A Survey of Systems Involved in Nociceptive Processing



High-intensity afferent input, tissue injury and inflammation, and injury to the peripheral nerve will initiate pain states with characteristic psychophysical properties. As will be considered below, this information processing can be modified to change the content of the message generated by a given stimulus to enhance the pain state (e.g., produce hyperalgesia), normalize a hyperalgesic state, or produce a decrease in pain sensitivity (e.g., produce analgesia). Management of that pain state is addressed by the use of agents or interventions which though specific targets at the level of the sensory afferent, the spinal dorsal horn or at higher-order levels (supraspinal) modify the contents of the sensory message generated by that physical stimulus. The important advances in the development of pain therapeutics have reflected upon the role played by specific underlying mechanisms which regulate these events.


Nerve Injury Dorsal Horn Pain State Peripheral Nerve Injury Afferent Input 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Dougherty PM. Central sensitization and cutaneous hyperalgesia. Semin Pain Med. 2003;1:121–31.CrossRefGoogle Scholar
  2. 2.
    Johanek L, Shim B, Meyer RA. Chapter 4 Primary hyperalgesia and nociceptor sensitization. Handb Clin Neurol. 2006;81:35–47.PubMedCrossRefGoogle Scholar
  3. 3.
    Mayer EA, Gebhart GF. Basic and clinical aspects of visceral hyperalgesia. Gastroenterology. 1994;107:271–93.PubMedGoogle Scholar
  4. 4.
    Baron R. Neuropathic pain: a clinical perspective. Handb Exp Pharmacol. 2009;194:3–30.PubMedCrossRefGoogle Scholar
  5. 5.
    Stucky CL, Dubin AE, Jeske NA, Malin SA, McKemy DD, Story GM. Roles of transient receptor potential channels in pain. Brain Res Rev. 2009;60:2–23.PubMedCrossRefGoogle Scholar
  6. 6.
    Binshtok AM. Mechanisms of nociceptive transduction and transmission: a machinery for pain sensation and tools for selective analgesia. Int Rev Neurobiol. 2011;97:143–77.PubMedCrossRefGoogle Scholar
  7. 7.
    Cortright DN, Szallasi A. TRP channels and pain. Curr Pharm Des. 2009;15(15):1736–49.PubMedCrossRefGoogle Scholar
  8. 8.
    Dib-Hajj SD, Black JA, Waxman SG. Voltage-gated sodium channels: therapeutic targets for pain. Pain Med. 2009;10(7):1260–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Cohen CJ. Targeting voltage-gated sodium channels for treating neuropathic and inflammatory pain. Curr Pharm Biotechnol. 2011;12:1715–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Raja SN, Meyer RA, Campbell JN. Peripheral mechanisms of somatic pain. Anesthesiology. 1988;68:571–90.PubMedCrossRefGoogle Scholar
  11. 11.
    Yaksh TL. Calcium channels as therapeutic targets in neuropathic pain. J Pain. 2006;7(1 Suppl 1):S13–30.PubMedGoogle Scholar
  12. 12.
    Ruscheweyh R, Forsthuber L, Schoffnegger D, Sandkühler J. Modification of classical neurochemical markers in identified primary afferent neurons with abeta-, adelta-, and C-fibers after chronic constriction injury in mice. J Comp Neurol. 2007;502:325–36.PubMedCrossRefGoogle Scholar
  13. 13.
    Willis Jr WD. The somatosensory system, with emphasis on structures important for pain. Brain Res Rev. 2007;55:297–313.PubMedCrossRefGoogle Scholar
  14. 14.
    Todd AJ, Spike RC. The localization of classical transmitters and neuropeptides within neurons in laminae I-III of the mammalian spinal dorsal horn. Prog Neurobiol. 1993;41:609–45.PubMedCrossRefGoogle Scholar
  15. 15.
    Todd AJ. Neuronal circuitry for pain processing in the dorsal horn. Nat Rev Neurosci. 2010;11:823–36.PubMedCrossRefGoogle Scholar
  16. 16.
    Ralston 3rd HJ. Pain and the primate thalamus. Prog Brain Res. 2005;149:1–10.PubMedCrossRefGoogle Scholar
  17. 17.
    Reichling DB, Levine JD. Critical role of nociceptor plasticity in chronic pain. Trends Neurosci. 2009;32:611–8.PubMedCrossRefGoogle Scholar
  18. 18.
    Herrero JF, Laird JM, López-García JA. Wind-up of spinal cord neurones and pain sensation: much ado about something? Prog Neurobiol. 2000;61:169–203.PubMedCrossRefGoogle Scholar
  19. 19.
    Dickenson AH, Chapman V, Green GM. The pharmacology of excitatory and inhibitory amino acid-mediated events in the transmission and modulation of pain in the spinal cord. Gen Pharmacol. 1997;28:633–8.PubMedCrossRefGoogle Scholar
  20. 20.
    Bleakman D, Alt A, Nisenbaum ES. Glutamate receptors and pain. Semin Cell Dev Biol. 2006;17:592–604.PubMedCrossRefGoogle Scholar
  21. 21.
    Luo C, Seeburg PH, Sprengel R, Kuner R. Activity-dependent potentiation of calcium signals in spinal sensory networks in inflammatory pain states. Pain. 2008;140:358–67.PubMedCrossRefGoogle Scholar
  22. 22.
    Latremoliere A, Woolf CJ. Central sensitization: a generator of pain hypersensitivity by central neural plasticity. J Pain. 2009;10:895–926.PubMedCrossRefGoogle Scholar
  23. 23.
    Ji RR, Kawasaki Y, Zhuang ZY, Wen YR, Zhang YQ. Protein kinases as potential targets for the treatment of pathological pain. Handb Exp Pharmacol. 2007;177:359–89.PubMedCrossRefGoogle Scholar
  24. 24.
    Velázquez KT, Mohammad H, Sweitzer SM. Protein kinase C in pain: involvement of multiple isoforms. Pharmacol Res. 2007;55:578–89.PubMedCrossRefGoogle Scholar
  25. 25.
    Svensson CI, Yaksh TL. The spinal phospholipase-cyclooxygenase-prostanoid cascade in nociceptive processing. Annu Rev Pharmacol Toxicol. 2002;42:553–83.PubMedCrossRefGoogle Scholar
  26. 26.
    Zeilhofer HU. The glycinergic control of spinal pain processing. Cell Mol Life Sci. 2005;62:2027–35.PubMedCrossRefGoogle Scholar
  27. 27.
    Tang Q, Svensson CI, Fitzsimmons B, Webb M, Yaksh TL, Hua XY. Inhibition of spinal constitutive NOS-2 by 1400 W attenuates tissue injury and inflammation-induced hyperalgesia and spinal p38 activation. Eur J Neurosci. 2007;25:2964–72.PubMedCrossRefGoogle Scholar
  28. 28.
    Suzuki R, Rygh LJ, Dickenson AH. Bad news from the brain: descending 5-HT pathways that control spinal pain processing. Trends Pharmacol Sci. 2004;25:613–7.PubMedCrossRefGoogle Scholar
  29. 29.
    Milligan ED, Watkins LR. Pathological and protective roles of glia in chronic pain. Nat Rev Neurosci. 2009;10:23–36.PubMedCrossRefGoogle Scholar
  30. 30.
    Ren K, Dubner R. Neuron-glia crosstalk gets serious: role in pain hypersensitivity. Curr Opin Anaesthesiol. 2008;21:570–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Abbadie C, Bhangoo S, De Koninck Y, Malcangio M, Melik-Parsadaniantz S, White FA. Chemokines and pain mechanisms. Brain Res Rev. 2009;60:125–34.PubMedCrossRefGoogle Scholar
  32. 32.
    Clark AK, Staniland AA, Malcangio M. Fractalkine/CX3CR1 signalling in chronic pain and inflammation. Curr Pharm Biotechnol. 2011;12:1707–14.PubMedCrossRefGoogle Scholar
  33. 33.
    Grace PM, Rolan PE, Hutchinson MR. Peripheral immune contributions to the maintenance of central glial activation underlying neuropathic pain. Brain Behav Immun. 2011;25:1322–32.PubMedCrossRefGoogle Scholar
  34. 34.
    Ledeboer A, Sloane EM, Milligan ED, Frank MG, Mahony JH, Maier SF, Watkins LR. Minocycline attenuates mechanical allodynia and proinflammatory cytokine expression in rat models of pain facilitation. Pain. 2005;115:71–83.PubMedCrossRefGoogle Scholar
  35. 35.
    Kehlet H, Jensen TS, Woolf CJ. Persistent postsurgical pain: risk factors and prevention. Lancet. 2006;367:1618–25.PubMedCrossRefGoogle Scholar
  36. 36.
    Xu Q, Yaksh TL. A brief comparison of the pathophysiology of inflammatory versus neuropathic pain. Curr Opin Anaesthesiol. 2011;24:400–7.PubMedCrossRefGoogle Scholar
  37. 37.
    Tuchman M, Barrett JA, Donevan S, Hedberg TG, Taylor CP. Central sensitization and Ca(V) α2δ ligands in chronic pain syndromes: pathologic processes and pharmacologic effect. J Pain. 2010;12:1241–9.Google Scholar
  38. 38.
    Bráz JM, Ackerman L, Basbaum AI. Sciatic nerve transection triggers release and intercellular transfer of a genetically expressed macromolecular tracer in dorsal root ganglia. J Comp Neurol. 2011;519:2648–57.PubMedCrossRefGoogle Scholar
  39. 39.
    Zimmermann M. Pathobiology of neuropathic pain. Eur J Pharmacol. 2001;429:23–37.PubMedCrossRefGoogle Scholar
  40. 40.
    Takeda M, Tsuboi Y, Kitagawa J, Nakagawa K, Iwata K, Matsumoto S. Potassium channels as a potential therapeutic target for trigeminal neuropathic and inflammatory pain. Mol Pain. 2011;7:5.PubMedCrossRefGoogle Scholar
  41. 41.
    Devor M, Wall PD. Cross-excitation in dorsal root ganglia of nerve-injured and intact rats. J Neurophysiol. 1990;64(6):1733–46.PubMedGoogle Scholar
  42. 42.
    Yaksh TL. Behavioral and autonomic correlates of the tactile evoked allodynia produced by spinal glycine inhibition: effects of modulatory receptor systems and excitatory amino acid antagonists. Pain. 1989;37:111–23.PubMedCrossRefGoogle Scholar
  43. 43.
    Sivilotti L, Woolf CJ. The contribution of GABAA and glycine receptors to central sensitization: disinhibition and touch-evoked allodynia in the spinal cord. J Neurophysiol. 1994;72:169–79.PubMedGoogle Scholar
  44. 44.
    Polgár E, Hughes DI, Riddell JS, Maxwell DJ, Puskár Z, Todd AJ. Selective loss of spinal GABAergic or glycinergic neurons is not necessary for development of thermal hyperalgesia in the chronic constriction injury model of neuropathic pain. Pain. 2003;104:229–39.PubMedCrossRefGoogle Scholar
  45. 45.
    Price TJ, Cervero F, de Koninck Y. Role of cation-chloride-cotransporters (CCC) in pain and hyperalgesia. Curr Top Med Chem. 2005;5(6):547–55.PubMedCrossRefGoogle Scholar
  46. 46.
    Cao H, Zhang YQ. Spinal glial activation contributes to pathological pain states. Neurosci Biobehav Rev. 2008;32(5):972–83.PubMedCrossRefGoogle Scholar
  47. 47.
    McLachlan EM, Jänig W, Devor M, Michaelis M. Peripheral nerve injury triggers noradrenergic sprouting within dorsal-root ganglia. Nature. 1993;363:543–6.PubMedCrossRefGoogle Scholar
  48. 48.
    Drummond PD. Involvement of the sympathetic nervous system in complex regional pain syndrome. Int J Low Extrem Wounds. 2004;3:35–42.PubMedCrossRefGoogle Scholar
  49. 49.
    Borsook D, Becerra L. CNS animal fMRI in pain and analgesia. Neurosci Biobehav Rev. 2011;35:1125–43.PubMedCrossRefGoogle Scholar
  50. 50.
    D’Souza WN, Ng GY, Youngblood BD, Tsuji W, Lehto SG. A review of current animal models of osteoarthritis pain. Curr Pharm Biotechnol. 2011;12:1596–612.PubMedCrossRefGoogle Scholar
  51. 51.
    Mogil JS. Animal models of pain: progress and challenges. Nat Rev Neurosci. 2009;10:283–94.PubMedCrossRefGoogle Scholar
  52. 52.
    Waszkielewicz AM, Gunia A, Słoczyńska K, Marona H. Evaluation of anticonvulsants for possible use in neuropathic pain. Curr Med Chem. 2011;18:4344–58.PubMedCrossRefGoogle Scholar
  53. 53.
    Xu J, Brennan TJ. The pathophysiology of acute pain: animal models. Curr Opin Anaesthesiol. 2011;24:508–14.PubMedCrossRefGoogle Scholar

Copyright information

© American Academy of Pain Medicine 2013

Authors and Affiliations

  1. 1.Department of AnesthesiologyAnesthesia Research Lab 0818, UC San DiegoLa JollaUSA
  2. 2.University of California, San Diego School of MedicineLa JollaUSA
  3. 3.Anesthesia Research Lab 0818, UC San DiegoLa JollaUSA
  4. 4.Department of AnesthesiologyUniversity of California, San Diego Medical CenterLa JollaUSA

Personalised recommendations