Skip to main content

Catheter-Based Coronary Angiography

  • Chapter
  • First Online:
Coronary Heart Disease

Abstract

The primary goal of catheter-based coronary angiography is the identification, localization, and assessment of stenotic lesions present within the coronary arteries that will enable us to determine the pathophysiologic significance of the obstructive lesions in question regarding ischemia vs. nonischemia.

This chapter presents a description and illustration of the use of catheter-based coronary angiography. First, it deals with technical aspects, vascular access, and early recognition of complications that may occur with this procedure and its prevention. Also, it illustrates angiographic patterns of collateral circulation associated with severe obstructive coronary disease.

The use of catheter-based coronary angiography provides significant information that is important for the management of the individual patient with and without ischemic heart disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Radner S. An attempt at the roentgenologic visualization of coronary blood vessels in man. Acta Radiol (Old Series). 1945;26:497–502.

    Article  CAS  Google Scholar 

  2. De AG. l’arteriographie methodique des coronaries grace a l’Acetylcholine. Arch Mal Coeur. 1959;52:1121.

    Google Scholar 

  3. Bilgutay AM, Lillehei CW. Single and double contrast coronary arteriography: utilizing acetylcholine asystole with controlled return of heart rate using a cardiac pacemaker. J ThoracCardiovasc Surg. 1962;44:617.

    CAS  Google Scholar 

  4. Sones FM, Shirey EK. Cine coronary arteriography. Mod Concepts Cardiovascv. 1962;31:735–8.

    Google Scholar 

  5. Amplatz K, Harner R. A new subclavian artery catheterization technic. Preliminary report. Radiology. 1962;78:963.

    PubMed  CAS  Google Scholar 

  6. Judkins MP. Selective coronary arteriography: part I: apercutaneurs transfemoral technic. Radiology. 1967;89:815–24.

    PubMed  CAS  Google Scholar 

  7. Amplatz K, Formanek G, Stanger P, et al. Mechanics of selective coronary artery catheterization via femoral approach. Radiology. 1967;89:1040–7.

    PubMed  CAS  Google Scholar 

  8. Seldinger SI. Catheter replacement of the needle in percutaneous arteriography. Acta Radiol. 1952;39:368–76.

    Google Scholar 

  9. Judkins MP, Kidd HJ, Frische LH, et al. Lumen following J-guide for catheterization of tortuous vessels. Radiology. 1967;88:1127–30.

    PubMed  CAS  Google Scholar 

  10. Archbold RA, Robinson NM, Schilling RJ. Radial artery access for coronary angiography and percutaneous coronary intervention. BMJ. 2004;329:443–6.

    Article  PubMed  Google Scholar 

  11. Nagai S, Abe S, Sato T, et al. Ultrasonic assessment of vascular complications in coronary arteriography and angioplasty after transradial approach. Am J Cardiol. 1999;83:180–6.

    Article  PubMed  CAS  Google Scholar 

  12. Goldstein JA, Kern M, Wilson R. A novel automated injection system for angiography. J Intervent Cardiol. 2001;14:147–52.

    Article  PubMed  CAS  Google Scholar 

  13. Feldman RL, Pepine CJ, Conti CR. Magnitude of dilatation of large and small coronary arteries by nitroglycerin. Circulation. 1981;64:324–33.

    Article  PubMed  CAS  Google Scholar 

  14. Wilson RF, White CW. Coronary arteriography. In: Willerson JT, Cohn JN, Wellens HJJ, Holmes DR, editors. Cardiovascular medicine. 3rd ed. London: Springer; 2007.

    Chapter  Google Scholar 

  15. Colt HG, Begg RJ, Saporito JJ, et al. Cholesterol emboli after cardiac catheterization. Medicine. 1988;67:389–400.

    Article  PubMed  CAS  Google Scholar 

  16. Eggbrecht H, Oldenburg O, Dirsch O, et al. Potential embolization by atherosclerotic debris dislodged from aortic wall during cardiac catheterization: histological and clinical findings in 7621 patients. Cathet Cardiovasc Intervent. 2000;49:389–94.

    Article  Google Scholar 

  17. Gottdiener JS, Papademetriou V, Notargiacomo A, et al. Incidence and cardiac effects of systemic venous air embolism: echocardiographic evidence of arterial embolization via non-cardiac shunt. Arch Intern Med. 1988;148:795–800.

    Article  PubMed  CAS  Google Scholar 

  18. Marco AP, Furman WR. Venous air embolism, airway difficulties, and massive transfusion. Surg Clin North Am. 1993;73:213–28.

    PubMed  CAS  Google Scholar 

  19. Sticherling C, Berkefeld J, et al. Transient bilateral cortical blindness after coronary angiography. Lancet. 1998;351:570.

    Article  PubMed  CAS  Google Scholar 

  20. Gaglani RD, Turk AA, Mehra MR, et al. Ventricular standstill complicating left heart catheterization in the presence of uncomplicated right bundle brunch block. Cathet Cardiovasc Diagn. 1992;26:212–4.

    Article  Google Scholar 

  21. White CW, Eckberg DL, Inasaka T, et al. Effects of angiographic contrast media on sino-atrial nodal function. Cardiovasc Res. 1976;10:214–23.

    Article  PubMed  CAS  Google Scholar 

  22. Ritchie JL, Nissen SE, Douglas JS, et al. American college of cardiology cardiovascular imaging committee. Use of non-ionic or low osmolar contrast agents in cardiovascular procedures. J Am Coll Cardiol. 1993;21:269–73.

    Article  PubMed  CAS  Google Scholar 

  23. Coleman C, Castaneda-Zuniga WR, Amplatz K. Three-dimensional teaching model for coronary angiography. Cardiovasc Intervent Radiol. 1982;5:154–6.

    Article  PubMed  CAS  Google Scholar 

  24. Paulin S. Terminology for radiographic projections in cardiac angiography [Letter]. Cathet Cardiovasc Diagn. 1981;7:341.

    Article  PubMed  CAS  Google Scholar 

  25. Marcus ML, Armstrong ML, Heistad DD, et al. A comparison of three methods of evaluation coronary obstructive lesions: Postmortem arteriography, pathological examination and measurement of regional myocardial perfusion during maximal vasodilation. Am J Cardiol. 1982;49:1699–706.

    Article  PubMed  CAS  Google Scholar 

  26. Johnson MR. A normal coronary artery: what size is it? Circulation. 1992;86:331–3.

    Article  PubMed  CAS  Google Scholar 

  27. Marcus ML, Skorton DJ, Johnson MR, et al. Visual estimates of percent diameter coronary stenosis: “A battered gold standard”. J Am Coll Cardiol. 1988;11:882–5.

    Article  PubMed  CAS  Google Scholar 

  28. Glagov S, Weisenberg E, Zarins CK, et al. Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med. 1987;316:1371–5.

    Article  PubMed  CAS  Google Scholar 

  29. Dick C, Wyche K, Homans DC, et al. Effect of distending pressure on intravascular ultrasound measurements of lumen dimensions. Circulation. 1990;82: 459(abstr III).

    Google Scholar 

  30. Kalin JK, Rutherford BD, MCConobay DR, et al. Comparison of procedural results and risks of coronary angioplasty in men and women for conditions other than acute myocardial infarction. Am J Card. 1992;69:1241–2.

    Article  Google Scholar 

  31. O’Connor NJ, Morton JR, Birkmeyer JD, et al. Effect of coronary artery diameter in patients undergoing coronary bypass surgery. Northern New England cardiovascular disease study group. Circulation. 1996;93(4):652–5.

    Article  PubMed  Google Scholar 

  32. Brown BG, Petersen RB, Pierce CD, et al. Dynamics of human coronary stenosis: interaction among stenosis flow, distending pressure and vasomotor tone. In: Santamore WP, Bove AA, editors. Coronary artery disease. Cardiac imaging. Baltimore: Urban and Schwarzenberg; 1982. p. 199.

    Google Scholar 

  33. Reiber JHC, Serruys PW, Kooijman CJ, Slager CJ, et al. Approaches to standardization in acquisition and quantitation of arterial dimensions from cineangiograms. In: Reiber JHL, Serruys PW, editors. State of the art in quantitative coronary arteriography. Boston: Martinus Nihoff; 1986. p. 145.

    Chapter  Google Scholar 

  34. Reiber JHC, Serruys PW, Kooijman CJ, et al. Assessment of short-, medium-, and long-term variations in arterial dimensions from computer-assisted quantitations of coronary cineangiograms. Circulation. 1985;71:280–8.

    Article  PubMed  CAS  Google Scholar 

  35. Whitings JS, Pfaff JM, Eigler NL. Advantages and limitations of videodensitometry in quantitative coronary angiography. In: Reiber JHC, Serruys PW, editors. Quantitative coronary arteriography. The Netherlands: Kluwer Academic Publishers; 1988. p. 43.

    Google Scholar 

  36. Lesperance J, Hudon G, White CW, et al. Comparison by quantitative angiographic assessment of coronary stenosis of one view showing the severest narrowing to two orthogonal views. Am J Cardiol. 1989;64:462–5.

    Article  PubMed  CAS  Google Scholar 

  37. Katz LN, Lindner E. Quantitative relation between reactive hyperemia and the myocardial ischemia which it follows. Am J Physiol. 1939;126:283.

    Google Scholar 

  38. Gould KL. Quantification of coronary artery stenosis in vivo. Circ Res. 1985;47:341.

    Article  Google Scholar 

  39. Fulton WFM. Arterial anastomosis in the coronary circulation. II. Distribution, enumeration and measurement of coronary arterial anastomosis in health and disease. Scot Med J. 1964;8:466–74.

    Google Scholar 

  40. Baroldi G, Mantero O, Scomazzoni G. The collaterals of coronary arteries in normal and pathologic conditions. Circ Res. 1956;4:223–9.

    Article  PubMed  CAS  Google Scholar 

  41. Schaper W, Sharma HS, Quinkler W, et al. Molecular biologic concepts of coronary anastomoses. J Am Coll Cardiol. 1990;15:513–8.

    Article  PubMed  CAS  Google Scholar 

  42. Harrison DG, Sellke FW, Quillen JE. Neurohormonal regulation of coronary collateral vasomotor tone. Basic Res Cardiol. 1990;85 suppl 1:121–9.

    PubMed  Google Scholar 

  43. Marcus ML. The Coronary Circulation in Health and Disease. New York: McGraw-Hill; 1983.

    Google Scholar 

  44. Takeshita A, Koiwaya Y, Nakamura M, et al. Immediate appearance of coronary collaterals during ergonovine-induced arterial spasm. Chest. 1982;82:319.

    Article  PubMed  CAS  Google Scholar 

  45. Rentrop KP, Cohen M, Blanke H, et al. Changes in collateral channel filling immediately after controlled coronary artery occlusion by angioplasty balloon in human subjects. J Am Coll Cardiol. 1985;5:587–92.

    Article  PubMed  CAS  Google Scholar 

  46. Meir B, Luethy P, Finci L, et al. Coronary wedge pressure in relation to spontaneously visible and recruitable collaterals. Circulation. 1987;75:906–13.

    Article  Google Scholar 

  47. Sasayama S, Fujita M. Recent insights into coronary collateral circulation. Circulation. 1992;85:1197–204.

    Article  PubMed  CAS  Google Scholar 

  48. Hirai T, Fujita M, Nakajima H, et al. Importance of collateral circulation for prevention of left ventricular aneurysm formation in acute myocardial infarction. Circulation. 1989;79:791–6.

    Article  PubMed  CAS  Google Scholar 

  49. Epstein SE. Influence of stenosis severity on coronary collateral development and importance of collaterals in maintaining left ventricular function during acute coronary occlusion. Am J Cardiol. 1988;61:866–8.

    Article  PubMed  CAS  Google Scholar 

  50. Topol EJ, Ellis SG. Coronary collaterals revisited: accessory pathway to myocardial preservation during infarction. Circulation. 1991;83:1084–6.

    Article  PubMed  CAS  Google Scholar 

  51. Bloch JH, Hurwitz MM, Edwards JE. Myocardial environment as protection against coronary atherosclerosis. Geriatrics. 1969;24:83.

    PubMed  CAS  Google Scholar 

  52. Bruschke AVG, Sheldon WC, Shirey EK, Proudfit WL. A half century of selective coronary arteriography. J Am Coll Cardiol. 2009;54:2139–44.

    Article  PubMed  Google Scholar 

  53. Topol EJ, Nissen SE. Our preoccupation with coronary luminology. The dissociation between clinical and angiographic findings in ischemic heart disease. Circulation. 1995;92:2333–42.

    Article  PubMed  CAS  Google Scholar 

  54. Farooq MU, Khasnis A, Majid A, et al. The role of optical coherence tomography in vascular medicine. Vasc Med. 2009;14:63–71.

    Article  PubMed  Google Scholar 

  55. Tahara N, Imaizumi T, Virmani R, et al. Clinical feasibility of molecular imaging of plaque inflammation in atherosclerosis. J Nuc Med. 2009;50:331–4.

    Article  CAS  Google Scholar 

  56. Ovitt TW, Durst S, Moore R, Amplatz K. Guide wire thrombogenecity and its reduction. Radiology. 1974;111:43–6.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert F. Wilson MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Wilson, R.F., Vlodaver, Z. (2012). Catheter-Based Coronary Angiography. In: Vlodaver, Z., Wilson, R., Garry, D. (eds) Coronary Heart Disease. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1475-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-1475-9_6

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-1474-2

  • Online ISBN: 978-1-4614-1475-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics