Skip to main content

Part of the book series: Analog Circuits and Signal Processing ((ACSP))

  • 729 Accesses

Abstract

This chapter puts the reader in perspective regarding the overall vision behind this work. This book is quite unconventional in its scope since it spans a wide area of expertise. Even though the focal point consists of the hardware implementation, the study of the surrounding areas, especially the application, proves to be groundbreaking in terms of not only improving the current hardware implementation, but also of opening new horizons for new hardware ideas. As a result, it points to the fact that a lot of advantages can be incurred from the tight integration between the neighboring disciplines that are required for the development of a solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Staple G, Werbach K (2004) The end of spectrum scarcity [spectrum allocation and utilization]. IEEE Spect 41(3):48–52

    Article  Google Scholar 

  2. Marcus MJ (2009) Wireless innovation and spectrum policy: FCC opens a new inquiry [spectrum policy and regulatory issues]. IEEE Wireless Commun 16(6):4

    Article  Google Scholar 

  3. Marcus MJ (2010) Spectrum issues in FCC’S national broadband plan [spectrum policy and regulatory issues]. IEEE Wireless Commun 17(2):6

    Article  Google Scholar 

  4. Freyens BP, Loney M (2011) Digital switchover and regulatory design for competing white space usage rights. In: 2011 IEEE symposium on new frontiers in dynamic spectrum access networks (DySPAN), Aachen, 3–6 May 2011, pp 32–40

    Google Scholar 

  5. Mitola J (1992) III Software radios-survey, critical evaluation and future directions. In: Proceedings of IEEE national telesystems conference, NTC-92, IEEE Press, New York, pp 13/15–13/23

    Google Scholar 

  6. Mitola J III (1993) Software radios: survey, critical evaluation and future directions. IEEE Aerospace Electr Syst Mag 8(4):25–36

    Article  Google Scholar 

  7. Margulies AS, Mitola J, III (1998) Software defined radios: a technical challenge and a migration strategy. In: 1998 IEEE 5th international symposium on spread spectrum techniques and applications: proceedings, Sun City, vol 552, pp 551–556

    Google Scholar 

  8. Mitola J III (1999) Software radio architecture: a mathematical perspective. IEEE J Selected Areas Commun 17(4):514–538

    Article  Google Scholar 

  9. Mitola J III, Maguire GQ Jr (1999) Cognitive radio: making software radios more personal. IEEE Pers Commun 6(4):13–18 [see also IEEE Wireless Communications]

    Article  Google Scholar 

  10. Huang XH, Du KL, Lai AKY, Cheng KKM (2001) A unified software radio architecture. In: 2001 IEEE third workshop on signal processing advances in wireless communications (SPAWC ‘01), Taiwan, pp 330–333

    Google Scholar 

  11. Wolf W (2005) Building the software radio. Computer 38(3):87–89

    Article  Google Scholar 

  12. Leaves P, Ghaheri-Niri S, Tafazolli R, Christodoulides L, Sammut T, Staht W, Huschke J (2001) Dynamic spectrum allocation in a multi-radio environment: concept and algorithm. In: Second international conference on 3G mobile communication technologies (Conf. Publ. No. 477), London, pp 53–57

    Google Scholar 

  13. Leaves P, Ghaheri-Niri S, Tafazolli R, Huschke J (2002) Dynamic spectrum allocation in hybrid networks with imperfect load prediction. In: Third international conference on 3G mobile communication technologies (Conf. Publ. No. 489), London, pp 444–448

    Google Scholar 

  14. GPP (2008) User equipment UE radio transmission and reception (FDD). TS 25101, v820

    Google Scholar 

  15. ETSI (1996) Digital cellular telecommunications system (Phase 2+); Multiplexing and multiple access on the radio path. GSM 0502, V510

    Google Scholar 

  16. ETSI (2000) Digital cellular telecommunications system (Phase 2+); radio transmission and reception. GSM 0505, V851

    Google Scholar 

  17. ETSI (2001) Digital enhanced cordless telecommunications (DECT); common interface (CI); Part 2: Physical layer (PHL). EN 300 175-2, V161

    Google Scholar 

  18. IEEE (1999) Wireless LAN medium access control (MAC) and physical layer (PHY) specifications: high-speed physical layer in the 5 GHz Band. IEEE standard 80211a

    Google Scholar 

  19. IEEE (1999) Wireless LAN medium access control (MAC) and physical layer (PHY) specifications: higher-speed physical layer extension in the 2.4 GHz Band. IEEE standard 80211b

    Google Scholar 

  20. IEEE (2003) Wireless LAN medium access control (MAC) and physical layer (PHY) specifications: Amendment 4: further higher data rate extension in the 2.4 GHz Band. IEEE standard 80211g

    Google Scholar 

  21. IEEE (2006) Air interface for fixed and mobile broadband wireless access systems: Amendment 2: Physical and medium access control layers for combined fixed and mobile operation in licensed bands and Corrigendum 1. IEEE standard 80216e

    Google Scholar 

  22. Bluetooth (2001) Specification of the Bluetooth system. version 11

    Google Scholar 

  23. ETSI (1997) Digital enhanced cordless telecommunications/global system for mobile communications (DECT/GSM); integration based on dual-mode terminals. EN 101 072, V111

    Google Scholar 

  24. ETSI (1999) Digital enhanced digital enhanced cordless telecommunications (DECT); global system for mobile communications (GSM); DECT/GSM integration based on dual-mode terminals. EN 301 242, V122

    Google Scholar 

  25. Lin JY-B, Chlamtac I (2001) Wireless and mobile network architectures. Wiley, New York

    Google Scholar 

  26. Razavi B (1998) RF microelectronics. Prentice Hall communications engineering and emerging technologies series. Prentice Hall, Upper Saddle River

    Google Scholar 

  27. Ahola R, Aktas A, Wilson J, Rao KR, Jonsson F, Hyyrylainen I, Brolin A, Hakala T, Friman A, Makiniemi T, Hanze J, Sanden M, Wallner D, Yuxin Guo, Lagerstam T, Noguer L, Knuuttila T, Olofsson P, Ismail M (2004) A single-chip CMOS transceiver for 802.11a/b/g wireless LANs. IEEE J Solid State Circuits 39(12):2250–2258

    Article  Google Scholar 

  28. Egan WF (2000) Frequency synthesis by phase lock, 2nd edn. Wiley, New York

    Google Scholar 

  29. Manassewitsch V (1987) Frequency synthesizers: theory and design, 3rd edn. Wiley, New York

    Google Scholar 

  30. Rohde UL (1997) Microwave and wireless synthesizers: theory and design. Wiley, New York

    Book  Google Scholar 

  31. Ogata K (1997) Modern control engineering, 3rd edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  32. Best RE (2003) Phase-locked loops: design, simulation, and applications. McGraw-Hill professional engineering, 5th edn. McGraw-Hill, New York

    Google Scholar 

  33. Banerjee D (2006) PLL performance, simulation, and design, 4th edn. National Semiconductor, Santa Clara

    Google Scholar 

  34. Gardner FM (1979) Phaselock techniques, 2nd edn. Wiley, New York

    Google Scholar 

  35. Riley TAD, Copeland MA, Kwasniewski TA (1993) Delta-sigma modulation in fractional-N frequency synthesis. IEEE J Solid State Circuits 28(5):553–559

    Article  Google Scholar 

  36. Craninckx J, Steyaert M (1998) Wireless CMOS frequency synthesizer design. Kluwer, Boston

    MATH  Google Scholar 

  37. Kajiwara A, Nakagawa M (1992) A new PLL frequency synthesizer with high switching speed. IEEE Trans Vehic Technol 41(4):407–413

    Article  Google Scholar 

  38. Staszewski RB, Leipold D, Muhammad K, Balsara PT (2003) Digitally controlled oscillator (DCO)-based architecture for RF frequency synthesis in a deep-submicrometer CMOS process. IEEE Trans Circuits Syst II Analog Digit Signal Process 50(11):815–828

    Article  Google Scholar 

  39. Vaucher CS, Ferencic I, Locher M, Sedvallson S, Voegeli U, Wang Z (2000) A family of ­low-power truly modular programmable dividers in standard 0.35um CMOS technology. IEEE J Solid State Circuits 35(7):1039–1045

    Article  Google Scholar 

  40. Staszewski RB, Chih-Ming H, Barton N, Lee M-C, Leipold DALD (2005) A digitally controlled oscillator in a 90 nm digital CMOS process for mobile phones. IEEE J Solid State Circuits 40(11):2203–2211

    Article  Google Scholar 

  41. Staszewski RB, Chih-Ming H, Leipold D, Balsara PT (2003) A first multigigahertz digitally controlled oscillator for wireless applications. IEEE Trans Microw Theory Tech 51(11):2154–2164

    Article  Google Scholar 

  42. Aktas A, Ismail M (2004) CMOS PLL calibration techniques. IEEE Circuits Devices Mag 20(5):6–11

    Article  Google Scholar 

  43. Khalil W, Bakkaloglu B, Kiaei S (2007) A self-calibrated on-chip phase-noise measurement circuit with -75 dBc single-tone sensitivity at 100 kHz offset. IEEE J Solid State Circuits 42(12):2758–2765

    Article  Google Scholar 

  44. Vaananen P, Mikkola N, Helio P (2006) VCO design with on-chip calibration system. IEEE Trans Circuits Syst I Regular Papers 53(10):2157–2166 [IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Atallah, J.G., Ismail, M. (2012). Introduction. In: Integrated Frequency Synthesis for Convergent Wireless Solutions. Analog Circuits and Signal Processing. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1466-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-1466-7_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-1465-0

  • Online ISBN: 978-1-4614-1466-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics