Skip to main content

Nonlinear Real-Time Pose Estimation of Quadrotor UAV

  • Chapter
  • First Online:
Nonlinear Approaches in Engineering Applications

Abstract

Object pose (rotation and translation) estimation problem arises in several domains of application. This chapter presents simplified nonlinear equations of motion for a quadrotor derived based on Newtonian mechanics before discussing and comparing the performance of two real-time image-based quadrotor pose estimation methods: one based on a commercial motion capture and tracking system utilizing six infrared (IR) cameras mounted around the test area aliased OptiTrack; the other based on classicPOSIT, an iterative pose estimation algorithm using a single image of a target object taken by an onboard camera. The geometry of the target and intrinsic parameters of the camera are known a priori; the image coordinates of five noncoplanar feature points on the target are extracted through a real-time image processing algorithm for pose estimation. Test results prove that onboard camera pose estimation is an attractive solution for autonomous real-time control of a quadrotor unmanned aerial vehicle (UAV).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Qball-X4 by Quanser Inc.

  2. 2.

    Motion capture and tracking system by NaturalPoint Inc.

  3. 3.

    http://www.cfar.umd.edu/~daniel/Site_2/Code.html

References

  • Allen J, Walsh B (2008) Enahnced oil spill surveillance, detection and monitoring through the applied technology of unmanned air systems. In: International oil spill conference, Washington, D.C., 2008. pp 113–120

    Google Scholar 

  • Altug E, Ostrowski JP, Mahony R (2002) Control of a quadrotor helicopter using visual feedback. In: Proceedings. ICRA ‘02. IEEE international conference on robotics and automation, 2002 vol 71 pp 72–77

    Google Scholar 

  • Altug E, Ostrowski JP, Taylor CJ (2003) Quadrotor control using dual camera visual feedback. In: Robotics and automation, Proceedings. ICRA ‘03. IEEE international conference on robotics and automation, 14–19 Sept. 2003 2003. vol 4293 pp 4294–4299

    Google Scholar 

  • Amidi O (1996) An autonomous vision-guided helicopter. Carnegie Mellon University, Pittsburgh, PA

    Google Scholar 

  • Bouguet JY (2004) Camera calibration toolbox for matlab. http://www.vision.caltech.edu/bouguetj/calib_doc/

  • Bourquardez O, Mahony R, Guenard N, Chaumette F, Hamel T, Eck L (2007) Kinematic visual servo control of a quadrotor aerial vehicle. IRISA, Rennes, France. http://hal.inria.fr/inria-00164387/

  • Castillo P, Dzul A, Lozano R (2004) Real-time stabilization and tracking of a four-rotor mini rotorcraft. Contr Syst Technol IEEE Trans 12(4):510–516

    Article  Google Scholar 

  • Chesi G, Hashimoto K (2004) A simple technique for improving camera displacement estimation in eye-in-hand visual servoing. Patt Anal Mach Intell, IEEE Trans 26(9):1239–1242

    Article  Google Scholar 

  • David P, DeMenthon DF, Duraiswami R, Samet H (2004) SoftPOSIT: Simultaneous pose and correspondence determination. Int J Comput Vis 59(3):259–284

    Article  Google Scholar 

  • DeMenthon DF, Davis LS (1995) Model-based object pose in 25 lines of code. Int J Comput Vis 15(1):123–141

    Article  Google Scholar 

  • Dhome M, Richetin M, Lapreste JT, Rives G (1989) Determination of the attitude of 3D objects from a single perspective view. Patt Anal Mach Intell, IEEE Trans 11(12):1265–1278

    Article  Google Scholar 

  • Gao XS, Hou XR, Tang J, Cheng HF (2003) Complete solution classification for the perspective-three-point problem. Patt Anal Mach Intell, IEEE Trans 25(8):930–943

    Article  Google Scholar 

  • Gramegna T, Venturino L, Cicirelli G, Attolico G, Distante A (2004) Optimization of the POSIT algorithm for indoor autonomous navigation. Robot Autonom Syst 48(2–3):145–162

    Article  Google Scholar 

  • Grewal MS, Weill LR, Andrews AP (2007) Global Positioning Systems, Inertial Navigation, and Integration (2nd Edition). John Wiley & Sons: 326

    Google Scholar 

  • Guenard N, Hamel T, Mahony R (2008) A practical visual servo control for an unmanned aerial vehicle. Robot, IEEE Trans 24(2):331–340

    Article  Google Scholar 

  • Hamel T, Mahony R (2007) Image based visual servo control for a class of aerial robotic systems. Automatica 43(11):1975–1983. doi:DOI: 10.1016/j.automatica.2007.03.030

    Article  MathSciNet  Google Scholar 

  • Hamel T, Mahony R, Lozano R, Ostrowski JP (2002) Dynamic modelling and configuration stabilization for an X4-flyer. In: World Congress, Volume# 15 | Part# 1, Barcelona, Spain.

    Google Scholar 

  • Horaud R, Dornaika F, Lamiroy B (1997) Object pose: the link between weak perspective, paraperspective, and full perspective. Int J Comput Vis 22(2):173–189. doi:10.1023/a:1007940112931

    Article  Google Scholar 

  • Ley W, Wittmann K, Hallmann W (2009) Handbook of Space Technology. John Wiley & Sons: 347–350

    Google Scholar 

  • Lu CP, Hager GD, Mjolsness E (2000) Fast and globally convergent pose estimation from video images. Patt Anal Mach Intell, IEEE Trans 22(6):610–622

    Article  Google Scholar 

  • Mkrtchyan AA, Schultz RR, Semke WH (2009) Vision-based autopilot implementation using a quadrotor helicopter. Paper presented at the AIAA Infotech@Aerospace Conference and AIAA Unmanned…Unlimited Conference, Seattle, Washington, 6–9 Apr.

    Google Scholar 

  • Moreno-Noguer F, Lepetit V, Fua P (2007) Accurate Non-Iterative O(n) Solution to the PnP Problem. In: Computer Vision, 2007. ICCV 2007. IEEE 11th International Conference on, 14–21 Oct. 2007 pp 1–8

    Google Scholar 

  • Murphy DW, Cycon J (1999) Applications for mini VTOL UAV for law enforcement. vol 3577(1). SPIE

    Google Scholar 

  • NaturalPoint Inc. (2011) OptiTrack: optical motion capture and tracking. http://www.naturalpoint.com/optitrack/. Accessed May 22

  • NaturalPoint Inc. (2011) Tracking Tools: Real-time optical 3D tracking. http://www.naturalpoint.com/optitrack/products/tracking-tools/. Accessed May 22

  • Oberkampf D, DeMenthon DF, Davis LS (2002) Iterative pose estimation using coplanar points. In: IEEE pp 626–627

    Google Scholar 

  • Quanser Inc. Quanser Qball-X4 user manual. Document no. 829. Rev. 12

    Google Scholar 

  • Quanser Inc. (2011) Quanser – advanced research: Qball-X4. http://www.quanser.com/english/html/UVS_Lab/fs_Qball_X4.htm. Accessed May 22

  • The MathWorks Inc. (2011) Simulink – simulation and model-based design. http://www.mathworks.com/products/simulink/. Accessed May 22

  • Tournier GP (2006) Six degree of freedom estimation using monocular vision and moiré patterns. Department of Aeronautics and Astronautics, Massachusetts Institute of Technology. Accessed May 26

    Google Scholar 

  • Triggs B (1999) Camera pose and calibration from 4 or 5 known 3D points. In: The proceedings of the seventh IEEE international conference on computer vision, 1999 vol 271 pp 278–284

    Google Scholar 

  • Wei L, Lee EJ (2010) Multi-pose face recognition using head pose estimation and PCA approach. JDCTA: Int J Digit Content Technol Applicat 4(1):112–122

    Article  Google Scholar 

  • Zhang Y, Wu L (2011) Face Pose Estimation by Chaotic Artificial Bee Colony. JDCTA: Int J Digit Content Technol Applicat 5(2):55–63

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chayatat Ratanasawanya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ratanasawanya, C., Mehrandezh, M., Paranjape, R. (2012). Nonlinear Real-Time Pose Estimation of Quadrotor UAV. In: Dai, L., Jazar, R. (eds) Nonlinear Approaches in Engineering Applications. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1469-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-1469-8_13

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-1468-1

  • Online ISBN: 978-1-4614-1469-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics