Skip to main content

Feasibility Study of Non-invasive Oxygenation Measurement in a Deep Blood Vessel Using Acousto-Optics and Microbubbles

  • Conference paper
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 737))

Abstract

Near infrared spectroscopy (NIRS) in tissue is known to be insensitive to oxygenation changes inside blood vessels. Measurements are dominated by changes in the surrounding tissue, which has significantly lower optical absorption. A hybrid technique of NIRS with focused ultrasound (US) allows spectroscopic measurements to be collected from the acoustic focal region. This technique is currently limited by the low signal-to-noise ratio of this US-modulated signal relative to the background of unmodulated photons. We are investigating the use of microbubbles (a widely used clinical US contrast agent) as a means of amplifying this acousto-optic (AO) signal. Here we present a Monte Carlo model of light transport including US and microbubbles: analytical acoustic modelling of microbubbles is based on the Rayleigh–Plesset equation, which describes a bubble oscillating under applied US. The results of this model demonstrate that AO techniques are more sensitive to changes in oxygen saturation (SO2) in a deep highly absorbing blood vessel than conventional optical methods. AO measurements are also less sensitive to changes in the surrounding tissue SO2. This is a promising candidate for non-invasive measurements of SO2 in blood vessels such as the pulmonary artery.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Reinhart K, Kuhn HJ, Hartog C et al (2004) Continuous central venous and pulmonary artery oxygen saturation monitoring in the critically ill. Intens Care Med 30:1572–1578

    Article  Google Scholar 

  2. Honeysett J, Stride E, Leung T (2010) Monte Carlo simulations of acousto-optics with microbubbles. Proc SPIE 7564:75640K

    Article  Google Scholar 

  3. Lindner JR (2004) Microbubbles in medical imaging: current applications and future directions. Nat Rev Drug Discov 3(6):527533

    Article  Google Scholar 

  4. Stride E, Tang MX, Eckersley RJ (2009) Physical phenomena affecting quantitative imaging of ultrasound contrast agents. Appl Acoust 70(10):1352

    Article  Google Scholar 

  5. Leung TS, Powell S (2010) Fast Monte Carlo simulations of ultrasound modulated light using a graphics processing unit. J Biomed Opt 15(5):055007

    Article  PubMed  Google Scholar 

  6. Leung TS, Tachtsidis I, Tisdall M et al (2007) Theoretical investigation of measuring cerebral blood flow in the adult human head using bolus indocyanine green injection and near-infrared spectroscopy. Appl Opt 46(10):1604–1614

    Article  PubMed  CAS  Google Scholar 

  7. Church CC (1995) The effects of an elastic solid surface layer on the radial pulsations of gas bubbles. J Acoust Soc Am 97:1510

    Article  Google Scholar 

  8. Dean CE, Marston PL (1991) Critical angle light scattering from bubbles: an asymptotic series approximation. Appl Opt 30(33):4764–4776

    Article  PubMed  CAS  Google Scholar 

  9. Firbank M, Okada E, Delpy DT (1997) Investigation of the effect of discrete absorbers upon the measurement of blood volume with near-infrared spectroscopy. Phys Med Biol 42:465

    Article  PubMed  CAS  Google Scholar 

  10. Hiraoka M, Firbank M, Essenpreis M et al (1993) A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy. Phys Med Biol 38:1859

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Samuel Powell for assistance in implementing the GPU-based simulations and Dr. Jing Deng for useful discussions. This work was funded by the Centre for Mathematics and Physics in the Life Sciences and Experimental Biology (CoMPLEX) Doctoral Training Centre at UCL, through a studentship, the British Heart Foundation, the Medical Research Council and the Engineering and Physical Sciences Research Council (Grant Code EP/G005036/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jack E. Honeysett .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this paper

Cite this paper

Honeysett, J.E., Stride, E., Leung, T.S. (2012). Feasibility Study of Non-invasive Oxygenation Measurement in a Deep Blood Vessel Using Acousto-Optics and Microbubbles. In: Wolf, M., et al. Oxygen Transport to Tissue XXXIII. Advances in Experimental Medicine and Biology, vol 737. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1566-4_41

Download citation

Publish with us

Policies and ethics