Skip to main content

Endothelium Biology

  • Chapter
  • First Online:
Coronary Heart Disease

Abstract

The endothelium lines the blood vessels of arteries, veins, and lymphatics. In the cardiovascular system, it plays a vital role in multiple functions ranging from control of vascular tone to repair after injury. This chapter focuses on endothelium biology, specifically that of the coronary tree, and its translational implications. It describes how the endothelium becomes dysfunctional during coronary artery disease and how this dysfunction can be measured and treated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jaffe EA. Cell biology of endothelial cells. Hum Pathol. 1987;18(3):234–9.

    Article  PubMed  CAS  Google Scholar 

  2. Fishman AP. Endothelium: a distributed organ of diverse capabilities. Ann N Y Acad Sci. 1982;401:1–8.

    Article  PubMed  CAS  Google Scholar 

  3. Aird WC. Phenotypic heterogeneity of the endothelium: I. Structure, function, and mechanisms. Circ Res. 2007;100(2):158–73.

    Article  PubMed  CAS  Google Scholar 

  4. Bonetti PO, Lerman LO, Lerman A. Endothelial dysfunction: a marker of atherosclerotic risk. Arterioscler Thromb Vasc Biol. 2003;23(2):168–75.

    Article  PubMed  CAS  Google Scholar 

  5. Ferrari R, Bachetti T, Agnoletti L, Comini L, Curello S. Endothelial function and dysfunction in heart failure. Eur Heart J. 1998;19(Suppl G):G41–7.

    PubMed  CAS  Google Scholar 

  6. Leask RL, Jain N, Butany J. Endothelium and valvular diseases of the heart. Microsc Res Tech. 2003;60(2):129–37.

    Article  PubMed  Google Scholar 

  7. Morrell NW, Adnot S, Archer SL, et al. Cellular and molecular basis of pulmonary arterial hypertension. J Am Coll Cardiol. 2009;54(1 Suppl):S20–31.

    Article  PubMed  CAS  Google Scholar 

  8. Solomon H, Man JW, Jackson G. Erectile dysfunction and the cardiovascular patient: endothelial dysfunction is the common denominator. Heart. 2003;89(3):251–3.

    Article  PubMed  CAS  Google Scholar 

  9. Schouten M, Wiersinga WJ, Levi M, van der Poll T. Inflammation, endothelium, and coagulation in sepsis. J Leukoc Biol. 2008;83(3):536–45.

    Article  PubMed  CAS  Google Scholar 

  10. Nikitenko LL. Vascular endothelium in cancer. Cell Tissue Res. 2009;335(1):223–40.

    Article  PubMed  Google Scholar 

  11. Palade GE. Blood capillaries of the heart and other organs. Circulation. 1961;24:368–88.

    Article  PubMed  CAS  Google Scholar 

  12. dela Paz NG, D’Amore PA. Arterial versus venous endothelial cells. Cell Tissue Res. 2009;335(1):5–16.

    Article  PubMed  Google Scholar 

  13. Kutcher ME, Herman IM. The pericyte: cellular regulator of microvascular blood flow. Microvasc Res. 2009;77(3):235–46.

    Article  PubMed  CAS  Google Scholar 

  14. Aird WC. Spatial and temporal dynamics of the endothelium. J Thromb Haemost. 2005;3(7):1392–406.

    Article  PubMed  CAS  Google Scholar 

  15. Risau W, Flamme I. Vasculogenesis. Annu Rev Cell Dev Biol. 1995;11:73–91.

    Article  PubMed  CAS  Google Scholar 

  16. Swift MR, Weinstein BM. Arterial-venous specification during development. Circ Res. 2009;104(5):576–88.

    Article  PubMed  CAS  Google Scholar 

  17. Crivellato E, Nico B, Ribatti D. Contribution of endothelial cells to organogenesis: a modern reappraisal of an old Aristotelian concept. J Anat. 2007;211(4):415–27.

    PubMed  CAS  Google Scholar 

  18. deMello DE, Reid LM. Embryonic and early fetal development of human lung vasculature and its functional implications. Pediatr Dev Pathol. 2000;3(5):439–49.

    Article  PubMed  CAS  Google Scholar 

  19. Larrivee B, Freitas C, Suchting S, Brunet I, Eichmann A. Guidance of vascular development: lessons from the nervous system. Circ Res. 2009;104(4):428–41.

    Article  PubMed  CAS  Google Scholar 

  20. Vogeli KM, Jin SW, Martin GR, Stainier DY. A common progenitor for haematopoietic and endothelial lineages in the zebrafish gastrula. Nature. 2006;443(7109):337–9.

    Article  PubMed  CAS  Google Scholar 

  21. Choi K, Kennedy M, Kazarov A, Papadimitriou JC, Keller G. A common precursor for hematopoietic and endothelial cells. Development. 1998;125(4):725–32.

    PubMed  CAS  Google Scholar 

  22. Ribatti D, Nico B, Crivellato E. Morphological and molecular aspects of physiological vascular morphogenesis. Angiogenesis. 2009;12(2):101–11.

    Article  PubMed  CAS  Google Scholar 

  23. Pardanaud L, Luton D, Prigent M, Bourcheix LM, Catala M, Dieterlen-Lievre F. Two distinct endothelial lineages in ontogeny, one of them related to hemopoiesis. Development. 1996;122(5):1363–71.

    PubMed  CAS  Google Scholar 

  24. Vokes SA, Krieg PA. Endoderm is required for vascular endothelial tube formation, but not for angioblast specification. Development. 2002;129(3):775–85.

    PubMed  CAS  Google Scholar 

  25. Flamme I, Frolich T, Risau W. Molecular mechanisms of vasculogenesis and embryonic angiogenesis. J Cell Physiol. 1997;173(2):206–10.

    Article  PubMed  CAS  Google Scholar 

  26. Carmeliet P, Ferreira V, Breier G, et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature. 1996;380(6573):435–9.

    Article  PubMed  CAS  Google Scholar 

  27. Ferrara N, Carver-Moore K, Chen H, et al. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature. 1996;380(6573):439–42.

    Article  PubMed  CAS  Google Scholar 

  28. Suri C, Jones PF, Patan S, et al. Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell. 1996;87(7):1171–80.

    Article  PubMed  CAS  Google Scholar 

  29. Puri MC, Partanen J, Rossant J, Bernstein A. Interaction of the TEK and TIE receptor tyrosine kinases during cardiovascular development. Development. 1999;126(20):4569–80.

    PubMed  CAS  Google Scholar 

  30. Takashima S, Kitakaze M, Asakura M, et al. Targeting of both mouse neuropilin-1 and neuropilin-2 genes severely impairs developmental yolk sac and embryonic angiogenesis. Proc Natl Acad Sci U S A. 2002;99(6):3657–62.

    Article  PubMed  CAS  Google Scholar 

  31. Byrd N, Grabel L. Hedgehog signaling in murine vasculogenesis and angiogenesis. Trends Cardiovasc Med. 2004;14(8):308–13.

    Article  PubMed  CAS  Google Scholar 

  32. Risau W, Lemmon V. Changes in the vascular extracellular matrix during embryonic vasculogenesis and angiogenesis. Dev Biol. 1988;125(2):441–50.

    Article  PubMed  CAS  Google Scholar 

  33. Carmeliet P. Angiogenesis in life, disease and medicine. Nature. 2005;438(7070):932–6.

    Article  PubMed  CAS  Google Scholar 

  34. Makanya AN, Hlushchuk R, Djonov VG. Intussusceptive angiogenesis and its role in vascular morphogenesis, patterning, and remodeling. Angiogenesis. 2009;12(2):113–23.

    Article  PubMed  CAS  Google Scholar 

  35. Sims DE. The pericyte – a review. Tissue Cell. 1986;18(2):153–74.

    Article  PubMed  CAS  Google Scholar 

  36. Hirschi KK, Rohovsky SA, D’Amore PA. PDGF, TGF-beta, and heterotypic cell-cell interactions mediate endothelial cell-induced recruitment of 10T1/2 cells and their differentiation to a smooth muscle fate. J Cell biol. 1998;141(3):805–14.

    Article  PubMed  CAS  Google Scholar 

  37. Dickson MC, Martin JS, Cousins FM, Kulkarni AB, Karlsson S, Akhurst RJ. Defective haematopoiesis and vasculogenesis in transforming growth factor-beta 1 knock out mice. Development. 1995;121(6):1845–54.

    PubMed  CAS  Google Scholar 

  38. Hellstrom M, Kalen M, Lindahl P, Abramsson A, Betsholtz C. Role of PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development. 1999;126(14):3047–55.

    PubMed  CAS  Google Scholar 

  39. Sato TN, Tozawa Y, Deutsch U, et al. Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation. Nature. 1995;376(6535):70–4.

    Article  PubMed  CAS  Google Scholar 

  40. Rocha SF, Adams RH. Molecular differentiation and specialization of vascular beds. Angiogenesis. 2009;12(2):139–47.

    Article  PubMed  CAS  Google Scholar 

  41. Horowitz A, Simons M. Branching morphogenesis. Circ Res. 2008;103(8):784–95.

    Article  PubMed  CAS  Google Scholar 

  42. Djonov VG, Kurz H, Burri PH. Optimality in the developing vascular system: branching remodeling by means of intussusception as an efficient adaptation mechanism. Dev Dyn. 2002;224(4):391–402.

    Article  PubMed  Google Scholar 

  43. Risau W. Differentiation of endothelium. Faseb J. 1995;9(10):926–33.

    PubMed  CAS  Google Scholar 

  44. Schaper W. Collateral circulation: past and present. Basic Res Cardiol. 2009;104(1):5–21.

    Article  PubMed  CAS  Google Scholar 

  45. Hoper J, Jahn H. Influence of environmental oxygen concentration on growth and vascular density of the area vasculosa in chick embryos. Int J Microcirc Clin Exp. 1995;15(4):186–92.

    Article  PubMed  CAS  Google Scholar 

  46. Semenza GL, Agani F, Iyer N, et al. Regulation of cardiovascular development and physiology by hypoxia-inducible factor 1. Ann N Y Acad Sci. 1999;874:262–8.

    Article  PubMed  CAS  Google Scholar 

  47. Cleaver O, Melton DA. Endothelial signaling during development. Nat Med. 2003;9(6):661–8.

    Article  PubMed  CAS  Google Scholar 

  48. Bogers AJ, Gittenberger-de Groot AC, Poelmann RE, Peault BM, Huysmans HA. Development of the origin of the coronary arteries, a ­matter of ingrowth or outgrowth? Anat Embryol. 1989;180(5):437–41.

    Google Scholar 

  49. Velkey JM, Bernanke DH. Apoptosis during coronary artery orifice development in the chick embryo. Anat Rec. 2001;262(3):310–7.

    Article  PubMed  CAS  Google Scholar 

  50. Ando K, Nakajima Y, Yamagishi T, Yamamoto S, Nakamura H. Development of proximal coronary arteries in quail embryonic heart: multiple capillaries penetrating the aortic sinus fuse to form main coronary trunk. Circ Res. 2004;94(3):346–52.

    Article  PubMed  CAS  Google Scholar 

  51. Ishii Y, Langberg J, Rosborough K, Mikawa T. Endothelial cell lineages of the heart. Cell Tissue Res. 2009;335(1):67–73.

    Article  PubMed  Google Scholar 

  52. Garcia-Martinez V, Schoenwolf GC. Primitive-streak origin of the cardiovascular system in avian embryos. Dev Biol. 1993;159(2):706–19.

    Article  PubMed  CAS  Google Scholar 

  53. Linask KK, Lash JW. Early heart development: dynamics of endocardial cell sorting suggests a common origin with cardiomyocytes. Dev Dyn. 1993;196(1):62–9.

    Article  PubMed  CAS  Google Scholar 

  54. Manner J, Perez-Pomares JM, Macias D, Munoz-Chapuli R. The origin, formation and developmental significance of the epicardium: a review. Cells Tissues Organs. 2001;169(2):89–103.

    Article  PubMed  CAS  Google Scholar 

  55. Nahirney PC, Mikawa T, Fischman DA. Evidence for an extracellular matrix bridge guiding proepicardial cell migration to the myocardium of chick embryos. Dev Dyn. 2003;227(4):511–23.

    Article  PubMed  Google Scholar 

  56. Mikawa T, Fischman DA. Retroviral analysis of cardiac morphogenesis: discontinuous formation of coronary vessels. Proc Natl Acad Sci U S A. 1992;89(20):9504–8.

    Article  PubMed  CAS  Google Scholar 

  57. Mikawa T, Gourdie RG. Pericardial mesoderm generates a population of coronary smooth muscle cells migrating into the heart along with ingrowth of the epicardial organ. Dev Biol. 1996;174(2):221–32.

    Article  PubMed  CAS  Google Scholar 

  58. Wessels A, Perez-Pomares JM. The epicardium and epicardially derived cells (EPDCs) as cardiac stem cells. Anat Rec. 2004;276(1):43–57.

    Article  CAS  Google Scholar 

  59. Wilting J, Buttler K, Schulte I, Papoutsi M, Schweigerer L, Manner J. The proepicardium delivers hemangioblasts but not lymphangioblasts to the developing heart. Dev Biol. 2007;305(2):451–9.

    Article  PubMed  CAS  Google Scholar 

  60. Torella D, Ellison GM, Karakikes I, Nadal-Ginard B. Resident cardiac stem cells. Cell Mol Life Sci. 2007;64(6):661–73.

    Article  PubMed  CAS  Google Scholar 

  61. Asahara T, Isner JM. Endothelial progenitor cells for vascular regeneration. J Hematother Stem Cell Res. 2002;11(2):171–8.

    Article  PubMed  Google Scholar 

  62. Ratajska A, Czarnowska E, Ciszek B. Embryonic development of the proepicardium and coronary vessels. Int J Dev Biol. 2008;52(2–3):229–36.

    Article  PubMed  Google Scholar 

  63. Reese DE, Mikawa T, Bader DM. Development of the coronary vessel system. Circ Res. 2002;91(9):761–8.

    Article  PubMed  CAS  Google Scholar 

  64. Hsieh PC, Davis ME, Lisowski LK, Lee RT. Endothelial-cardiomyocyte interactions in cardiac development and repair. Annu Rev Physiol. 2006;68:51–66.

    Article  PubMed  CAS  Google Scholar 

  65. Tomanek RJ. Formation of the coronary vasculature during development. Angiogenesis. 2005;8(3):273–84.

    Article  PubMed  Google Scholar 

  66. Lavine KJ, Ornitz DM. Shared circuitry: developmental signaling cascades regulate both embryonic and adult coronary vasculature. Circ Res. 2009;104(2):159–69.

    Article  PubMed  CAS  Google Scholar 

  67. Gerritsen ME. Functional heterogeneity of vascular endothelial cells. Biochem Pharmacol. 1987;36(17):2701–11.

    Article  PubMed  CAS  Google Scholar 

  68. Florey L. The endothelial cell. Br Med J. 1966;2(5512):487–90.

    Article  PubMed  CAS  Google Scholar 

  69. Sumagin R, Sarelius IH. TNF-alpha activation of arterioles and venules alters distribution and levels of ICAM-1 and affects leukocyte-endothelial cell interactions. Am J Physiol Heart Circ Physiol. 2006;291(5):H2116–25.

    Article  PubMed  CAS  Google Scholar 

  70. Simionescu M, Simionescu N, Palade GE. Morphometric data on the endothelium of blood capillaries. J Cell Biol. 1974;60(1):128–52.

    Article  PubMed  CAS  Google Scholar 

  71. Flaherty JT, Pierce JE, Ferrans VJ, Patel DJ, Tucker WK, Fry DL. Endothelial nuclear patterns in the canine arterial tree with particular reference to hemodynamic events. Circ Res. 1972;30(1):23–33.

    Article  PubMed  CAS  Google Scholar 

  72. Girard JP, Springer TA. High endothelial venules (HEVs): specialized endothelium for lymphocyte migration. Immunol Today. 1995;16(9):449–57.

    Article  PubMed  CAS  Google Scholar 

  73. Muro S, Koval M, Muzykantov V. Endothelial endocytic pathways: gates for vascular drug delivery. Curr Vasc Pharmacol. 2004;2(3):281–99.

    Article  PubMed  CAS  Google Scholar 

  74. Bendayan M. Morphological and cytochemical aspects of capillary permeability. Microsc Res Tech. 2002;57(5):327–49.

    Article  PubMed  CAS  Google Scholar 

  75. Wisse E. An electron microscopic study of the fenestrated endothelial lining of rat liver sinusoids. J Ultrastruct Res. 1970;31(1):125–50.

    Article  PubMed  CAS  Google Scholar 

  76. van den Berg BM, Vink H, Spaan JA. The endothelial glycocalyx protects against myocardial edema. Circ Res. 2003;92(6):592–4.

    Article  PubMed  CAS  Google Scholar 

  77. Chi JT, Chang HY, Haraldsen G, et al. Endothelial cell diversity revealed by global expression profiling. Proc Natl Acad Sci U S A. 2003;100(19):10623–8.

    Article  PubMed  CAS  Google Scholar 

  78. Arap W, Kolonin MG, Trepel M, et al. Steps toward mapping the human vasculature by phage display. Nat Med. 2002;8(2):121–7.

    Article  PubMed  CAS  Google Scholar 

  79. Aird WC. Phenotypic heterogeneity of the endothelium: II. Representative vascular beds. Circ Res. 2007;100(2):174–90.

    Article  PubMed  CAS  Google Scholar 

  80. Jurisic G, Detmar M. Lymphatic endothelium in health and disease. Cell Tissue Res. 2009;335(1):97–108.

    Article  PubMed  CAS  Google Scholar 

  81. Aird WC, Edelberg JM, Weiler-Guettler H, Simmons WW, Smith TW, Rosenberg RD. Vascular bed-specific expression of an endothelial cell gene is programmed by the tissue microenvironment. J Cell Biol. 1997;138(5):1117–24.

    Article  PubMed  CAS  Google Scholar 

  82. Levin EG, Santell L, Osborn KG. The expression of endothelial tissue plasminogen activator in vivo: a function defined by vessel size and anatomic location. J Cell Sci. 1997;110(Pt 2):139–48.

    PubMed  CAS  Google Scholar 

  83. Garcia-Cardena G, Gimbrone Jr MA. Biomechanical modulation of endothelial phenotype: implications for health and disease. Handb Exp Pharmacol. 2006;176(Pt 2):79–95.

    Article  PubMed  CAS  Google Scholar 

  84. Durr E, Yu J, Krasinska KM, et al. Direct proteomic mapping of the lung microvascular endothelial cell surface in vivo and in cell culture. Nat Biotechnol. 2004;22(8):985–92.

    Article  PubMed  CAS  Google Scholar 

  85. Kwei S, Stavrakis G, Takahas M, et al. Early adaptive responses of the vascular wall during venous arterialization in mice. Am J Pathol. 2004;164(1):81–9.

    Article  PubMed  Google Scholar 

  86. Aird WC. Mechanisms of endothelial cell heterogeneity in health and disease. Circ Res. 2006;98(2):159–62.

    Article  PubMed  CAS  Google Scholar 

  87. King J, Hamil T, Creighton J, et al. Structural and functional characteristics of lung macro- and microvascular endothelial cell phenotypes. Microvasc Res. 2004;67(2):139–51.

    Article  PubMed  CAS  Google Scholar 

  88. Cines DB, Pollak ES, Buck CA, et al. Endothelial cells in physiology and in the pathophysiology of vascular disorders. Blood. 1998;91(10):3527–61.

    PubMed  CAS  Google Scholar 

  89. Stevens T, Garcia JG, Shasby DM, Bhattacharya J, Malik AB. Mechanisms regulating endothelial cell barrier function. Am J Physiol Lung Cell Mol Physiol. 2000;279(3):L419–22.

    PubMed  CAS  Google Scholar 

  90. Luscinskas FW, Gimbrone Jr MA. Endothelial-dependent mechanisms in chronic inflammatory leukocyte recruitment. Annu Rev Medicine. 1996;47:413–21.

    Article  CAS  Google Scholar 

  91. Sima AV, Stancu CS, Simionescu M. Vascular endothelium in atherosclerosis. Cell Tissue Research. 2009;335(1):191–203.

    Article  PubMed  CAS  Google Scholar 

  92. Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 1980;288(5789):373–6.

    Article  PubMed  CAS  Google Scholar 

  93. Feletou M, Vanhoutte PM. Endothelium-dependent hyperpolarization of canine coronary smooth muscle. Br J Pharmacol. 1988;93(3):515–24.

    Article  PubMed  CAS  Google Scholar 

  94. Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chaudhuri G. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci U S A. 1987;84(24):9265–9.

    Article  PubMed  CAS  Google Scholar 

  95. Vanhoutte PM, Mombouli JV. Vascular endothelium: vasoactive mediators. Prog Cardiovasc Dis. 1996;39(3):229–38.

    Article  PubMed  CAS  Google Scholar 

  96. Moncada S, Gryglewski R, Bunting S, Vane JR. An enzyme isolated from arteries transforms prostaglandin endoperoxides to an unstable substance that inhibits platelet aggregation. Nature. 1976;263(5579):663–5.

    Article  PubMed  CAS  Google Scholar 

  97. Moncada S, Herman AG, Higgs EA, Vane JR. Differential formation of prostacyclin (PGX or PGI2) by layers of the arterial wall. An explanation for the anti-thrombotic properties of vascular endothelium. Thromb Res. 1977;11(3):323–44.

    Article  PubMed  CAS  Google Scholar 

  98. Bellien J, Thuillez C, Joannides R. Contribution of endothelium-derived hyperpolarizing factors to the regulation of vascular tone in humans. Fundam Clin Pharmacol. 2008;22(4):363–77.

    Article  PubMed  CAS  Google Scholar 

  99. Duncker DJ, Bache RJ. Regulation of coronary blood flow during exercise. Physiol Rev. 2008;88(3):1009–86.

    Article  PubMed  CAS  Google Scholar 

  100. Quayle JM, Nelson MT, Standen NB. ATP-sensitive and inwardly rectifying potassium channels in smooth muscle. Physiol Rev. 1997;77(4):1165–232.

    PubMed  CAS  Google Scholar 

  101. Lamontagne D, Konig A, Bassenge E, Busse R. Prostacyclin and nitric oxide contribute to the vasodilator action of acetylcholine and bradykinin in the intact rabbit coronary bed. J Cardiovasc Pharmacol. 1992;20(4):652–7.

    Article  PubMed  CAS  Google Scholar 

  102. Archer SL, Gragasin FS, Wu X, et al. Endothelium-derived hyperpolarizing factor in human internal mammary artery is 11,12-epoxyeicosatrienoic acid and causes relaxation by activating smooth muscle BK(Ca) channels. Circulation. 2003;107(5):769–76.

    Article  PubMed  CAS  Google Scholar 

  103. Ludmer PL, Selwyn AP, Shook TL, et al. Paradoxical vasoconstriction induced by acetylcholine in atherosclerotic coronary arteries. N Engl J Med. 1986;315(17):1046–51.

    Article  PubMed  CAS  Google Scholar 

  104. Cotran RS, Gimbrone Jr MA, Bevilacqua MP, Mendrick DL, Pober JS. Induction and detection of a human endothelial activation antigen in vivo. J Exp Med. 1986;164(2):661–6.

    Article  PubMed  CAS  Google Scholar 

  105. Cybulsky MI, Gimbrone Jr MA. Endothelial expression of a mononuclear leukocyte adhesion molecule during atherogenesis. Science. 1991;251(4995):788–91.

    Article  PubMed  CAS  Google Scholar 

  106. Bassenge E, Heusch G. Endothelial and neuro-humoral control of coronary blood flow in health and disease. Rev Physiol Biochem Pharmacol. 1990;116:77–165.

    PubMed  CAS  Google Scholar 

  107. Anderson TJ. Assessment and treatment of endothelial dysfunction in humans. J Am Coll Cardiol. 1999;34(3):631–8.

    Article  PubMed  CAS  Google Scholar 

  108. Ross R, Glomset JA. Atherosclerosis and the arterial smooth muscle cell: proliferation of smooth muscle is a key event in the genesis of the lesions of atherosclerosis. Science. 1973;180(93):1332–9.

    Article  PubMed  CAS  Google Scholar 

  109. Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature. 1993;362(6423):801–9.

    Article  PubMed  CAS  Google Scholar 

  110. Celermajer DS, Sorensen KE, Gooch VM, et al. Non-invasive detection of endothelial dysfunction in children and adults at risk of atherosclerosis. Lancet. 1992;340(8828):1111–5.

    Article  PubMed  CAS  Google Scholar 

  111. Chowienczyk PJ, Watts GF, Cockcroft JR, Ritter JM. Impaired endothelium-dependent vasodilation of forearm resistance vessels in hypercholesterolaemia. Lancet. 1992;340(8833):1430–2.

    Article  PubMed  CAS  Google Scholar 

  112. De Angelis L, Marfella MA, Siniscalchi M, et al. Erectile and endothelial dysfunction in type II diabetes: a possible link. Diabetologia. 2001;44(9):1155–60.

    Article  PubMed  Google Scholar 

  113. Bhargava K, Hansa G, Bansal M, Tandon S, Kasliwal RR. Endothelium-dependent brachial artery flow mediated vasodilatation in patients with diabetes mellitus with and without coronary artery disease. J Assoc Physicians India. 2003;51:355–8.

    PubMed  CAS  Google Scholar 

  114. Celermajer DS, Sorensen KE, Georgakopoulos D, Bull C, Thomas O, Robinson J, et al. Cigarette smoking is associated with dose-related and potentially reversible impairment of endothelium-dependent dilation in healthy young adults. Circulation. 1993;88(5 Pt 1):2149–55.

    Article  PubMed  CAS  Google Scholar 

  115. Celermajer DS, Sorensen KE, Bull C, Robinson J, Deanfield JE. Endothelium-dependent dilation in the systemic arteries of asymptomatic subjects relates to coronary risk factors and their interaction. J Am Coll Cardiol. 1994;24(6):1468–74.

    Article  PubMed  CAS  Google Scholar 

  116. Reddy KG, Nair RN, Sheehan HM, Hodgson JM. Evidence that selective endothelial dysfunction may occur in the absence of angiographic or ultrasound atherosclerosis in patients with risk factors for atherosclerosis. J Am Coll Cardiol. 1994;23(4):833–43.

    Article  PubMed  CAS  Google Scholar 

  117. Gordon JB, Ganz P, Nabel EG, et al. Atherosclerosis influences the vasomotor response of epicardial coronary arteries to exercise. J Clin Invest. 1989;83(6):1946–52.

    Article  PubMed  CAS  Google Scholar 

  118. Zeiher AM, Drexler H, Wollschlager H, Just H. Endothelial dysfunction of the coronary microvasculature is associated with coronary blood flow regulation in patients with early atherosclerosis. Circulation. 1991;84(5):1984–92.

    Article  PubMed  CAS  Google Scholar 

  119. Zeiher AM, Drexler H, Wollschlager H, Just H. Modulation of coronary vasomotor tone in humans. Progressive endothelial dysfunction with different early stages of coronary atherosclerosis. Circulation. 1991;83(2):391–401.

    Article  PubMed  CAS  Google Scholar 

  120. Anderson TJ, Gerhard MD, Meredith IT, et al. Systemic nature of endothelial dysfunction in atherosclerosis. Am J Cardiol. 1995;75(6):71B–4.

    Article  PubMed  CAS  Google Scholar 

  121. Anderson TJ, Uehata A, Gerhard MD, et al. Close relation of endothelial function in the human coronary and peripheral circulations. J Am Coll Cardiol. 1995;26(5):1235–41.

    Article  PubMed  CAS  Google Scholar 

  122. Uren NG, Crake T, Lefroy DC, de Silva R, Davies GJ, Maseri A. Delayed recovery of coronary resistive vessel function after coronary angioplasty. J Am Coll Cardiol. 1993;21(3):612–21.

    Article  PubMed  CAS  Google Scholar 

  123. Hokanson DE, Sumner DS, Strandness Jr DE. An electrically calibrated plethysmograph for direct measurement of limb blood flow. IEEE Trans Biomed Eng. 1975;22(1):25–9.

    Article  PubMed  CAS  Google Scholar 

  124. Creager MA, Cooke JP, Mendelsohn ME, et al. Impaired vasodilation of forearm resistance vessels in hypercholesterolemic humans. J Clin Invest. 1990;86(1):228–34.

    Article  PubMed  CAS  Google Scholar 

  125. Oliver JJ, Webb DJ. Noninvasive assessment of arterial stiffness and risk of atherosclerotic events. Arterioscler Thromb Vasc Biol. 2003;23(4):554–66.

    Article  PubMed  CAS  Google Scholar 

  126. Birschmann I, Walter U. Physiology and pathophysiology of vascular signaling controlled by guanosine 3’,5’-cyclic monophosphate-dependent protein kinase. Acta Biochim Pol. 2004;51(2):397–404.

    PubMed  CAS  Google Scholar 

  127. Chambers JW, Voss GS, Snider JR, Meyer SM, Cartland JL, Wilson RF. Direct in vivo effects of nitric oxide on the coronary circulation. Am J Physiol. 1996;271(4 Pt 2):H1584–93.

    PubMed  CAS  Google Scholar 

  128. Doucette JW, Corl PD, Payne HM, et al. Validation of a Doppler guide wire for intravascular measurement of coronary artery flow velocity. Circulation. 1992;85(5):1899–911.

    Article  PubMed  CAS  Google Scholar 

  129. Schachinger V, Britten MB, Zeiher AM. Prognostic impact of coronary vasodilator dysfunction on adverse long-term outcome of coronary heart disease. Circulation. 2000;101(16):1899–906.

    Article  PubMed  CAS  Google Scholar 

  130. Halcox JP, Schenke WH, Zalos G, et al. Prognostic value of coronary vascular endothelial dysfunction. Circulation. 2002;106(6):653–8.

    Article  PubMed  Google Scholar 

  131. Panza JA, Quyyumi AA, Brush Jr JE, Epstein SE. Abnormal endothelium-dependent vascular relaxation in patients with essential hypertension. N Engl J Med. 1990;323(1):22–7.

    Article  PubMed  CAS  Google Scholar 

  132. Schwartz BG, Economides C, Mayeda GS, Burstein S, Kloner RA. The endothelial cell in health and disease: its function, dysfunction, measurement and therapy. Int J Impot Res. 2010;22(2):77–90.

    Article  PubMed  CAS  Google Scholar 

  133. Perticone F, Ceravolo R, Pujia A, et al. Prognostic significance of endothelial dysfunction in hypertensive patients. Circulation. 2001;104(2):191–6.

    Article  PubMed  CAS  Google Scholar 

  134. Heitzer T, Baldus S, von Kodolitsch Y, Rudolph V, Meinertz T. Systemic endothelial dysfunction as an early predictor of adverse outcome in heart failure. Arterioscler Thromb Vasc Biol. 2005;25(6):1174–9.

    Article  PubMed  CAS  Google Scholar 

  135. Heitzer T, Schlinzig T, Krohn K, Meinertz T, Munzel T. Endothelial dysfunction, oxidative stress, and risk of cardiovascular events in patients with coronary artery disease. Circulation. 2001;104(22):2673–8.

    Article  PubMed  CAS  Google Scholar 

  136. Fichtlscherer S, Breuer S, Zeiher AM. Prognostic value of systemic endothelial dysfunction in patients with acute coronary syndromes: further evidence for the existence of the “vulnerable” patient. Circulation. 2004;110(14):1926–32.

    Article  PubMed  Google Scholar 

  137. Corretti MC, Anderson TJ, Benjamin EJ, et al. Guidelines for the ultrasound assessment of endothelial-dependent flow-mediated vasodilation of the brachial artery: a report of the International Brachial Artery Reactivity Task Force. J Am Coll Cardiol. 2002;39(2):257–65.

    Article  PubMed  Google Scholar 

  138. Guthikonda S, Sinkey CA, Haynes WG. What is the most appropriate methodology for detection of conduit artery endothelial dysfunction? Arterioscler Thromb Vasc Biology. 2007;27(5):1172–6.

    Article  CAS  Google Scholar 

  139. Vlachopoulos C, Aznaouridis K, Alexopoulos N, Economou E, Andreadou I, Stefanadis C. Effect of dark chocolate on arterial function in healthy individuals. Am J Hypertens. 2005;18(6):785–91.

    Article  PubMed  CAS  Google Scholar 

  140. Modena MG, Bonetti L, Coppi F, Bursi F, Rossi R. Prognostic role of reversible endothelial dysfunction in hypertensive postmenopausal women. J Am Coll Cardiol. 2002;40(3):505–10.

    Article  PubMed  Google Scholar 

  141. Neunteufl T, Heher S, Katzenschlager R, et al. Late prognostic value of flow-mediated dilation in the brachial artery of patients with chest pain. Am J Cardiol. 2000;86(2):207–10.

    Article  PubMed  CAS  Google Scholar 

  142. Schroeder S, Enderle MD, Ossen R, et al. Noninvasive determination of endothelium-mediated vasodilation as a screening test for coronary artery disease: pilot study to assess the predictive value in comparison with angina pectoris, exercise electrocardiography, and myocardial perfusion imaging. Am Heart J. 1999;138(4 Pt 1):731–9.

    Article  PubMed  CAS  Google Scholar 

  143. Gokce N, Keaney Jr JF, Hunter LM, Watkins MT, Menzoian JO, Vita JA. Risk stratification for postoperative cardiovascular events via noninvasive assessment of endothelial function: a prospective study. Circulation. 2002;105(13):1567–72.

    Article  PubMed  Google Scholar 

  144. Gokce N, Keaney Jr JF, Hunter LM, et al. Predictive value of noninvasively determined endothelial dysfunction for long-term cardiovascular events in patients with peripheral vascular disease. J Am Coll Cardiol. 2003;41(10):1769–75.

    Article  PubMed  Google Scholar 

  145. Brevetti G, Silvestro A, Schiano V, Chiariello M. Endothelial dysfunction and cardiovascular risk prediction in peripheral arterial disease: additive value of flow-mediated dilation [dilatation?] to ankle-brachial pressure index. Circulation. 2003;108(17):2093–8.

    Article  PubMed  Google Scholar 

  146. Franklin SS, Khan SA, Wong ND, Larson MG, Levy D. Is pulse pressure useful in predicting risk for coronary heart disease? The Framingham heart study. Circulation. 1999;100(4):354–60.

    Article  PubMed  CAS  Google Scholar 

  147. Bank AJ, Wang H, Holte JE, Mullen K, Shammas R, Kubo SH. Contribution of collagen, elastin, and smooth muscle to in vivo human brachial artery wall stress and elastic modulus. Circulation. 1996;94(12):3263–70.

    Article  PubMed  CAS  Google Scholar 

  148. Kinlay S, Creager MA, Fukumoto M, et al. Endothelium-derived nitric oxide regulates arterial elasticity in human arteries in vivo. Hypertension. 2001;38(5):1049–53.

    Article  PubMed  CAS  Google Scholar 

  149. Asmar R, Benetos A, Topouchian J, et al. Assessment of arterial distensibility by automatic pulse wave velocity measurement. Validation and clinical application studies. Hypertension. 1995;26(3):485–90.

    Article  PubMed  CAS  Google Scholar 

  150. Sutton-Tyrrell K, Mackey RH, Holubkov R, Vaitkevicius PV, Spurgeon HA, Lakatta EG. Measurement variation of aortic pulse wave velocity in the elderly. Am J Hypertens. 2001;14(5 Pt 1):463–8.

    Article  PubMed  CAS  Google Scholar 

  151. Wilkinson IB, Fuchs SA, Jansen IM, et al. Reproducibility of pulse wave velocity and augmentation index measured by pulse wave analysis. J Hypertens. 1998;16(12 Pt 2):2079–84.

    Article  PubMed  CAS  Google Scholar 

  152. Mohiaddin RH, Firmin DN, Longmore DB. Age-related changes of human aortic flow wave velocity measured noninvasively by magnetic resonance imaging. J Appl Physiol. 1993;74(1):492–7.

    PubMed  CAS  Google Scholar 

  153. Boutouyrie P, Tropeano AI, Asmar R, et al. Aortic stiffness is an independent predictor of primary coronary events in hypertensive patients: a longitudinal study. Hypertension. 2002;39(1):10–5.

    Article  PubMed  CAS  Google Scholar 

  154. van Popele NM, Grobbee DE, Bots ML, et al. Association between arterial stiffness and atherosclerosis: the Rotterdam Study. Stroke. 2001;32(2):454–60.

    Article  PubMed  Google Scholar 

  155. Stefanadis C, Stratos C, Vlachopoulos C, et al. Pressure-diameter relation of the human aorta. A new method of determination by the application of a special ultrasonic dimension catheter. Circulation. 1995;92(8):2210–9.

    Article  PubMed  CAS  Google Scholar 

  156. Blacher J, Pannier B, Guerin AP, Marchais SJ, Safar ME, London GM. Carotid arterial stiffness as a predictor of cardiovascular and all-cause mortality in end-stage renal disease. Hypertension. 1998;32(3):570–4.

    Article  PubMed  CAS  Google Scholar 

  157. Blacher J, Guerin AP, Pannier B, Marchais SJ, London GM. Arterial calcifications, arterial stiffness, and cardiovascular risk in end-stage renal disease. Hypertension. 2001;38(4):938–42.

    Article  PubMed  CAS  Google Scholar 

  158. Karamanoglu M, O’Rourke MF, Avolio AP, Kelly RP. An analysis of the relationship between central aortic and peripheral upper limb ­pressure waves in man. Eur Heart J. 1993;14(2):160–7.

    Article  PubMed  CAS  Google Scholar 

  159. Kelly RP, Millasseau SC, Ritter JM, Chowienczyk PJ. Vasoactive drugs influence aortic augmentation index independently of pulse-wave velocity in healthy men. Hypertension. 2001;37(6):1429–33.

    Article  PubMed  CAS  Google Scholar 

  160. Watt Jr TB, Burrus CS. Arterial pressure contour analysis for estimating human vascular properties. J Appl Physiol. 1976;40(2):171–6.

    PubMed  Google Scholar 

  161. Cohn JN, Finkelstein S, McVeigh G, et al. Noninvasive pulse wave analysis for the early detection of vascular disease. Hypertension. 1995;26(3):503–8.

    Article  PubMed  CAS  Google Scholar 

  162. Millasseau SC, Guigui FG, Kelly RP, et al. Noninvasive assessment of the digital volume pulse. Comparison with the peripheral pressure pulse. Hypertension. 2000;36(6):952–6.

    Article  PubMed  CAS  Google Scholar 

  163. Chowienczyk PJ, Kelly RP, MacCallum H, et al. Photoplethysmographic assessment of pulse wave reflection: blunted response to endothelium-dependent beta2-adrenergic vasodilation in type II diabetes mellitus. Am Coll Cardiol. 1999;34(7):2007–14.

    Article  CAS  Google Scholar 

  164. Hamburg NM, Keyes MJ, Larson MG, et al. Cross-sectional relations of digital vascular function to cardiovascular risk factors in the Framingham Heart Study. Circulation. 2008;117(19):2467–74.

    Article  PubMed  Google Scholar 

  165. Gul KM, Ahmadi N, Wang Z, et al. Digital thermal monitoring of vascular function: a novel tool to improve cardiovascular risk assessment. Vasc Med. 2009;14(2):143–8.

    Article  PubMed  Google Scholar 

  166. Ahmadi N, Nabavi V, Nuguri V, et al. Low fingertip temperature rebound measured by digital thermal monitoring strongly correlates with the presence and extent of coronary artery disease diagnosed by 64-slice multi-detector computed tomography. Int J Cardiovasc Imaging. 2009;25(7):725–38.

    Article  PubMed  Google Scholar 

  167. Ahmadi N, Hajsadeghi F, Gul K, et al. Relations between digital thermal monitoring of vascular function, the Framingham risk score, and coronary artery calcium score. J Cardiovasc Comput Tomogr. 2008;2(6):382–8.

    Article  PubMed  Google Scholar 

  168. Constans J, Conri C. Circulating markers of endothelial function in cardiovascular disease. Clin Chim Acta. 2006;368(1–2):33–47.

    Article  PubMed  CAS  Google Scholar 

  169. Brunner H, Cockcroft JR, Deanfield J, et al. Endothelial function and dysfunction. Part II: association with cardiovascular risk factors and diseases. A statement by the Working Group on Endothelins and Endothelial Factors of the European Society of Hypertension. J Hypertens. 2005;23(2):233–46.

    Article  PubMed  CAS  Google Scholar 

  170. Deanfield J, Donald A, Ferri C, et al. Endothelial function and dysfunction. Part I: methodological issues for assessment in the different vascular beds: a statement by the Working Group on Endothelin and Endothelial Factors of the European Society of Hypertension. J Hypertens. 2005;23(1):7–17.

    Article  PubMed  CAS  Google Scholar 

  171. Buckley DI, Fu R, Freeman M, Rogers K, Helfand M. C-reactive protein as a risk factor for coronary heart disease: a systematic review and meta-analyses for the U.S. Preventive Services Task Force. Ann Intern Med. 2009;151(7):483–95.

    PubMed  Google Scholar 

  172. Rivera JJ, Nasir K, Cox PR, et al. Association of traditional cardiovascular risk factors with coronary plaque sub-types assessed by 64-slice computed tomography angiography in a large cohort of asymptomatic subjects. Atherosclerosis. 2009;206(2):451–7.

    Article  PubMed  CAS  Google Scholar 

  173. Lorenz MW, Markus HS, Bots ML, Rosvall M, Sitzer M. Prediction of clinical cardiovascular events with carotid intima-media thickness: a systematic review and meta-analysis. Circulation. 2007;115(4):459–67.

    Article  PubMed  Google Scholar 

  174. Johnsen SH, Mathiesen EB. Carotid plaque compared with intima-media thickness as a predictor of coronary and cerebrovascular disease. Curr Cardiol Rep. 2009;11(1):21–7.

    Article  PubMed  Google Scholar 

  175. Chang SM, Nabi F, Xu J, et al. The coronary artery calcium score and stress myocardial perfusion imaging provide independent and complementary prediction of cardiac risk. J Am Coll Cardiol. 2009;54(20):1872–82.

    Article  PubMed  Google Scholar 

  176. Simon A, Chironi G, Levenson J. Comparative performance of subclinical atherosclerosis tests in predicting coronary heart disease in asymptomatic individuals. Eur Heart J. 2007;28(24):2967–71.

    Article  PubMed  Google Scholar 

  177. Novo S, Carita P, Corrado E, et al. Preclinical carotid atherosclerosis enhances the global cardiovascular risk and increases the rate of cerebro- and cardiovascular events in a five-year follow-up. Atherosclerosis. 2010;211:287–90.

    Article  PubMed  CAS  Google Scholar 

  178. Corrado E, Rizzo M, Coppola G, Muratori I, Carella M, Novo S. Endothelial dysfunction and carotid lesions are strong predictors of clinical events in patients with early stages of atherosclerosis: a 24-month follow-up study. Coron Artery Dis. 2008;19(3):139–44.

    Article  PubMed  Google Scholar 

  179. Benjamin N, Calver A, Collier J, Robinson B, Vallance P, Webb D. Measuring forearm blood flow and interpreting the responses to drugs and mediators. Hypertension. 1995;25(5):918–23.

    Article  PubMed  CAS  Google Scholar 

  180. Bots ML, Westerink J, Rabelink TJ, de Koning EJ. Assessment of flow-mediated vasodilatation (FMD) of the brachial artery: effects of technical aspects of the FMD measurement on the FMD response. Eur Heart J. 2005;26(4):363–8.

    Article  PubMed  Google Scholar 

  181. Ockene JK, Kuller LH, Svendsen KH, Meilahn E. The relationship of smoking cessation to coronary heart disease and lung cancer in the Multiple Risk Factor Intervention Trial (MRFIT). Am J Public Health. 1990;80(8):954–8.

    Article  PubMed  CAS  Google Scholar 

  182. Hambrecht R, Wolf A, Gielen S, et al. Effect of exercise on coronary endothelial function in patients with coronary artery disease. N Engl J Med. 2000;342(7):454–60.

    Article  PubMed  CAS  Google Scholar 

  183. Plotnick GD, Corretti MC, Vogel RA. Effect of antioxidant vitamins on the transient impairment of endothelium-dependent brachial artery vasoactivity following a single high-fat meal. JAMA. 1997;278(20):1682–6.

    Article  PubMed  CAS  Google Scholar 

  184. Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA. 2001;285(19):2486–97.

    Google Scholar 

  185. Mancini GB, Henry GC, Macaya C, et al. Angiotensin-converting enzyme inhibition with quinapril improves endothelial vasomotor dysfunction in patients with coronary artery disease. The TREND (Trial on Reversing ENdothelial Dysfunction) Study. Circulation. 1996;94(3):258–65.

    Article  PubMed  CAS  Google Scholar 

  186. Ghiadoni L, Virdis A, Magagna A, Taddei S, Salvetti A. Effect of the angiotensin II type 1 receptor blocker candesartan on endothelial function in patients with essential hypertension. Hypertension. 2000;35(1 Pt 2):501–6.

    Article  PubMed  CAS  Google Scholar 

  187. Law MR, Morris JK, Wald NJ. Use of blood pressure lowering drugs in the prevention of cardiovascular disease: meta-analysis of 147 randomised trials in the context of expectations from prospective epidemiological studies. Br Med J (Clin Res Ed). 2009;338:b1665.

    Article  CAS  Google Scholar 

  188. Turnbull F. Effects of different blood-pressure-lowering regimens on major cardiovascular events: results of prospectively-designed overviews of randomised trials. Lancet. 2003;362(9395):1527–35.

    Article  PubMed  CAS  Google Scholar 

  189. Treasure CB, Klein JL, Weintraub WS, et al. Beneficial effects of cholesterol-lowering therapy on the coronary endothelium in patients with coronary artery disease. N Engl J Med. 1995;332(8):481–7.

    Article  PubMed  CAS  Google Scholar 

  190. Mercuro G, Zoncu S, Saiu F, Sarais C, Rosano GM. Effect of atorvastatin on endothelium-dependent vasodilation in postmenopausal women with average serum cholesterol levels. Am J Cardiol. 2002;90(7):747–50.

    Article  PubMed  CAS  Google Scholar 

  191. Baigent C, Keech A, Kearney PM, et al. Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet. 2005;366(9493):1267–78.

    Article  PubMed  CAS  Google Scholar 

  192. Husain S, Andrews NP, Mulcahy D, Panza JA, Quyyumi AA. Aspirin improves endothelial dysfunction in atherosclerosis. Circulation. 1998;97(8):716–20.

    Article  PubMed  CAS  Google Scholar 

  193. Baigent C, Blackwell L, Collins R, et al. Aspirin in the primary and secondary prevention of vascular disease: collaborative meta-analysis of individual participant data from randomised trials. Lancet. 2009;373(9678):1849–60.

    Article  PubMed  CAS  Google Scholar 

  194. Lieberman EH, Gerhard MD, Uehata A, et al. Estrogen improves endothelium-dependent, flow-mediated vasodilation in postmenopausal women. Ann Intern Med. 1994;121(12):936–41.

    PubMed  CAS  Google Scholar 

  195. Levine GN, Frei B, Koulouris SN, Gerhard MD, Keaney Jr JF, Vita JA. Ascorbic acid reverses endothelial vasomotor dysfunction in patients with coronary artery disease. Circulation. 1996;93(6):1107–13.

    Article  PubMed  CAS  Google Scholar 

  196. Nelson HD, Humphrey LL, Nygren P, Teutsch SM, Allan JD. Postmenopausal hormone replacement therapy: scientific review. JAMA. 2002;288(7):872–81.

    Article  PubMed  CAS  Google Scholar 

  197. Yusuf S, Dagenais G, Pogue J, Bosch J, Sleight P. Vitamin E supplementation and cardiovascular events in high-risk patients. The Heart Outcomes Prevention Evaluation Study Investigators. N Engl J Med. 2000;342(3):154–60.

    Article  PubMed  CAS  Google Scholar 

  198. Bai Y, Sun L, Yang T, Sun K, Chen J, Hui R. Increase in fasting vascular endothelial function after short-term oral L-arginine is effective when baseline flow-mediated dilation is low: a meta-analysis of randomized controlled trials. Am J Clin Nutr. 2009;89(1):77–84.

    Article  PubMed  CAS  Google Scholar 

  199. Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997;275(5302):964–7.

    Article  PubMed  CAS  Google Scholar 

  200. Asahara T, Masuda H, Takahashi T, et al. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res. 1999;85(3):221–8.

    Article  PubMed  CAS  Google Scholar 

  201. Schwartz SM, Benditt EP. Clustering of replicating cells in aortic endothelium. Proc Natl Acad Sci USA. 1976;73(2):651–3.

    Article  PubMed  CAS  Google Scholar 

  202. Crosby JR, Kaminski WE, Schatteman G, et al. Endothelial cells of hematopoietic origin make a significant contribution to adult blood vessel formation. Circ Res. 2000;87(9):728–30.

    Article  PubMed  CAS  Google Scholar 

  203. Jarajapu YP, Grant MB. The promise of cell-based therapies for diabetic complications: challenges and solutions. Circ Res. 2010;106(5):854–69.

    Article  PubMed  CAS  Google Scholar 

  204. Yoder MC. Defining human endothelial progenitor cells. J Thromb Haemost. 2009;7 Suppl 1:49–52.

    Article  PubMed  CAS  Google Scholar 

  205. Ferdous A, Caprioli A, Iacovino M, et al. Nkx2-5 transactivates the Ets-related protein 71 gene and specifies an endothelial/endocardial fate in the developing embryo. Proc Natl Acad Sci USA. 2009;106(3):814–9.

    Article  PubMed  CAS  Google Scholar 

  206. Hill JM, Zalos G, Halcox JP, et al. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med. 2003;348(7):593–600.

    Article  PubMed  Google Scholar 

  207. Vasa M, Fichtlscherer S, Aicher A, et al. Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ Res. 2001;89(1):E1–7.

    Article  PubMed  CAS  Google Scholar 

  208. Kondo T, Hayashi M, Takeshita K, et al. Smoking cessation rapidly increases circulating progenitor cells in peripheral blood in chronic smokers. Arterioscler Thromb Vasc Biol. 2004;24(8):1442–7.

    Article  PubMed  CAS  Google Scholar 

  209. Chen JZ, Zhang FR, Tao QM, Wang XX, Zhu JH. Number and activity of endothelial progenitor cells from peripheral blood in patients with hypercholesterolaemia. Clin Sci (Lond). 2004;107(3):273–80.

    Article  CAS  Google Scholar 

  210. Krankel N, Adams V, Linke A, et al. Hyperglycemia reduces survival and impairs function of circulating blood-derived progenitor cells. Arterioscler Thrombosis Vasc Biol. 2005;25(4):698–703.

    Article  CAS  Google Scholar 

  211. Werner N, Kosiol S, Schiegl T, et al. Circulating endothelial progenitor cells and cardiovascular outcomes. N Engl J Med. 2005;353(10):999–1007.

    Article  PubMed  CAS  Google Scholar 

  212. Ward MR, Stewart DJ, Kutryk MJ. Endothelial progenitor cell therapy for the treatment of coronary disease, acute MI, and pulmonary arterial hypertension: current perspectives. Catheter Cardiovasc Interv. 2007;70(7):983–98.

    Article  PubMed  Google Scholar 

  213. Sekiguchi H, Ii M, Losordo DW. The relative potency and safety of endothelial progenitor cells and unselected mononuclear cells for recovery from myocardial infarction and ischemia. J Cell Physiol. 2009;219(2):235–42.

    Article  PubMed  CAS  Google Scholar 

  214. Krenning G, van Luyn MJ, Harmsen MC. Endothelial progenitor cell-based neovascularization: implications for therapy. Trends Mol Med. 2009;15(4):180–9.

    Article  PubMed  CAS  Google Scholar 

  215. He T, Peterson TE, Katusic ZS. Paracrine mitogenic effect of human endothelial progenitor cells: role of interleukin-8. Am J Physiol Heart Circ Physiol. 2005;289(2):H968–72.

    Article  PubMed  CAS  Google Scholar 

  216. He T, Lu T, d’Uscio LV, Lam CF, Lee HC, Katusic ZS. Angiogenic function of prostacyclin biosynthesis in human endothelial progenitor cells. Circ Res. 2008;103(1):80–8.

    Article  PubMed  CAS  Google Scholar 

  217. Santhanam AV, Smith LA, He T, Nath KA, Katusic ZS. Endothelial progenitor cells stimulate cerebrovascular production of prostacyclin by paracrine activation of cyclooxygenase-2. Circ Res. 2007;100(9):1379–88.

    Article  PubMed  CAS  Google Scholar 

  218. Steinmetz M, Nickenig G, Werner N. Endothelial-regenerating cells: an expanding universe. Hypertension. 2010;55(3):593–9.

    Article  PubMed  CAS  Google Scholar 

  219. Ross JJ, Hong Z, Willenbring B, et al. Cytokine-induced differentiation of multipotent adult progenitor cells into functional smooth muscle cells. J Clin Invest. 2006;116(12):3139–49.

    Article  PubMed  CAS  Google Scholar 

  220. Celermajer DS, Adams MR, Clarkson P, et al. Passive smoking and impaired endothelium-dependent arterial dilatation in healthy young adults. N Engl J Med. 1996;334(3):150–4.

    Article  PubMed  CAS  Google Scholar 

  221. Steinmetz M, Nickenig G, Werner N. Endothelial-regenerating cells: an expanding universe. Hypertension. 2010;55:593–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Sean McMurtry BASc, MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

McMurtry, M.S., Michelakis, E.D. (2012). Endothelium Biology. In: Vlodaver, Z., Wilson, R., Garry, D. (eds) Coronary Heart Disease. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1475-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-1475-9_11

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-1474-2

  • Online ISBN: 978-1-4614-1475-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics