of Agricultural and Food Chemistry 46: 3124–3132.

    Article  CAS  Google Scholar 

  • Perretti, G., A. Motori, E. Bravi, F. Favati, L. Montanari, and P. Fantozzi. 2007. Supercritical carbon dioxide fractionation of fish oil fatty acid ethyl esters. The Journal of Supercritical Fluids 40: 349–353.

    Article  CAS  Google Scholar 

  • Perrut, M. 2000. Supercritical fluid applications: Industrial developments and economic issues. Industrial and Engineering Chemistry Research 39(12): 4531–4535.

    Article  CAS  Google Scholar 

  • Raventós, M., S. Duarte, and R. Alarcón. 2002. Application and possibilities of supercritical CO2 extraction in food processing industry: An overview. Food Science and Technology International 8: 269–284.

    Google Scholar 

  • Ribeiro, M.A., M.G. Bernardo-Gil, and M.M. Esquivel. 2001. Melissa officinalis L: Study of antioxidant activity in supercritical residues. The Journal of Supercritical Fluids 21: 51–60.

    Article  CAS  Google Scholar 

  • Rizvi, S.S.H., and A.R. Bhaskar. 1995. Supercritical fluid processing of milk fat: Fractionation, scale-up, and economics. Food Technology 49(2): 90–97.

    CAS  Google Scholar 

  • Rovio, S., K. Hartonen, Y. Holm, R. Hiltunen, and M.L. Riekkola. 1999. Extraction of clove using pressurized hot water. Flavour and Fragrance Journal 14(6): 399–404.

    Article  CAS  Google Scholar 

  • Sanchez-Vicente, Y., A. Cabañas, J.A.R. Renuncio, and C. Pando. 2009. Supercritical fluid extraction of peach (Prunus persica) seed oil using carbon dioxide and ethanol. The Journal of Supercritical Fluids 49: 167–173.

    Article  CAS  Google Scholar 

  • Sauceau, M., J.J. Letourneau, B. Freiss, D. Richon, and J. Fages. 2004. Solubility of eflucimibe in supercritical carbon dioxide with or without a cosolvent. The Journal of Supercritical Fluids 31(2): 133–140.

    Article  CAS  Google Scholar 

  • Shi, J., and X. Zhou. 2006. Solubility property of bioactive components on recovery yield in separation process by supercritical fluid. In Functional food ingredients and nutraceuticals: Processing technologies, ed. J. Shi. Boca Raton: CRC Press.

    Chapter  Google Scholar 

  • Shi, J., Y. Kakuda, X. Zhou, G. Mittal, and Q. Pan. 2007a. Correlation of mass transfer coefficient in the extraction of plant oil in a fixed bed for supercritical CO2. Journal of Food Engineering 78: 33–40.

    Article  Google Scholar 

  • Shi, J., L.S. Kassama, and Y. Kakuda. 2007b. Supercritical fluid technology for extraction of bioactive components. In Functional food ingredients and nutraceuticals: Processing technologies, ed. J. Shi, 3–43. Boca Raton: CRC Press.

    Google Scholar 

  • Shi, J., G. Mittal, E. Kim, and S. Xue. 2007c. Solubility of carotenoids in supercritical CO2. Food Reviews International 23: 341–371.

    Article  CAS  Google Scholar 

  • Shi, J., X. Zhou, and L.S. Kassama. 2007d. Correlation of mass transfer coefficients in supercritical CO2 separation process. Drying Technology 25(2): 335–339.

    Article  CAS  Google Scholar 

  • Shi, J., M. Khatri, J. Xue, G. Mittal, Y. Ma, and D. Li. 2009a. Solubility of lycopene in supercritical CO2 fluid affected by temperature and pressure. Separation and Purification Technology 66: 322–328.

    Article  CAS  Google Scholar 

  • Shi, J., C. Yi, J. Xue, Y. Jiang, Y. Ma, and D. Li. 2009b. Effects of modifier on lycopene extract profile from tomato skin using supercritical-CO2 fluid. Journal of Food Engineering 93: 431–436.

    Article  CAS  Google Scholar 

  • Shi, J., S. Xue, Y. Jiang, and X. Ye. 2010a. Supercritical-fluid extraction of lycopene from tomatoes. In Separation, extraction and concentration processes in the food, beverage and nutraceutical industries, ed. S. Rizvi, 619–639. Philadelphia: Woodhead Publishing Limited.

    Chapter  Google Scholar 

  • Shi, J., C. Yi, X. Ye, S. Xue, Y. Jiang, Y. Ma, and D. Liu. 2010b. Effects of supercritical CO2 fluid parameters on chemical composition and yield of carotenoids extracted from pumpkin. Food Science and Technology/Lebensmittel-Wissenschaft und-Technologie 43(1): 39–44.

    Article  CAS  Google Scholar 

  • Soto Ayala, R., and M.D. Luque de Castro. 2001. Continuous subcritical water extraction as a useful tool for isolation of edible essential oil. Food Chemistry 75: 109–113.

    Article  CAS  Google Scholar 

  • Tena, M.T., M. Valcarcel, P. Hidalogo, and J.L. Ubera. 1997. Supercritical fluid extraction of natural antioxidants from rosemary: Comparison with liquid solvent sonication. Analytical Chemistry 69: 521–526.

    Article  CAS  Google Scholar 

  • Vasapollo, G., L. Longo, L. Rescio, and L. Ciurlia. 2004. Innovative supercritical CO2 extraction of lycopene from tomato in the presence of vegetable oil as cosolvent. The Journal of Supercritical Fluids 29: 87–96.

    Article  CAS  Google Scholar 

  • Xiao, J., B. Tian, B. Xie, E. Yang, J. Shi, and Z. Sun. 2010. Supercritical fluid extraction and identification of isoquinoline alkaloids from leaves of Nelumbo nucifera Gaertn. European Food Research and Technology 231(3): 407–414.

    Article  CAS  Google Scholar 

  • Yépez, B., M. Espinosa, S. López, and G. Bolaños. 2002. Producing antioxidant fractions from herbaceous matrices by supercritical fluid extraction. Fluid Phase Equilibria 197: 879–884.

    Article  Google Scholar 

  • Yi, C., J. Shi, J. Xue, Y. Jiang, and D. Li. 2009. Effects of supercritical fluid extraction parameters on lycopene yield and antioxidant activity. Food Chemistry 113(4): 1088–1094.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Shi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Her Majesty the Queen, in Right of Canada

About this chapter

Cite this chapter

Shi, J., Xue, S.J., Ma, Y., Jiang, Y., Ye, X., Yu, D. (2012). Green separation technologies in food processing: supercritical-CO2 fluid and subcritical water extraction. In: Boye, J., Arcand, Y. (eds) Green Technologies in Food Production and Processing. Food Engineering Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1587-9_11

Download citation

Publish with us

Policies and ethics