Skip to main content

Innovations in Twenty-First Century Cardiovascular Medicine

  • Chapter
  • First Online:
Coronary Heart Disease

Abstract

Emerging technologies are revolutionizing therapies for patients with end-stage heart disease. While these technologies improve the quality of life for our patients, continued efforts are needed to develop curative and preventive therapies for this pervasive disease. A frequently cited quote from C. Walton Lillehei, MD, provides hope for our future, “What mankind can dream, research and technology can achieve.”

Heart disease is both common and deadly. Today, heart disease is the number one cause of death in the United States and worldwide (Circulation 121:e46–215, 2010). Estimates suggest that the US economy will direct approximately $475 billion to treating heart disease and that these expenses are predicted to continue to grow at a seismic pace (Circulation 119:480–6, 2009). Our families, neighbors, coworkers, and communities are profoundly impacted by this disease, as one US citizen dies from cardiovascular disease every 30 s. The only way to profoundly alter the course of this disease is through innovation and the development of new therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lloyd-Jones D, Adams RJ, Brown TM, et al. Heart disease and stroke statistics – 2010 update: a report from the American Heart Association. Circulation. 2010;121:e46–215.

    Article  PubMed  Google Scholar 

  2. Lloyd-Jones D, Adams R, Carnethon M, et al. Heart disease and stroke statistics – 2009 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation. 2009;119:480–6.

    Article  PubMed  Google Scholar 

  3. Kennedy JF. Presidential speech at Rice University [transcript]. Armed Forces Radio and Television Service, AFRTS Collection (Library of Congress), 12 Sept 1962. Los Angeles: Armed Forces Radio and Television Service.

    Google Scholar 

  4. Garry DJ. The Lillehei Heart Institute: building on the shoulders of giants. J Cardiovasc Transl Res. 2008;1:273–7.

    Article  PubMed  Google Scholar 

  5. Gott VL. Lillehei, Lewis, and Wangensteen: the right mix for giant achievements in cardiac surgery. Ann Thorac Surg. 2005;79:S2210–3.

    Article  PubMed  Google Scholar 

  6. Dewall RA, Warden HE, Melby JC, Minot H, Varco RL, Lillehei CW. Physiological responses during total body perfusion with a pump-oxygenator; studies in one hundred twenty patients undergoing open cardiac surgery. J Am Med Assoc. 1957;165:1788–92.

    Article  PubMed  CAS  Google Scholar 

  7. Lillehei CW, Varco RL, Cohen M, Warden HE, Patton C, Moller JH. The first open-heart repairs of ventricular septal defect, atrioventricular communis, and tetralogy of Fallot using extracorporeal circulation by cross-circulation: a 30-year follow-up. Ann Thorac Surg. 1986;41:4–21.

    Article  PubMed  CAS  Google Scholar 

  8. Cooley DA. A tribute to C. Walton Lillehei, the “father of open heart surgery”. Tex Heart Inst J. 1999;26:165–6.

    PubMed  CAS  Google Scholar 

  9. Gott VL. C. Walton Lillehei and his trainees: one man’s legacy to cardiothoracic surgery. J Thorac Cardiovasc Surg. 1989;98:846–51.

    PubMed  CAS  Google Scholar 

  10. Katz AM. The “modern” view of heart failure: how did we get here? Circ Heart Fail. 2008;1:63–71.

    Article  PubMed  CAS  Google Scholar 

  11. Spencer DD. The timetable of computers: a chronology of the most important people and events in the history of computers. Ormond Beach: Camelot Publishing Company; 1999.

    Google Scholar 

  12. Jha AK, DesRoches CM, Campbell EG, et al. Use of electronic health records in U.S. hospitals. N Engl J Med. 2009;360:1628–38.

    Article  PubMed  CAS  Google Scholar 

  13. Boonstra A, Broekhuis M. Barriers to the acceptance of electronic medical records by physicians from systematic review to taxonomy and interventions. BMC Health Serv Res. 2010;10:231.

    Article  PubMed  Google Scholar 

  14. Steinbrook R. Health care and the American Recovery and Reinvestment Act. N Engl J Med. 2009;360:1057–60.

    Article  PubMed  CAS  Google Scholar 

  15. Orszag PR, Emanuel EJ. Health care reform and cost control. N Engl J Med. 2010;363:601–3.

    Article  PubMed  CAS  Google Scholar 

  16. Schoenfeld MH, Compton SJ, Mead RH, et al. Remote monitoring of implantable cardioverter defibrillators: a prospective analysis. Pacing Clin Electrophysiol. 2004;27:757–63.

    Article  PubMed  Google Scholar 

  17. Yamokoski LM, Haas GJ, Gans B, Abraham WT. OptiVol fluid status monitoring with an implantable cardiac device: a heart failure management system. Expert Rev Med Devices. 2007;4:775–80.

    Article  PubMed  Google Scholar 

  18. Abraham WT, Adamson PB, Bourge RC, et al. Wireless pulmonary artery haemodynamic monitoring in chronic heart failure: a randomised controlled trial. Lancet. 2011;377:658–66.

    Article  PubMed  Google Scholar 

  19. Singh SN, Wachter RM. Perspectives on medical outsourcing and telemedicine – rough edges in a flat world? N Engl J Med. 2008;358:1622–7.

    Article  PubMed  CAS  Google Scholar 

  20. Venter JC, Adams MD, Myers EW, et al. The sequence of the human genome. Science. 2001;291:1304–51.

    Article  PubMed  CAS  Google Scholar 

  21. International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature. 2004;431:931–45.

    Article  CAS  Google Scholar 

  22. Schena M, Shalon D, Davis RW, Brown PO. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science. 1995;270:467–70.

    Article  PubMed  CAS  Google Scholar 

  23. Gallardo TD, Hammer RE, Garry DJ. RNA amplification and transcriptional profiling for analysis of stem cell populations. Genesis. 2003;37:57–63.

    Article  PubMed  CAS  Google Scholar 

  24. Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009;10:57–63.

    Article  PubMed  CAS  Google Scholar 

  25. Ozsolak F, Milos PM. RNA sequencing: advances, challenges and opportunities. Nat Rev Genet. 2011;12:87–98.

    Article  PubMed  CAS  Google Scholar 

  26. Onda H, Poulin ML, Tassava RA, Chiu IM. Characterization of a newt tenascin cDNA and localization of tenascin mRNA during newt limb regeneration by in situ hybridization. Dev Biol. 1991;148:219–32.

    Article  PubMed  CAS  Google Scholar 

  27. Masino AM, Gallardo TD, Wilcox CA, Olson EN, Williams RS, Garry DJ. Transcriptional regulation of cardiac progenitor cell populations. Circ Res. 2004;95:389–97.

    Article  PubMed  CAS  Google Scholar 

  28. Naseem RH, Meeson AP, Michael Dimaio J, et al. Reparative myocardial mechanisms in adult C57BL/6 and MRL mice following injury. Physiol Genomics. 2007;30:44–52.

    Article  PubMed  CAS  Google Scholar 

  29. Blaxall BC, Tschannen-Moran BM, Milano CA, Koch WJ. Differential gene expression and genomic patient stratification following left ventricular assist device support. J Am Coll Cardiol. 2003;41:1096–106.

    Article  PubMed  CAS  Google Scholar 

  30. Chen Y, Park S, Li Y, et al. Alterations of gene expression in failing myocardium following left ventricular assist device support. Physiol Genomics. 2003;14:251–60.

    PubMed  Google Scholar 

  31. Hall JL, Grindle S, Han X, et al. Genomic profiling of the human heart before and after mechanical support with a ventricular assist device reveals alterations in vascular signaling networks. Physiol Genomics. 2004;17:283–91.

    Article  PubMed  CAS  Google Scholar 

  32. Kittleson MM, Hare JM. Molecular signature analysis: using the myocardial transcriptome as a biomarker in cardiovascular disease. Trends Cardiovasc Med. 2005;15:130–8.

    Article  PubMed  CAS  Google Scholar 

  33. Bullinger L, Dohner K, Bair E, et al. Use of gene-expression profiling to identify prognostic subclasses in adult acute myeloid leukemia. N Engl J Med. 2004;350:1605–16.

    Article  PubMed  CAS  Google Scholar 

  34. Dave SS, Wright G, Tan B, et al. Prediction of survival in follicular lymphoma based on molecular features of tumor-infiltrating immune cells. N Engl J Med. 2004;351:2159–69.

    Article  PubMed  CAS  Google Scholar 

  35. Rosenwald A, Wright G, Chan WC, et al. The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. N Engl J Med. 2002;346:1937–47.

    Article  PubMed  Google Scholar 

  36. Menthena A, Deb N, Oertel M, et al. Bone marrow progenitors are not the source of expanding oval cells in injured liver. Stem Cells. 2004;22:1049–61.

    Article  PubMed  Google Scholar 

  37. Vig P, Russo FP, Edwards RJ, et al. The sources of parenchymal regeneration after chronic hepatocellular liver injury in mice. Hepatology. 2006;43:316–24.

    Article  PubMed  Google Scholar 

  38. Gennero L, Roos MA, Sperber K, et al. Pluripotent plasticity of stem cells and liver repopulation. Cell Biochem Funct. 2010;28:178–89.

    Article  PubMed  CAS  Google Scholar 

  39. Mauro A. Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol. 1961;9:493–5.

    Article  PubMed  CAS  Google Scholar 

  40. McCulloch EA, Till JE. Regulatory mechanisms acting on hemopoietic stem cells. Some clinical implications. Am J Pathol. 1971;65:601–19.

    PubMed  CAS  Google Scholar 

  41. Cheng H, Leblond CP. Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. V. Unitarian theory of the origin of the four epithelial cell types. Am J Anat. 1974;141:537–61.

    Article  PubMed  CAS  Google Scholar 

  42. Wilson C, Cotsarelis G, Wei ZG, et al. Cells within the bulge region of mouse hair follicle transiently proliferate during early anagen: heterogeneity and functional differences of various hair cycles. Differentiation. 1994;55:127–36.

    Article  PubMed  CAS  Google Scholar 

  43. Osawa M, Hanada K, Hamada H, Nakauchi H. Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science. 1996;273:242–5.

    Article  PubMed  CAS  Google Scholar 

  44. Garry DJ, Yang Q, Bassel-Duby R, Williams RS. Persistent expression of MNF identifies myogenic stem cells in postnatal muscles. Dev Biol. 1997;188:280–94.

    Article  PubMed  CAS  Google Scholar 

  45. Johansson CB, Svensson M, Wallstedt L, Janson AM, Frisen J. Neural stem cells in the adult human brain. Exp Cell Res. 1999;253:733–6.

    Article  PubMed  CAS  Google Scholar 

  46. Kim CF, Jackson EL, Woolfenden AE, et al. Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell. 2005;121:823–35.

    Article  PubMed  CAS  Google Scholar 

  47. Weaver CV, Garry DJ. Regenerative biology: a historical perspective and modern applications. Regen Med. 2008;3:63–82.

    Article  PubMed  CAS  Google Scholar 

  48. Gracz AD, Ramalingam S, Magness ST. Sox9 expression marks a subset of CD24-expressing small intestine epithelial stem cells that form organoids in vitro. Am J Physiol Gastrointest Liver Physiol. 2010;298:G590–600.

    Article  PubMed  CAS  Google Scholar 

  49. Hoffman AM, Shifren A, Mazan MR, et al. Matrix modulation of compensatory lung regrowth and progenitor cell proliferation in mice. Am J Physiol Lung Cell Mol Physiol. 2010;298:L158–68.

    Article  PubMed  CAS  Google Scholar 

  50. Krampert M, Chirasani SR, Wachs FP, et al. Smad7 regulates the adult neural stem/progenitor cell pool in a transforming growth factor beta- and bone morphogenetic protein-independent manner. Mol Cell Biol. 2010;30:3685–94.

    Article  PubMed  CAS  Google Scholar 

  51. Sotiropoulou PA, Candi A, Mascre G, et al. Bcl-2 and accelerated DNA repair mediates resistance of hair follicle bulge stem cells to DNA-damage-induced cell death. Nat Cell Biol. 2010;12:572–82.

    Article  PubMed  CAS  Google Scholar 

  52. Shi X, Garry DJ. Muscle stem cells in development, regeneration, and disease. Genes Dev. 2006;20:1692–708.

    Article  PubMed  CAS  Google Scholar 

  53. Bergmann O, Bhardwaj RD, Bernard S, et al. Evidence for cardiomyocyte renewal in humans. Science. 2009;324:98–102.

    Article  PubMed  CAS  Google Scholar 

  54. Garry DJ, Olson EN. A common progenitor at the heart of development. Cell. 2006;127:1101–4.

    Article  PubMed  CAS  Google Scholar 

  55. Beltrami AP, Barlucchi L, Torella D, et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell. 2003;114:763–76.

    Article  PubMed  CAS  Google Scholar 

  56. Oh H, Bradfute SB, Gallardo TD, et al. Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc Natl Acad Sci USA. 2003;100:12313–8.

    Article  PubMed  CAS  Google Scholar 

  57. Martin CM, Meeson AP, Robertson SM, et al. Persistent expression of the ATP-binding cassette transporter, Abcg2, identifies cardiac SP cells in the developing and adult heart. Dev Biol. 2004;265:262–75.

    Article  PubMed  CAS  Google Scholar 

  58. Messina E, De Angelis L, Frati G, et al. Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ Res. 2004;95:911–21.

    Article  PubMed  CAS  Google Scholar 

  59. Pfister O, Mouquet F, Jain M, et al. CD31- but Not CD31+ cardiac side population cells exhibit functional cardiomyogenic differentiation. Circ Res. 2005;97:52–61.

    Article  PubMed  CAS  Google Scholar 

  60. Moretti A, Caron L, Nakano A, et al. Multipotent embryonic isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification. Cell. 2006;127:1151–65.

    Article  PubMed  CAS  Google Scholar 

  61. Wang X, Hu Q, Nakamura Y, et al. The role of the sca-1+/CD31- cardiac progenitor cell population in postinfarction left ventricular remodeling. Stem Cells. 2006;24:1779–88.

    Article  PubMed  Google Scholar 

  62. Bearzi C, Rota M, Hosoda T, et al. Human cardiac stem cells. Proc Natl Acad Sci USA. 2007;104:14068–73.

    Article  PubMed  CAS  Google Scholar 

  63. Ott HC, Matthiesen TS, Brechtken J, et al. The adult human heart as a source for stem cells: repair strategies with embryonic-like progenitor cells. Nat Clin Pract Cardiovasc Med. 2007;4 Suppl 1:S27–39.

    Article  PubMed  CAS  Google Scholar 

  64. Smith RR, Barile L, Cho HC, et al. Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation. 2007;115:896–908.

    Article  PubMed  CAS  Google Scholar 

  65. Martin CM, Ferdous A, Gallardo T, et al. Hypoxia-inducible factor-2alpha transactivates Abcg2 and promotes cytoprotection in cardiac side population cells. Circ Res. 2008;102:1075–81.

    Article  PubMed  CAS  Google Scholar 

  66. Johnston PV, Sasano T, Mills K, et al. Engraftment, differentiation, and functional benefits of autologous cardiosphere-derived cells in porcine ischemic cardiomyopathy. Circulation. 2009;120:1075–83.

    Article  PubMed  CAS  Google Scholar 

  67. Goldman JM, Horowitz MM. The international bone marrow transplant registry. Int J Hematol. 2002;76 Suppl 1:393–7.

    Article  PubMed  Google Scholar 

  68. Schachinger V, Assmus B, Britten MB, et al. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction: final one-year results of the TOPCARE-AMI Trial. J Am Coll Cardiol. 2004;44:1690–9.

    Article  PubMed  Google Scholar 

  69. Meyer GP, Wollert KC, Lotz J, et al. Intracoronary bone marrow cell transfer after myocardial infarction: eighteen months’ follow-up data from the randomized, controlled BOOST (BOne marrOw transfer to enhance ST-elevation infarct regeneration) trial. Circulation. 2006;113:1287–94.

    Article  PubMed  Google Scholar 

  70. Menasche P, Alfieri O, Janssens S, et al. The Myoblast Autologous Grafting in Ischemic Cardiomyopathy (MAGIC) trial: first randomized placebo-controlled study of myoblast transplantation. Circulation. 2008;117:1189–200.

    Article  PubMed  Google Scholar 

  71. Beitnes JO, Hopp E, Lunde K, et al. Long-term results after intracoronary injection of autologous mononuclear bone marrow cells in acute myocardial infarction: the ASTAMI randomised, controlled study. Heart. 2009;95:1983–9.

    Article  PubMed  CAS  Google Scholar 

  72. Schachinger V, Assmus B, Erbs S, et al. Intracoronary infusion of bone marrow-derived mononuclear cells abrogates adverse left ventricular remodelling post-acute myocardial infarction: insights from the reinfusion of enriched progenitor cells and infarct remodelling in acute myocardial infarction (REPAIR-AMI) trial. Eur J Heart Fail. 2009;11:973–9.

    Article  PubMed  Google Scholar 

  73. Traverse JH, Henry TD, Vaughan DE, et al. Rationale and design for TIME: a phase II, randomized, double-blind, placebo-controlled pilot trial evaluating the safety and effect of timing of administration of bone marrow mononuclear cells after acute myocardial infarction. Am Heart J. 2009;158:356–63.

    Article  PubMed  Google Scholar 

  74. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76.

    Article  PubMed  CAS  Google Scholar 

  75. Meissner A, Wernig M, Jaenisch R. Direct reprogramming of genetically unmodified fibroblasts into pluripotent stem cells. Nat Biotechnol. 2007;25:1177–81.

    Article  PubMed  CAS  Google Scholar 

  76. Park IH, Zhao R, West JA, et al. Reprogramming of human somatic cells to pluripotency with defined factors. Nature. 2008;451:141–6.

    Article  PubMed  CAS  Google Scholar 

  77. Zhang J, Wilson GF, Soerens AG, et al. Functional cardiomyocytes derived from human induced pluripotent stem cells. Circ Res. 2009;104:e30–41.

    Article  PubMed  CAS  Google Scholar 

  78. Toyo-oka T, Kawada T, Xi H, et al. Gene therapy prevents disruption of dystrophin-related proteins in a model of hereditary dilated cardiomyopathy in hamsters. Heart Lung Circ. 2002;11:174–81.

    Article  PubMed  Google Scholar 

  79. Vatta M, Stetson SJ, Perez-Verdia A, et al. Molecular remodelling of dystrophin in patients with end-stage cardiomyopathies and reversal in patients on assistance-device therapy. Lancet. 2002;359:936–41.

    Article  PubMed  CAS  Google Scholar 

  80. McMahon CJ, Vatta M, Fraser Jr CD, Towbin JA, Chang AC. Altered dystrophin expression in the right atrium of a patient after Fontan procedure with atrial flutter. Heart. 2004;90(12):e65.

    Article  PubMed  CAS  Google Scholar 

  81. Toyo-oka T, Kawada T, Nakata J, et al. Translocation and cleavage of myocardial dystrophin as a common pathway to advanced heart failure: a scheme for the progression of cardiac dysfunction. Proc Natl Acad Sci USA. 2004;101:7381–5.

    Article  PubMed  Google Scholar 

  82. Vatta M, Chang AC, McMahon CJ. Altered expression of dystrophin within the thoracic aorta in coarctation. Cardiol Young. 2005;15:73–4.

    Article  PubMed  Google Scholar 

  83. Hoffman EP, Brown Jr RH, Kunkel LM. Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell. 1987;51:919–28.

    Article  PubMed  CAS  Google Scholar 

  84. Emery AE. Clinical and molecular studies in Duchenne muscular dystrophy. Prog Clin Biol Res. 1989;306:15–28.

    PubMed  CAS  Google Scholar 

  85. Hoffman EP. Muscular dystrophy: identification and use of genes for diagnostics and therapeutics. Arch Pathol Lab Med. 1999;123:1050–2.

    PubMed  CAS  Google Scholar 

  86. Yasuda S, Townsend D, Michele DE, Favre EG, Day SM, Metzger JM. Dystrophic heart failure blocked by membrane sealant poloxamer. Nature. 2005;436:1025–9.

    Article  PubMed  CAS  Google Scholar 

  87. Townsend D, Blankinship MJ, Allen JM, Gregorevic P, Chamberlain JS, Metzger JM. Systemic administration of micro-dystrophin restores cardiac geometry and prevents dobutamine-induced cardiac pump failure. Mol Ther. 2007;15:1086–92.

    PubMed  CAS  Google Scholar 

  88. Townsend D, Yasuda S, Metzger J. Cardiomyopathy of Duchenne muscular dystrophy: pathogenesis and prospect of membrane sealants as a new therapeutic approach. Expert Rev Cardiovasc Ther. 2007;5:99–109.

    Article  PubMed  CAS  Google Scholar 

  89. Armstrong SC, Latham CA, Shivell CL, Ganote CE. Ischemic loss of sarcolemmal dystrophin and spectrin: correlation with myocardial injury. J Mol Cell Cardiol. 2001;33:1165–79.

    Article  PubMed  CAS  Google Scholar 

  90. Vatta M, Stetson SJ, Jimenez S, et al. Molecular normalization of dystrophin in the failing left and right ventricle of patients treated with either pulsatile or continuous flow-type ventricular assist devices. J Am Coll Cardiol. 2004;43:811–7.

    Article  PubMed  CAS  Google Scholar 

  91. Townsend D, Turner I, Yasuda S, et al. Chronic administration of membrane sealant prevents severe cardiac injury and ventricular dilatation in dystrophic dogs. J Clin Invest. 2010;120:1140–50.

    Article  PubMed  CAS  Google Scholar 

  92. Lee JA, Allen DG. Mechanisms of acute ischemic contractile failure of the heart. Role of intracellular calcium. J Clin Invest. 1991;88:361–7.

    Article  PubMed  CAS  Google Scholar 

  93. Metzger JM, Westfall MV. Covalent and noncovalent modification of thin filament action: the essential role of troponin in cardiac muscle regulation. Circ Res. 2004;94:146–58.

    Article  PubMed  CAS  Google Scholar 

  94. Davis J, Westfall MV, Townsend D, et al. Designing heart performance by gene transfer. Physiol Rev. 2008;88:1567–651.

    Article  PubMed  CAS  Google Scholar 

  95. Metzger JM, Michele DE, Rust EM, Borton AR, Westfall MV. Sarcomere thin filament regulatory isoforms. Evidence of a dominant effect of slow skeletal troponin I on cardiac contraction. J Biol Chem. 2003;278(15):13118–23.

    Article  PubMed  CAS  Google Scholar 

  96. Day SM, Westfall MV, Fomicheva EV, et al. Histidine button engineered into cardiac troponin I protects the ischemic and failing heart. Nat Med. 2006;12(2):181–9.

    Article  PubMed  CAS  Google Scholar 

  97. Palpant NJ, Day SM, Herron TJ, Converso KL, Metzger JM. Single histidine-substituted cardiac troponin I confers protection from age-related systolic and diastolic dysfunction. Cardiovasc Res. 2008;80:209–18.

    Article  PubMed  CAS  Google Scholar 

  98. Palpant NJ, D’Alecy LG, Metzger JM. Single histidine button in cardiac troponin I sustains heart performance in response to severe hypercapnic respiratory acidosis in vivo. FASEB J. 2009;23:1529–40.

    Article  PubMed  CAS  Google Scholar 

  99. Palpant NJ, Houang EM, Delport W, et al. Pathogenic peptide deviations support a model of adaptive evolution of chordate cardiac performance by troponin mutations. Physiol Genomics. 2010;42:287–99.

    Article  PubMed  CAS  Google Scholar 

  100. Turner I, Belema-Bedada F, Martindale J, et al. Molecular cardiology in translation: gene, cell and chemical-based experimental therapeutics for the failing heart. J Cardiovasc Transl Res. 2008;1:317–27.

    Article  PubMed  Google Scholar 

  101. Lamas GA, Lee KL, Sweeney MO, et al. Ventricular pacing or dual-chamber pacing for sinus-node dysfunction. N Engl J Med. 2002;346:1854–62.

    Article  PubMed  Google Scholar 

  102. Feldman T, Leon MB. Prospects for percutaneous valve therapies. Circulation. 2007;116:2866–77.

    Article  PubMed  Google Scholar 

  103. Rose EA, Gelijns AC, Moskowitz AJ, et al. Long-term use of a left ventricular assist device for end-stage heart failure. N Engl J Med. 2001;345:1435–43.

    Article  PubMed  CAS  Google Scholar 

  104. Ott HC, Matthiesen TS, Goh SK, et al. Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat Med. 2008;14:213–21.

    Article  PubMed  CAS  Google Scholar 

  105. Diegeler A, Thiele H, Falk V, et al. Comparison of stenting with minimally invasive bypass surgery for stenosis of the left anterior descending coronary artery. N Engl J Med. 2002;347:561–6.

    Article  PubMed  Google Scholar 

  106. Barbash GI, Glied SA. New technology and health care costs – the case of robot-assisted surgery. N Engl J Med. 2010;363:701–4.

    Article  PubMed  CAS  Google Scholar 

  107. Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med. 1990;322:1561–6.

    Article  PubMed  CAS  Google Scholar 

  108. Victor RG, Haley RW, Willett DL, et al. The Dallas Heart Study: a population-based probability sample for the multidisciplinary study of ethnic differences in cardiovascular health. Am J Cardiol. 2004;93:1473–80.

    Article  PubMed  Google Scholar 

  109. Cohn JN, Duprez DA. Time to foster a rational approach to preventing cardiovascular morbid events. J Am Coll Cardiol. 2008;52:327–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary G. Garry PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Garry, M.G., Metzger, J.M., Shi, X., Garry, D.J. (2012). Innovations in Twenty-First Century Cardiovascular Medicine. In: Vlodaver, Z., Wilson, R., Garry, D. (eds) Coronary Heart Disease. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1475-9_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-1475-9_30

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-1474-2

  • Online ISBN: 978-1-4614-1475-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics