Skip to main content

Cardiac Development and Congenital Heart Disease

  • Chapter
  • First Online:
Coronary Heart Disease

Abstract

The heart is a dynamic organ that pumps more than two billion beats in the average lifetime. It is the first organ to develop during embryogenesis and requires a complex interaction of signaling factors, transcriptional networks, and microRNAs to regulate discrete stages of cardiac specification, differentiation, chamber formation, and growth. Spontaneous genetic mutations in humans and engineered molecular mutations in model systems have improved our understanding of cardiac development in both the human and nonprimate heart. While congenital heart disease (CHD) is relatively common and can be life-threatening, emerging therapies including catheter-based interventions, surgical repair, cellular repair, and cell therapy are improving survival and resulting in increased numbers of adults living with heart disease. Better understanding the mechanisms that govern cardiac development can clarify the pathology of CHD and help develop new therapies for this patient population.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brand T. Heart development: molecular insights into cardiac specification and early morphogenesis. Dev Biol. 2003;258:1–19.

    Article  PubMed  CAS  Google Scholar 

  2. Chinn A, Fitzsimmons J, Shepard TH, Fantel AG. Congenital heart disease among spontaneous abortuses and stillborn fetuses: prevalence and associations. Teratology. 1989;40(5):475–82.

    Article  PubMed  CAS  Google Scholar 

  3. Moore KL, Persaud TVN, editors. The developing human: clinically oriented embryology. In: The cardiovascular system. Philadelphia, PA: Saunders; 2008. p. 285–337.

    Google Scholar 

  4. Kirby ML, Waldo KL. Molecular embryogenesis of the heart. Pediatr Dev Pathol. 2002;5:516–43.

    Article  PubMed  Google Scholar 

  5. Martinsen BJ, Lohr JL. Cardiac development. In: Iaizzo P, editor. Handbook of cardiac anatomy, physiology and devices. New York: Springer Science; 2009. p. 23–32.

    Chapter  Google Scholar 

  6. Manner J, Perez-Pomares JM, Macias D, Munoz-Chapuli R. The origin, formation and developmental significance of the epicardium: a review. Cells Tissues Organs. 2001;169:89–103.

    Article  PubMed  CAS  Google Scholar 

  7. Svensson EC. Look who’s talking: FGFs and BMPs in the proepicardium. Circ Res. 2009;105:406–7.

    Article  PubMed  CAS  Google Scholar 

  8. Van Wijk B, van den Berg G, Abu-Issa R, et al. Epicardium and myocardium separate from a common precursor pool by crosstalk between bone morphogenetic protein and fibroblast growth factor. Circ Res. 2009;105:431–41.

    Article  PubMed  CAS  Google Scholar 

  9. Linask KK. Regulation of heart morphology: current molecular and cellular perspectives on the coordinated emergence of cardiac form and function. Birth Defects Res C Embryo Today. 2003;69:14–24.

    Article  PubMed  CAS  Google Scholar 

  10. Hoffman JIE, Kaplan S. The incidence of congenital heart disease. J Am Coll Cardiol. 2002;39(12):1890–900.

    Article  PubMed  Google Scholar 

  11. Martinsen BJ, Groebner NJ, Frasier AJ, Lohr JL. Expression of cardiac neural crest and heart genes isolated by modified differential display. Gene Expr Patterns. 2003;3:407–11.

    Article  PubMed  CAS  Google Scholar 

  12. Hildreth V, Webb S, Bradshaw L, Brown NA, Anderson RH, Henderson DJ. Cells migrating from the neural crest contribute to the innervation of the venous pole of the heart. J Anat. 2008;212:1–11.

    PubMed  Google Scholar 

  13. Larsen W. Development of the heart. In: Schmitt WR, Otway M, Bowman-Schulman E, editors. Human embryology. New York: Churchill Livingstone; 1997. p. 151–87.

    Google Scholar 

  14. Combs MD, Yutzey KE. Heart valve development: regulatory networks in development and disease. Circ Res. 2009;105:408–21.

    Article  PubMed  CAS  Google Scholar 

  15. Moorman AFM, de Jong F, Denyn M, Lamers WH. Development of the cardiac conduction system. Circ Res. 1998;82:629–44.

    Article  PubMed  CAS  Google Scholar 

  16. Jongbloed MR, Mahtab EA, Blom NA, Schalij MJ, Gittenberger-de Groot AC. Development of the cardiac conduction system and the possible relation to predilection sites of arrhythmogenesis. Sci World J. 2008;8:239–69.

    Article  CAS  Google Scholar 

  17. Bergmann O, Bhardwaj RD, Bernard S. et al Evidence for cardiomyocyte renewal in humans. Science. 2009;324(5923):98–102.

    Article  PubMed  CAS  Google Scholar 

  18. Hsieh P, Segers V, Davis ME. et al Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury. Nat Med. 2007;13:970–4.

    Article  PubMed  CAS  Google Scholar 

  19. Downs K, Davies T. Staging of gastrulating mouse embryos by morphological landmarks in the dissecting microscope. Development. 1993;118:1255–66.

    PubMed  CAS  Google Scholar 

  20. Harvey RP. Patterning the vertebrate heart. Nat Rev Genet. 2002;3(7):544–56.

    Article  PubMed  CAS  Google Scholar 

  21. Moses KA, DeMayo F, Braun RM, Reecy JL, Schwartz RJ. Embryonic expression of an NKX2-5/Cre gene using Rosa26 reporter mice. Genesis. 2001;31:176–80.

    Article  PubMed  CAS  Google Scholar 

  22. Montoliu L, Whitelaw CBA. Using standard nomenclature to adequately name transgenes, knockout gene alleles and any mutation associated to a genetically modified mouse strain [technical report]. Transgenic Res. 2010;20(2):435–40. (doi: 10.1007/s11248-010-9428-z). www.springerlink.com/content/y50782un6vjn1673/fulltext.pdf. Accessed 3 March 2011.

  23. Gordon JW, Scangos GA, Plotkin DJ, Barbosa JA, Ruddle FH. Genetic transformation of mouse embryos by microinjection of purified DNA. Proc Natl Acad Sci USA. 1980;77:7380–4.

    Article  PubMed  CAS  Google Scholar 

  24. Brinster RL, Chen HY, Trumbauer M, Senear AW, Warren R, Palmiter RD. Somatic expression of herpes thymidine kinase in mice following injection of a fusion gene into eggs. Cell. 1981;27:223–31.

    Article  PubMed  CAS  Google Scholar 

  25. Thomas KR, Folger KR, Capecchi MR. High frequency targeting of genes to specific sites in the mammalian genome. Cell. 1986;44(3):419–28.

    Article  PubMed  CAS  Google Scholar 

  26. Mortensen R. Production of a heterozygous mutant cell line by homologous recombination (single knockout). In: Current protocols in molecular biology. April 1, 2008 (doi: 10.1002/0471142727.mb2305s82, online ISBN: 9780471142720). 23.5.1-23.5.11. Wiley. Online access options at: http://onlinelibrary.wiley.com/book/10.1002/0471142727/homepage/Order.html. Accessed March 12, 2011.

  27. Nagy A, Mar L, Watts G. Creation and use of a Cre recombinase transgenic database. In: Kuhn R, Wurst W, editors. Gene knockout protocols. 2nd ed. New York, NY: Humana Press; 2009. p. 365–78.

    Chapter  Google Scholar 

  28. Boheler KR, Czyz J, Tweedie D, Yang HT, Anisimov SV, Wobus AM. Differentiation of pleuripotent embryonic stem cells into cardiomyocytes. Circ Res. 2002;91:189–201.

    Article  PubMed  CAS  Google Scholar 

  29. Ma YD, Lugus JJ, Park C, Choi K. Differentiation of mouse embryonic stem cells into blood. Current Protoc Stem Cell Biol ( Published On Line). 2008; 6:1F.4.1–1F.4.19.

    Google Scholar 

  30. Robbins J, Doetschman T, Jones WK, Sanchez A. Embryonic stem cells as a model for cardiogenesis. Trends Cardiovasc Med. 1992;2(2):44–50.

    Article  PubMed  CAS  Google Scholar 

  31. Schott JJ, Benson DW, Basson CT, et al. Congenital heart disease caused by mutations in the transcription factor NKX2-5. Science. 1998;281(5373):108–11.

    Article  PubMed  CAS  Google Scholar 

  32. McElhinney DB, Geiger E, Blinder J, Benson DW, Goldmuntz E. NKX2,5 mutations in patients with congenital heart disease. J Am Coll Cardiol. 2003;42(9):1650–5.

    Article  PubMed  CAS  Google Scholar 

  33. Basson CT, Huang T, Lin RC, et al. Different TBX5 interactions in heart and limb defined by Holt-Oram syndrome mutations. Proc Natl Acad Sci U S A. 1999;96(6):2919–24.

    Article  PubMed  CAS  Google Scholar 

  34. Kitajima S, Takagi A, Inoue T, Sagay I. Mesp1 and Mesp 2 are essential for the development of cardiac mesoderm. Development. 2000;27:3215–26.

    Google Scholar 

  35. Srivastava D. Making or breaking the heart: from lineage determination to morphogenesis. Cell. 2006;126:1037–48.

    Article  PubMed  CAS  Google Scholar 

  36. Foley A. Cardiac lineage selection: integrating biological complexity into computational models. Wiley Interdiscip Rev Syst Biol Med. 2009;1:334–47. doi:10.1002/wsbm.43.

    Article  PubMed  CAS  Google Scholar 

  37. Srivastava D, Olson EN. A genetic blueprint for cardiac development. Nature. 2000;407:221–6.

    Article  PubMed  CAS  Google Scholar 

  38. Yutzey KE, Kirby ML. Wherefore heart thou? Embryonic origins of cardiogenic mesoderm. Dev Dyn. 2002;223:307–20.

    Article  PubMed  Google Scholar 

  39. Ferdous A, Caprioli A, Iacovino M, et al. NKx2-5 transactivates the Ets-related protein 71 gene and specifies are endothelial.endocardial fate in the developing embryo. Proc Natl Acad Sci USA. 2009;106:814–9.

    Article  PubMed  CAS  Google Scholar 

  40. Bodmer R. The gene tinman is required for specification of the heart and visceral muscles in Drosophila. Development. 1993;118:719–29.

    PubMed  CAS  Google Scholar 

  41. Lyons I, Parsons LM, Hartley L, et al. Myogenic and morphogenetic defects in heart tubes of murine embryos lacking the homeo box gene Nkx2-5. Genes Dev. 1995;9(13):1654–66.

    Article  PubMed  CAS  Google Scholar 

  42. Kuo CT, Morrisey EE, Anandappa R, et al. Gata4 transcription factor is required for ventral morphogenesis and heart tube formation. Genes Dev. 1997;11:1048–60.

    Article  PubMed  CAS  Google Scholar 

  43. Molkentin J, Lin Q, Duncan SA, Olson EN. Requirement of the transcription factor Gata 4for heart tube formation and ventral morphogenesis. Genes Dev. 1997;11:1061–72.

    Article  PubMed  CAS  Google Scholar 

  44. Cai CL, Liang X, Shi Y, et al. Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev Cell. 2003;5:877–89.

    Article  PubMed  CAS  Google Scholar 

  45. Bu L, Jiang X, Martin-Puig S, et al. Human ISL1 heart progenitors generate diverse multipotent cardiovascular cell lineages. Nature. 2009;460:113–7.

    Article  PubMed  CAS  Google Scholar 

  46. Watanabe Y, Miyagawa-Tomita S, Vinvent SD, Kelly RG, Moon AM, Buckingham ME. Role of mesodermal FGF8 and FGF10 overlaps in the development of the arterial pole of the heart and pharyngeal arch arteries. Circ Res. 2010;106:495–503.

    Article  PubMed  CAS  Google Scholar 

  47. Schleiffarth JR, Person AD, Martinsen BJ, et al. Wnt5a is required for cardiac outflow septation in mice. Pediatr Res. 2007;61(4):386–91.

    Article  PubMed  Google Scholar 

  48. Dyer LA, Kirby ML. The role of the second heart field in cardiac development. Dev Biol. 2009;336(2):137–44.

    Article  PubMed  CAS  Google Scholar 

  49. Garg V, Yamagishi C, Hu T, Kathiriya IS, Yamagishi H, Srivastava D. Tbx1, a DiGeorge syndrome candidate gene, is regulated by sonic hedgehog during pharyngeal arch development. Dev Biol. 2001;235(1):62–73.

    Article  PubMed  CAS  Google Scholar 

  50. McGrath J, Somlo S, Makova S, Tian X, Brueckner M. Two populations of node monocilia initiate left-right asymmetry in the mouse. Cell. 2003;114:61–73.

    Article  PubMed  CAS  Google Scholar 

  51. Raya A, Izpisua-Belmonte JC. Insights into the establishment of left-right asymmetries in vertebrates. Birth Defects Res C Embryo Today. 2008;84:81–94.

    Article  PubMed  CAS  Google Scholar 

  52. Levin M. Left-right asymmetry in embryonic development: a comprehensive review. Mech Dev. 2005;122:3–25.

    Article  PubMed  CAS  Google Scholar 

  53. Liu C, Liu W, Lu MF, Brown NA, Martin JF. Regulation of left-right asymmetry by thresholds of Pitx2c activity. Development. 2001;128:2039–48.

    PubMed  CAS  Google Scholar 

  54. Galli D, Dominguez JN, Zaffran S, Munk A, Brown NA, Buckingham ME. Atrial myocardium derives from the posterior region of the second heart field, which acquires left-right identity as Pitx2c is expressed. Development. 2008;135(6):1157–67.

    Article  PubMed  CAS  Google Scholar 

  55. Kioussi C, Briata P, Baek SH. et al Identification of a Wnt/Dvl/beta-catenin—Pitx2 pathway mediating cell-type-specific proliferation during development. Cell. 2002;111(5):673–85.

    Article  PubMed  CAS  Google Scholar 

  56. Lin Q, Schwarz J, Bucana C, Olson EN. Control of mouse cardiac morphogenesis and myogenesis by transcription factor MEF2C. Science. 1997;276(5317):1404–7.

    Article  PubMed  CAS  Google Scholar 

  57. Biben C, Harvey RP. Homeodomain factor Nkx2-5 controls left-right asymmetric expression of bHLH gene eHand during murine heart development. Genes Dev. 1997;11(11):1357–69.

    Article  PubMed  CAS  Google Scholar 

  58. Srivastava D, Thomas T, Lin Q, Kirby ML, Brown D, Olson EN. Regulation of cardiac mesodermal and neural crest development by the bHLH transcription factor, dHand. Nat Genet. 1997;16(2):154–60. Erratum in: Nat Genet. 1997;16(4)410.

    Article  PubMed  CAS  Google Scholar 

  59. Tsuchihashi T, Maeda J, Shin CH. et al Hand2 function in second heart field progenitors is essential for cardiogenesis. Dev Biol. 2010;351(1):62–9.

    Article  PubMed  CAS  Google Scholar 

  60. Firulli AB, Firulli BA, Wang J, Rogers RH, Conway SJ. Gene replacement strategies to test the functional redundancy of basic helix-loop-helix transcription factor. Pediatr Cardiol. 2010;31(3):438–48.

    Article  PubMed  Google Scholar 

  61. Bruneau BG, Nemer G, Schmitt JP. et al A murine model of Holt-Oram syndrome defines roles of the T-box transcription factor Tbx5 in cardiogenesis and disease. Cell. 2001;106:709–21.

    Article  PubMed  CAS  Google Scholar 

  62. Takeuchi JK, Bruneau BG. Directed transdifferentiation of mouse mesoderm, to heart tissue by defined factors. Nature. 2009;459(7247):708–11.

    Article  PubMed  CAS  Google Scholar 

  63. Cordes KR, Srivastava D, Ivey KN. MicroRNAs in cardiac development. Pediatr Cardiol. 2010;31:349–56.

    Article  PubMed  Google Scholar 

  64. Ivey KN, Srivastava D. MicroRNAs as regulators of differentiation and cell fate decisions. Cell Stem Cell. 2010;1:36–41.

    Article  CAS  Google Scholar 

  65. Epstein JA, Parmacek MS. Recent advances in cardiac development with therapeutic implications for adult cardiovascular disease. Circulation. 2005;112:592–7.

    Article  PubMed  Google Scholar 

  66. Basch ML, Bronner-Fraser M. Neural crest inducing signals. Adv Exp Med Biol. 2006;589:24–31.

    Article  PubMed  CAS  Google Scholar 

  67. Zhou B, von Gise A, Ma Q, Rivera-Feliciano J, Pu WT. Pu Wt. Nkx2-5 and Isl1-expressing cardiac progenitors contribute to proepicardium. Biochem Biophys Res Commun. 2008;375(3):450–3.

    Article  PubMed  CAS  Google Scholar 

  68. Watt AJ, Battle MA, Li J, Duncan SA. GATA4 is essential for the formation of the proepicardium and regulates cardiogenesis. Proc Natl Acad Sci USA. 2004;101(34):12573–8.

    Article  PubMed  CAS  Google Scholar 

  69. Wu SM, Fujiwara Y, Cibulsky SM, et al. Developmental origin of a bipotential myocardial and smooth muscle cell precursor in the mammalian heart. Cell. 2006;127(6):1137–50.

    Article  PubMed  CAS  Google Scholar 

  70. Wu SM, Chien KR, Mummery C. Origins and fates of cardiovascular progenitor cells. Cell. 2008;132:537–43.

    Article  PubMed  CAS  Google Scholar 

  71. Moretti A, Caron L, Nakano A, et al. Multipotent embryonic Isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification. Cell. 2006;127:1151–65.

    Article  PubMed  CAS  Google Scholar 

  72. Garry DJ, Olson EN. A common progenitor at the heart of development. Cell. 2006;127:1101–4.

    Article  PubMed  CAS  Google Scholar 

  73. Beltrami AP, Barlucchi L, Torella D, et al. Adult cardiac stem cells are multipotent and support cardiac regeneration. Cell. 2003;114(6):763–76.

    Article  PubMed  CAS  Google Scholar 

  74. Messina E, De Angelis L, Frati G, et al. Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ Res. 2004;95:911–21.

    Article  PubMed  CAS  Google Scholar 

  75. Martin CM, Meeson AP, Robertson SM, et al. Persistent expression of the ATP-binding cassette transporter, Abcg2, identifies cardiac SP cells in the developing and adult heart. Dev Biol. 2004;265:262–75.

    Article  PubMed  CAS  Google Scholar 

  76. Martin CM, Russell JL, Ferdous A, Garry DJ. Molecular signatures define myogenic stem cell populations. Stem Cell Rev. 2006;2:37–46.

    Article  PubMed  CAS  Google Scholar 

  77. Shi X, Garry DJ. Muscle stem cells in development, regeneration and disease. Genes Dev. 2006;20:1692–708.

    Article  PubMed  CAS  Google Scholar 

  78. Qian L, Srivastava D. Monkeying around with cardiac progenitors: hope for the future. J Clin Invest. 2010;120(4):1034–6.

    Article  PubMed  CAS  Google Scholar 

  79. Sadek H, Hannack B, Choe E, et al. Cardiogenic small molecules that enhance myocardial repair by stem cells. Proc Natl Acad Sci USA. 2009;105(16):6063–8.

    Article  Google Scholar 

  80. Ieda M, Fu JD, Delgado-Olguin P, et al. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell. 2010;142(3):375–86.

    Article  PubMed  CAS  Google Scholar 

  81. Blin G, Nury D, Stefanovic S, et al. A purified population of multipotent cardiovascular progenitors derived from primate pluripotent stem cells engrafts in postmocardial infracted nonhuman primates. J Clin Invest. 2010;120(4):1125–39.

    Article  PubMed  CAS  Google Scholar 

  82. Ferencz C, Rubin JD, McCarter RJ, et al. Congenital heart disease: prevalence at live birth. The Baltimore-Washington Infant Study. Am J Epidemiol. 1985;121(1):31–6.

    PubMed  CAS  Google Scholar 

  83. Hoffman JIE. Incidence, prevalence, and inheritance of congenital heart disease. In: Moller JH, Hoffman JIE, editors. Pediatric cardiovascular medicine. New York: Churchill Livingstone; 2000. p. 257–62.

    Google Scholar 

  84. Wren C, Richmond S, Donaldson L. Temporal variability in birth prevalence of cardiovascular malformations. Heart. 2000;83:414–9.

    Article  PubMed  CAS  Google Scholar 

  85. Lin AE. Chromosomal abnormality associated with congenital heart defect. Am J Med Genet. 1990;35(4):590–1.

    Article  PubMed  CAS  Google Scholar 

  86. Pierpont ME, Basson CT, Benson DW. et al Genetic basis for congenital heart defects: current knowledge: a scientific statement from the American Heart Association Congenital Cardiac Defects Committee, Council on Cardiovascular Disease in the Young: endorsed by the American Academy of Pediatrics. Circulation. 2007;115:3015–38.

    Article  PubMed  Google Scholar 

  87. Song MS, Hu A, Dyhamenahali U. et al Extracardiac lesions and chromosomal abnormalities associated with major fetal heart defects: comparison of intrauterine, postnatal and postmortem diagnosis. Ultrasound Obstet Gynecol. 2009;33:552–9.

    Article  PubMed  CAS  Google Scholar 

  88. Lin AE, Basson CT, Goldmuntz E, et al. Adults with genetic syndromes and cardiovascular abnormalities: clinical history and management. Genet Med. 2008;10(7):469–94.

    Article  PubMed  Google Scholar 

  89. Gill HK, Splitt M, Sharland GK, Simpson JM. Patterns of recurrence of congenital heart disease: an analysis of 6,640 consecutive pregnancies evaluated by detained fetal echocardiography. J Am Coll Cardiol. 2003;42(5):923–9.

    Article  PubMed  Google Scholar 

  90. Ferencz C, Boughman JA, Neill CA, Brenner JI, Perry LW. Congenital cardiovascular malformations: questions on inheritance. Baltimore-Washington Infant Study Group. J Am Coll Cardiol. 1989;14(3):756–63.

    Article  PubMed  CAS  Google Scholar 

  91. Oyen N, Poulsen G, Boyd HA, Wohlfahrt J, Jensen PKA, Melbye M. Recurrence of congenital heart defects in families. Circulation. 2009;120:295–301.

    Article  PubMed  Google Scholar 

  92. Calcagni G, Digilio MC, Sarkozy A, Dallapiccola B, Marino B. Familial recurrence of congenital heart disease, a review of the literature. Eur J Pediatr. 2007;166:111–6.

    Article  PubMed  Google Scholar 

  93. Hinton Jr RB, Martin LJ, Tabangin ME, Mazwi ML, Cripe LH, Benson DW. Hypoplastic left heart syndrome is heritable. J Am Coll Cardiol. 2007;50(16):1590–5.

    Article  PubMed  Google Scholar 

  94. Cripe L, Andelfinger G, Martin LJ, Shooner K, Benson DW. Bicuspid aortic valve is heritable. J Am Coll Cardiol. 2004;44(1):138–43.

    Article  PubMed  Google Scholar 

  95. Moller JH, Shumway SJ, Gott VL. The first open-heart repairs using extracorporeal circulation by cross-circulation: a 53-year follow-up. Ann Thorac Surg. 2009;88(3):1044–6.

    Article  PubMed  Google Scholar 

  96. Stirling GR, Stanley PH, Lillehei CW. The effects of cardiac bypass and ventriculotomy upon right ventricular function with report of successful closure of ventricular septal defect by use of atriotomy. Surg Forum. 1957;8:433–8.

    PubMed  CAS  Google Scholar 

  97. Tucker EM, Pyles LA, Bass JL, Moller JH. Permanent pacemaker for atrioventricular conduction block after operative repair of perimembranous ventricular septal defect. J Am Coll Cardiol. 2007;50(12):1196–200.

    Article  PubMed  Google Scholar 

  98. Roos-Hesselink JW, Meijboom FJ, Spitaels SEC, et al. Outcome of patients after surgical closure of ventricular septal defect at young age: longitudinal follow-up of 22–34 years. Eur Heart J. 2004;25:1057.

    Article  PubMed  CAS  Google Scholar 

  99. Hirsch R, Lorber A, Shapira Y. et al Initial experience with the Amplatzer membranous septal occluder in adults. Acute Card Care. 2007;9(1):54–9.

    Article  PubMed  Google Scholar 

  100. Zuo J, Xie J, Yi W, et al. Results of transcatheter closure of perimembranous ventricular septal defect. Am J Cardiol. 2010;106(7):1034–7.

    Article  PubMed  Google Scholar 

  101. Forsey J, Kenny D, Morgan G, et al. Early clinical experience with the new Amplatzer Ductal Occluder II for closure of the persistent arterial duct. Catheter Cardiovasc Interv. 2009;74(4):615–23.

    Article  PubMed  Google Scholar 

  102. Bautista-Hernandez V, Hasan BS, Harrild DM, et al. Late pulmonary valve replacement in patients with pulmonary atresia and intact ventricular septum: a case-matched study. Ann Thorac Surg. 2011;91:555–60.

    Article  PubMed  Google Scholar 

  103. Keane JF, Fyler DC, editors. Aortic outflow abnormalities. In: Nadas’ pediatric cardiology. Philadelphia, PA: Saunders; 2006. p. 581–602.

    Google Scholar 

  104. Toro-Salazar OH, Steinberger J, Thomas W, Rocchini AP, Carpenter B, Moller JH. Long-term follow-up of patients after coarctation of the aorta repair. Am J Cardiol. 2002;89(5):541–7.

    Article  PubMed  Google Scholar 

  105. Lillehei CW, Varco RL, Cohen M, et al. The first open heart corrections of tetralogy of Fallot. A 26–31 year follow-up of 106 patients. Ann Surg. 1986;104(4):490–502.

    Article  Google Scholar 

  106. Al Habib HF, Jacobs JP, Mavroudis C, Tchervenkov CI, O’Brien SM, Mohammadi S, et al. Contemporary patterns of management of tetralogy of Fallot: data from the Society of Thoracic Surgeons Database. Ann Thorac Surg. 2010;90(3):813–9.

    Article  PubMed  Google Scholar 

  107. Aboulhosn J, Child JS. Management after childhood repair of tetralogy of Fallot. Curr Treat Options Cardiovasc Med. 2006;8(6):474–83.

    Article  PubMed  Google Scholar 

  108. Warnes CA, Williams RG, Bashore TM, et al. ACC/AHA 2008 Guidelines for the Management of Adults With Congenital Heart Disease. Circulation. 2008;118(23):e714–833.

    Article  PubMed  Google Scholar 

  109. Tobler D, Williams WG, Jegatheeswaran A, et al. Cardiac outcomes in young adult survivors of the arterial switch operation for transposition of the great arteries. J Am Coll Cardiol. 2010;56(1):5864.

    Article  Google Scholar 

  110. Ye M, Coldren C, Liang X, et al. Deletion of ETS-1, a gene in the Jacobson syndrome critical region, causes ventricular septal defects and abnormal ventricular morphology in mice. Hum Mol Genet. 2010;19(4):648–56.

    Article  PubMed  CAS  Google Scholar 

  111. Grossfeld P, Ye M, Harvey R. Hypoplastic left heart syndrome: new genetic insights. J Am Coll Cardiol. 2009;53(12):1072–4.

    Article  PubMed  Google Scholar 

  112. Tweddell JS, Hoffman GM, Mussato KA, et al. Improved survival of patients undergoing palliation of hypoplastic left heart syndrome: ­lessons learned from 115 consecutive patients. Circulation. 2002;106(12 Suppl 1):I82–9.

    PubMed  Google Scholar 

  113. Sano S, Ishino K, Kawada M, Yoshizumi K, Takeuchi M, Ohtsuki S. Experience over five years using a shunt placed between the right ventricle and the pulmonary arteries during initial reconstruction of hypoplasia of the left heart. Cardiol Young. 2004;14 suppl 3:90–5.

    PubMed  Google Scholar 

  114. Holzer R, Marshall A, Kreutzer J, et al. Hybrid procedures: adverse events and procedural characteristics-results of a multi-institutional registry. Congenit Heart Dis. 2010;5(3):233–42.

    Article  PubMed  Google Scholar 

  115. Conway J, Dipchand AI. Heart transplantation in children. Pediatr Clin North Am. 2010;57:353–73.

    Article  PubMed  Google Scholar 

  116. Karimova A, Van Doom C, Brown K, et al. Mechanical bridging to orthotopic heart transplantation in children weighing less than 10 kg: feasibility and limitations. Eur J Cardiothorac Surg. 2011;39:304–9. doi:10.1016/j.ejcts.2010.05.015.

    Article  PubMed  Google Scholar 

  117. Fan Y, Weng YG, Xiao YB, et al. Outcomes of ventricular assist device support in young patients with small body surface area. Eur J Cardiothorac Surg Epub. 2011;39:699–704.

    Article  Google Scholar 

  118. Silva JNA, Canter CE, Singh TP, et al. Outcomes of heart transplantation using donor hearts from infants with sudden infant death syndrome. J Heart Lung Transplant. 2010;29(11):1226–30.

    Article  PubMed  Google Scholar 

  119. Marelli AJ, Mackie AS, Ioneecu-Ittu R, Rahme E, Pilote L. Congenital heart disease in the general population: changing prevalence and age distribution. Circulation. 2007;115:163–72.

    Article  PubMed  Google Scholar 

  120. Khairy P, Ionescu-Ittu R, Mackie AS, Abrahamowicz M, Pilote L, Marelli AJ. Changing mortality in congenital heart disease. J Am Coll Cardiol. 2010;56:1149–57.

    Article  PubMed  Google Scholar 

  121. Patel MS, Kogon BE. Care of the adult congenital heart disease patient in the United States: a summary of the current system. Pediatr Cardiol. 2010;31(4):511–4.

    Article  PubMed  Google Scholar 

  122. Yeung E, Kay J, Roosevelt GE, Brandon M, Yetman AT. Lapse of care as a predictor for morbidity in adults with congenital heart disease. Int J Cardiol. 2008;125:62–5.

    Article  PubMed  Google Scholar 

  123. Bernier M, Marelli AJ, Pilote L, et al. Atrial arrhythmias in adult patients with right versus left sided congenital heart disease anomalies. Am J Cardiol. 2010;106(4):547–51.

    Article  PubMed  Google Scholar 

  124. Li W, Somerville J. Infective endocarditis in the grown-up congenital heart (GUCH) population. Eur Heart J. 1998;19(1):166–73.

    Article  PubMed  CAS  Google Scholar 

  125. Lamour JM, Addonizio LJ, Galantowicz ME, et al. Outcome after orthotopic cardiac transplantation in adults with congenital heart disease. Circulation. 1999;100:II200–5.

    Article  PubMed  CAS  Google Scholar 

  126. Jayakumar KA, Addonizio LJ, Kichuk-Chrisant MR, et al. Cardiac transplantation after Fontan or Glenn procedure. J Am Coll Cardiol. 2004;44(10):2065–72.

    Article  PubMed  Google Scholar 

  127. Irving C, Parry G, O’Sullivan J, et al. Cardiac transplantation in adults with congenital heart disease. Heart. 2001;96(15):1217–22.

    Article  Google Scholar 

  128. Kovacs AH, Harrison JL, Colman JM. Pregnancy and contraception in congenital heart disease: what women are not told. J Am Coll Cardiol. 2008;52:577–8.

    Article  PubMed  Google Scholar 

  129. Balint OH, Siu SC, Mason J, et al. Cardiac outcomes after pregnancy in women with congenital heart disease. Heart. 2010;96:1656–61.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamie L. Lohr MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lohr, J.L., Martin, C.M., Garry, D.J. (2012). Cardiac Development and Congenital Heart Disease. In: Vlodaver, Z., Wilson, R., Garry, D. (eds) Coronary Heart Disease. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1475-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-1475-9_2

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-1474-2

  • Online ISBN: 978-1-4614-1475-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics