Skip to main content

Prospects for New Treatment Options in Neurodegenerative Diseases

  • Chapter
  • First Online:
  • 482 Accesses

Part of the book series: Current Topics in Neurotoxicity ((Current Topics Neurotoxicity,volume 1))

Abstract

Animal studies clearly demonstrate that either dying neurons are revived or remaining healthy neurons sprout new processes in response to neurotrophic factors. Thus, in view of their restorative potential, specific alignments of neurotrophic factors may be called the “natural repair system” for damaged neurons. However, several serious hurdles remain to be overcome before the neurotrophins themselves are applicable for the treatment of patients with Parkinson’s disease (PD) and other neurodegenerative disorders. Alternatively, the antioxidant, the efficiency of the respiratory chain improving, antiphlogistic, anti-apoptotic, prodifferentiating, and neurotrophin-activating β-carbolines are promising small molecules with neuroprotective and even restorative potential. They may become alternative compounds for the therapy of PD and other neurodegenerative diseases in the foreseeable future.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Barcia C, Fernandez Barreiro A, Poza M, Herrero MT (2003) Parkinson’s disease and inflammatory changes. Neurotox Res 5:411–418

    Article  PubMed  Google Scholar 

  • Cergene, the drug company which conducted the study (homepage, 2011)

    Google Scholar 

  • Chase TN et al (2000) Antiparkinsonian and antidyskinetic activity of drugs targeting central glutamatergic mechanisms. J Neurol 247(Suppl 2):1136–1142

    Google Scholar 

  • Chen H et al (2003) Nonsteroidal anti-inflammatory drugs and the risk of Parkinson’s disease. Arch Neurol 60:1059–1064

    Article  PubMed  Google Scholar 

  • Ghee M, Baker H, Miller JC, Ziff EB (1998) AP-1, CREB and CBP transcription factors differentially regulate the tyrosine hydroxylase gene. Brain Res Mol Brain Res 55:101–114

    Article  PubMed  CAS  Google Scholar 

  • Hald A, Lotharius I (2005) Oxidative stress and inflammation in Parkinson’s disease: is there a causal link? Exp Neurol 193:279–290

    Article  PubMed  CAS  Google Scholar 

  • Hamann J, Wernicke C, Lehmann J, Reichmann H, Rommelspacher H, Gille G (2008) 9-Methyl-β-carboline up-regulates the appearance of differentiated dopaminergic neurones in primary mesencephalic culture. Neurochem Int 52:688–700

    Article  PubMed  CAS  Google Scholar 

  • Hartmann A et al (2000) Caspase-3: a vulnerability factor and final effector in apoptotic death of dopaminergic neurons in Parkinson’s disease. Proc Natl Acad Sci USA 97:2875–2880

    Article  PubMed  CAS  Google Scholar 

  • Herraiz T, Galisteo J (2003) Tetrahydro-ß-carboline alkaloids occur in fruits and fruit juices. Activity as antioxidants and radical scavengers. J Agric Food Chem 51:7156–7161

    Article  PubMed  CAS  Google Scholar 

  • Hirsch EC, Hunot S, Hartmann A (2005) Neuroinflammatory processes in Parkinson’s disease. Parkinsonism Relat Disord 11:S9–S15

    Article  PubMed  Google Scholar 

  • Howells DW, Porritt MJ, Wong JY, Batchelor PE, Kalnins R, Hughes AJ, Donnan GA (2000) Reduced BDNF mRNA expression in the Parkinson’s disease substantia nigra. Exp Neurol 166:127–135

    Article  PubMed  CAS  Google Scholar 

  • Imamura K, Hishikawa N, Sawada M, Nagatsu T, Yoshida M, Hashizume Y (2003) Distribution of major histocompatibility complex class II-positive microglia and cytokine profile of Parkinson’s disease brains. Acta Neuropathol 106:518–526

    Article  PubMed  CAS  Google Scholar 

  • Kim KS, Park DH, Wessel DC, Song B, Joh TH (1993) A dual role for the cAMP dependent protein kinase in tyrosine hydroxylase gene expression. Proc Natl Acad Sci USA 90:3471–3475

    Article  PubMed  CAS  Google Scholar 

  • Kitamura Y, Kosaka T, Kakimura JI, Matsuoka Y, Kohno Y, Nomura Y, Taniguchi T (1998) Protective effects of the antiparkinsonian drugs talipexole and pramipexole against 1-methyl-4-phenylpyridinium-induced apoptotic death in human neuroblastoma SH-SY5Y cells. Mol Pharmacol 54:1046–1054

    PubMed  CAS  Google Scholar 

  • Kotzbauer PT (2006) Expectations and challenges in the therapeutic use of neurotrophic factors. Ann Neurol 59:444–447

    Article  PubMed  Google Scholar 

  • Kuan CY, Burke RE (2005) Targeting the JNK signalling pathway for stroke and Parkinson’s disease therapy. Curr Drug Targets CNS Neurol Disord 20:653–664

    Google Scholar 

  • Launay JM, Del Pino M, Chironi G, Callebert J, Peoc’h K, Mégnien JL, Mallet J, Simon A, Rendu F (2009) Smoking induces long-lasting effects through a monoamine-oxidase epigenetic regulation. PLoS One 4(11):e7959

    Article  PubMed  Google Scholar 

  • Lewis-Tuffin LJ, Quinn PG, Chikaraishi DM (2004) Tyrosine hydroxylase transcription depends primarily on cAMP response element activity, regardless of the type of inducing stimulus. Mol Cell Neurosci 25:536–547

    Article  PubMed  CAS  Google Scholar 

  • Lindholm P, Voutilainen MH, Lauren J, Peränen J, Leppänen VM, Andressoo JO, Lindahl M, Janhunen S, Kalkkinen N, Timmusk T, Tuominen RK, Saarma M (2007) Novel neurotrophic factor CDNF protects and rescues midbrain dopaminergic neurons in vivo. Nature 448:73–77

    Article  PubMed  CAS  Google Scholar 

  • Marks WJ Jr, Ostrem JL, Verhagen I, Verhagen L, Starr PA, Larson PS, Bakay RA, Taylor R, Cahn-Weiner DA, Stoessl AJ, Olanow CW, Bartus RT (2008) Safety and tolerability of intraputaminal delivery of CERE.120 (adeno-associated virus serotype 2-neurturin) to patients with idiopathic Parkinson’s disease: an open-label, phase I trial. Lancet Neurol 7:400–408

    Article  PubMed  Google Scholar 

  • Mogi M, Harada M, Riederer P, Narabayashi H, Fujita K, Nagatsu T (1994) Tumor necrosis factor-α (TNF-α) increases both in the brain and in the cerebrospinal fluid from parkinsonian patients. Neurosci Lett 165:208–210

    Article  PubMed  CAS  Google Scholar 

  • Ochs G, Penn RD, York M, Giess R, Beck M, Tonn J, Haigh J, Malta E, Traub M, Sendtner M, Toyka KV (2000) A Phase I/II trial of recombinant methionyl human brain derived neurotrophic factor administered by intrathecal infusion to patients with amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 1:201–206

    Article  PubMed  CAS  Google Scholar 

  • Pascual A, Hildago-Figueroa M, Ji P, Pintado CO, Gomez-Diaz R, Lopez-Barneo J (2008) Absolute requirement of GDNF for adult catecholaminergic neuron survival. Nat Neurosci 11:755–761

    Article  PubMed  CAS  Google Scholar 

  • Petrova P, Raibekas A, Pevsner J, Vigo N, Anafi M, Moore MK, Peaire AE, Shridhar V, Smith DI, Kelly J, Durocher Y, Commissiong JW (2003) MANF: a new mesencephalic, astrocyte-derived neurotrophic factor with selectivity for dopaminergic neurons. J Mol Neurosci 20:173–188

    Article  PubMed  CAS  Google Scholar 

  • Polanski W, Enzensperger Ch, Reichmann H, Gille G (2010) The exceptional properties of 9-methyl-β-carboline: stimulation, protection and regeneration of dopaminergic neurons coupled with anti-inflammatory effects. J Neurochem 113: 1659–1675

    Article  PubMed  CAS  Google Scholar 

  • Silva RM, Kuan CY, Rakic P, Burke RE (2005) Mixed lineage kinase c-jun N-terminal kinase signaling pathway: a new therapeutic target in Parkinson’s disease. Mov Disord 20:653–664

    Article  PubMed  Google Scholar 

  • Voutilainen MH, Back S, Porsti S, Toppinen L, Lindgren L, Lindholm P, Peränen J, Saarma M, Tuominen RK (2009) Mesencephalic astrocyte-derived neurotrophic factor is neurorestorative in rat model of Parkinson’s disease. J Neurosci 29:9651–9659

    Article  PubMed  CAS  Google Scholar 

  • Wernicke C, Hellmann J, Zieba B, Kuter K, Ossowska K, Frenzel M, Dencher NA, Rommelspacher H (2010) 9-Methyl-β-carboline has restorative effects in an animal model of Parkinson’s disease. Pharmacol Rep 62:35–53

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Rommelspacher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Rommelspacher, H. (2012). Prospects for New Treatment Options in Neurodegenerative Diseases. In: Antkiewicz-Michaluk, L., Rommelspacher, H. (eds) Isoquinolines And Beta-Carbolines As Neurotoxins And Neuroprotectants. Current Topics in Neurotoxicity, vol 1. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1542-8_11

Download citation

Publish with us

Policies and ethics