Skip to main content

Blood Flow and Oxygenation Status of Gastrointestinal Tumors

  • Conference paper
  • First Online:
Oxygen Transport to Tissue XXXIII

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 737))

Abstract

Tumor hypoxia is a major driving force for malignant progression since it can promote local invasion of cancer cells and metastatic spread to distant sites [1–7]. Tumor hypoxia also plays a key role in the development of acquired treatment resistance since it is capable of directly and/or indirectly conferring resistance to therapy [8, 9]. As a result, hypoxia has been shown to act as an independent, adverse prognostic factor [10–14]. Due to this seminal role of tumor hypoxia, knowledge concerning the oxygenation status of malignant tumors in terms of O2 tension distributions and detection of hypoxia are indispensable in the clinical setting. For this reason, the respective oxygenation status for gastrointestinal (GI) malignancies have been compiled in this review, together with blood flow values (where available), which are major determinants of the oxygen status. Pretherapeutic data of the following tumor entities will be presented: Cancers of the stomach, gallbladder, common bile duct, pancreas, colon, rectum, and primary and metastatic liver tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vaupel P, Harrison L (2004) Tumor hypoxia: causative factors, compensatory mechanisms, and cellular response. Oncologist 9:4–9

    Article  PubMed  Google Scholar 

  2. Vaupel P (2009) Pathophysiology of tumors. In: Molls M, Vaupel P, Nieder C et al (eds) The impact of tumor biology on cancer treatment and multidisciplinary strategies. Springer, Berlin, pp 51–92

    Chapter  Google Scholar 

  3. Vaupel P (2004) Tumor microenvironmental physiology and its implications for radiation oncology. Semin Radiat Oncol 14:198–206

    Article  PubMed  Google Scholar 

  4. Vaupel P (2004) The role of hypoxia-induced factors in tumor progression. Oncologist 9:10–17

    Article  PubMed  CAS  Google Scholar 

  5. Vaupel P, Mayer A (2007) Hypoxia in cancer: significance and impact on clinical outcome. Cancer Metastasis Rev 26:225–239

    Article  PubMed  CAS  Google Scholar 

  6. Vaupel P, Mayer A, Hoeckel M (2004) Tumor hypoxia and malignant progression. Methods Enzymol 381:335–354

    Article  PubMed  CAS  Google Scholar 

  7. Hoeckel M, Vaupel P (2001) Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J Natl Cancer Inst 93:266–276

    Article  Google Scholar 

  8. Vaupel P (2009) Physiological mechanisms of treatment resistance. In: Molls M, Vaupel P, Nieder C et al (eds) The impact of tumor biology on cancer treatment and multidisciplinary strategies. Springer, Berlin, pp 273–290

    Chapter  Google Scholar 

  9. Vaupel P (2008) Hypoxia and aggressive tumor phenotype: implications for therapy and prognosis. Oncologist 13(Suppl 3):21–36

    Article  PubMed  CAS  Google Scholar 

  10. Hoeckel M, Knoop C, Schlenger K et al (1993) Intra-tumoral pO2 predicts survival in advanced cancer of the uterine cervix. Radiother Oncol 26:45–50

    Article  Google Scholar 

  11. Hoeckel M, Schlenger K, Aral B et al (1996) Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Res 56:4509–4515

    Google Scholar 

  12. Brizel DM, Scully SP, Harrelson JM et al (1996) Tumor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma. Cancer Res 56:941–943

    PubMed  CAS  Google Scholar 

  13. Fyles A, Milosevic M, Wong R et al (1998) Oxygenation predicts radiation response and survival in patients with cervix cancer. Radiother Oncol 48:149–156

    Article  PubMed  CAS  Google Scholar 

  14. Nordsmark M, Overgaard M, Overgaard J (1996) Pretreatment oxygenation predicts radiation response in advanced squamous cell carcinoma of the head and neck. Radiother Oncol 41:31–39

    PubMed  CAS  Google Scholar 

  15. Komar G, Kauhanen S, Liukko K et al (2009) Decreased blood flow with increased metabolic activity: a novel sign of pancreatic tumor aggressiveness. Clin Cancer Res 15:5511–5517

    Article  PubMed  CAS  Google Scholar 

  16. Holm E, Hagmueller E, Staedt U et al (1995) Substrate balances across colonic carcinomas in humans. Cancer Res 55:1373–1378

    PubMed  CAS  Google Scholar 

  17. Hagmueller E, Kollmar HB, Guenther H-J et al (1995) Protein metabolism in human colon carcinomas: in vivo investigations using a modified tracer technique with L-[1-13  C]leucine. Cancer Res 55:1160–1167

    CAS  Google Scholar 

  18. DeVries AF, Kremser C, Hein PA et al (2003) Tumor microcirculation and diffusion predict therapy outcome for primary rectal carcinoma. Int J Radiat Oncol Biol Phys 56:958–965

    Article  PubMed  Google Scholar 

  19. Rau B, Wust P, Tilly W (2000) Preoperative radiochemotherapy in locally advanced or recurrent rectal cancer: regional radiofrequency hyperthermia correlates with clinical parameters. Int J Radiat Oncol Biol Phys 48:381–391

    Article  PubMed  CAS  Google Scholar 

  20. Luedemann L, Sreenivasa G, Amthauer H et al (2009) Use of H 152 O-PET for investigating perfusion changes in pelvic tumors due to regional hyperthermia. Int J Hyperthermia 25:299–308

    Article  CAS  Google Scholar 

  21. Cho C-H, Sreenivasa G, Plotkin M et al (2010) Tumour perfusion assessment during regional hyperthermia treatment: comparison of temperature probe measurement with H 152 O-PET perfusion. Int J Hyperthermia 26:404–411

    Article  PubMed  Google Scholar 

  22. Wendling P, Manz R, Thews G et al (1984) Heterogeneous oxygenation of rectal carcinomas in humans: a critical parameter for preoperative irradiation. Adv Exp Med Biol 180:293–300

    Article  PubMed  CAS  Google Scholar 

  23. Endrich B (1988) Hyperthermie und mikrozirkulation. Contr Oncol 31:1–138

    Google Scholar 

  24. Vaupel P, Hoeckel M, Mayer A (2007) Detection and characterization of tumor hypoxia using pO2 histography. Antioxid Redox Signal 9:1221–1235

    Article  PubMed  CAS  Google Scholar 

  25. Kallinowski F, Buhr HJ (1995) Can oxygenation status of rectal carcinomas be improved by hyperoxia? In: Vaupel P, Kelleher DK, Guenderoth M (eds) Tumor oxygenation. Fischer, New York, pp 291–296

    Google Scholar 

  26. Kallinowski F, Buhr HJ (1995) Tissue oxygenation of primary, metastatic and xenografted rectal cancers. In: Vaupel P, Kelleher DK, Guenderoth M (eds) Tumor oxygenation. Fischer, New York, pp 205–209

    Google Scholar 

  27. Mattern J, Kallinowski F, Herfarth C et al (1996) Association of resistance-related protein expression with poor vascularization and low levels of oxygen in human rectal cancer. Int J Cancer 67:20–23

    Article  PubMed  CAS  Google Scholar 

  28. Feldmann HJ, Molls M, Auberger T et al (1995) Oxygenation and perfusion status of recurrent human tumors. In: Vaupel P, Kelleher DK, Guenderoth M (eds) Tumor oxygenation. Fischer, New York, pp 319–326

    Google Scholar 

  29. Koong AC, Mehta VK, Le QT et al (2000) Pancreatic tumors show high levels of hypoxia. Int J Radiat Oncol Biol Phys 48:919–922

    Article  PubMed  CAS  Google Scholar 

  30. Graffman S, Bjoerk P, Ederoth P et al (2001) Polarographic pO2 measurements of intra-abdominal adenocarcinoma in connection with intraoperative radiotherapy before and after change of oxygen concentration of anaesthetic gases. Acta Oncol 40:105–107

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by a grant from the Deutsche Krebshilfe (106758).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Vaupel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this paper

Cite this paper

Vaupel, P., Kelleher, D.K. (2012). Blood Flow and Oxygenation Status of Gastrointestinal Tumors. In: Wolf, M., et al. Oxygen Transport to Tissue XXXIII. Advances in Experimental Medicine and Biology, vol 737. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1566-4_20

Download citation

Publish with us

Policies and ethics