Skip to main content

Seeing the Invisible: How Mathematical Models Uncover Tumor Dormancy, Reconstruct the Natural History of Cancer, and Assess the Effects of Treatment

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 734))

Abstract

The hypothesis of early metastasis was debated for several decades. Dormant cancer cells and surgery-induced acceleration of metastatic growth were first observed in clinical studies and animal experiments conducted more than a century ago; later, these findings were confirmed in numerous modern studies.

In this primarily methodological work, we discuss critically important, yet largely unobservable, aspects of the natural history of cancer, such as (1) early metastatic dissemination; (2) dormancy of secondary tumors; (3) treatment-related interruption of metastatic dormancy, induction of angiogenesis, and acceleration of the growth of vascular metastases; and (4) the existence of cancer stem cells. The hypothesis of early metastasis was debated for several decades. Dormant cancer cells and surgery-induced acceleration of metastatic growth were first observed in clinical studies and animal experiments conducted more than a century ago; later, these findings were confirmed in numerous modern studies.

We focus on the unique role played by very general mathematical models of the individual natural history of cancer that are entirely mechanistic yet, somewhat paradoxically, essentially free of assumptions about specific nature of the underlying biological processes. These models make it possible to reconstruct in considerable detail the individual natural history of cancer and retrospectively assess the effects of treatment. Thus, the models can be used as a tool for generation and validation of biomedical hypotheses related to carcinogenesis, primary tumor growth, its metastatic dissemination, growth of metastases, and the effects of various treatment modalities. We discuss in detail one such general model and review the conclusions relevant to the aforementioned aspects of cancer progression that were drawn from fitting a parametric version of the model to data on the volumes of bone metastases in one breast cancer patient and 12 prostate cancer patients.

This is a preview of subscription content, log in via an institution.

References

  1. Retsky M, Demicheli R, Hrushesky W (2003) Breast cancer screening: controversies and future directions. Curr Opin Obstet Gynecol 15:1–8

    Article  PubMed  Google Scholar 

  2. Retsky M, Demicheli R, Hrushesky W (2001) Premenopausal status accelerates relapse in node positive breast cancer: hypothesis links angiogenesis, screening controversy. Breast Cancer Res Treat 65:217–224

    Article  PubMed  CAS  Google Scholar 

  3. Retsky M, Demicheli R, Hrushesky W, Baum M, Gukas I (2010) Surgery triggers outgrowth of latent distant disease in breast cancer: an inconvenient truth? Cancers 2:305–337

    Article  Google Scholar 

  4. Baum M, Chaplain M, Anderson A, Douek M, Vaidya JS (1999) Does breast cancer exist in a state of chaos? Eur J Cancer 35:886–891

    Article  PubMed  CAS  Google Scholar 

  5. Demicheli R, Retsky M, Hrushesky WJM, Baum M, Gukas ID (2008) The effects of surgery on tumor growth: a century of investigations. Ann Oncol 19:1821–1828

    Article  PubMed  CAS  Google Scholar 

  6. Hanin L (2010) Why victory in the war on cancer remains elusive: biomedical hypotheses and mathematical models. Cancers 3:340–367

    Article  Google Scholar 

  7. Hanin L, Zaider M (2011) Effects of surgery and chemotherapy on metastatic progression of prostate cancer: evidence from the natural history of the disease reconstructed through mathematical modeling. Cancers 3:3632–3660

    Article  Google Scholar 

  8. Folkman J, Watson K, Ingber D, Hanahan D (1989) Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature 339:58–61

    Article  PubMed  CAS  Google Scholar 

  9. Douglas JRS (1971) Significance of the size distribution of bloodborne metastases. Cancer 27:379–390

    Article  PubMed  CAS  Google Scholar 

  10. Barbour A, Gotley DC (2003) Current concepts of tumour metastasis. Ann Acad Med Singapore 32:176–184

    PubMed  CAS  Google Scholar 

  11. Fisher B (1980) Laboratory and clinical research in breast cancer: a personal adventure. The David A. Karnofsky memorial lecture. Cancer Res 40:3863–3874

    PubMed  CAS  Google Scholar 

  12. Hadfield G (1954) The dormant cancer cell. Br Med J 2:607–610

    Article  PubMed  CAS  Google Scholar 

  13. Ashworth TR (1869) A case of cancer in which cells similar to those in the tumour were seen in the blood after death. Aust Med J 14:146–147

    Google Scholar 

  14. Goldmann EE (1897) Anatomische Untersuchungen über die Verbreitungswege bösartiger Geschwülstle. Beitr Z Klin Chir 18:595

    Google Scholar 

  15. Fodstad O, Faye R, Hoifodt HK, Skovlund E, Aamdal S (2001) Immunobead-based detection and characterization of circulating tumor cells in melanoma patients. Recent Results Cancer Res 158:40–50

    Article  PubMed  CAS  Google Scholar 

  16. Pantel K, Otte M (2001) Occult micrometastases: enrichment, identification and characterization of single disseminated tumour cells. Semin Cancer Biol 11:327–337

    Article  PubMed  CAS  Google Scholar 

  17. Jiao X, Krasna MJ (2002) Clinical significance of micrometastasis in lung and esophageal cancer: a new paradigm in thoracic oncology. Ann Thorac Surg 74:278–284

    Article  PubMed  Google Scholar 

  18. Sugio K, Kase S, Sakada T, Yamazaki K, Yamaguchi M, Ondo K, Yano T (2002) Micrometastasis in the bone marrow of patients with lung cancer associated with a reduced expression of E-cadherin and beta-catenin: risk assessment by immunohistochemistry. Surgery 131:S226–S231

    Article  PubMed  Google Scholar 

  19. Ellis WJ, Pfitzenmaier J, Colli J, Arfman E, Lange PH, Vessella RL (2003) Detection and isolation of prostate cancer cells from peripheral blood and bone marrow. Urology 61:277–281

    Article  PubMed  Google Scholar 

  20. Pfitzenmaier J, Vessella RL, Ellis WJ, Lange PH (2003) Detection, isolation and study of disseminated prostate cancer cells in the peripheral blood and bone marrow. In: Pantel K (ed) Micrometastasis. Kluwer Academic Publishers, Norwell, MA, pp 87–116, Chapter 5

    Google Scholar 

  21. Meng S, Tripathy D, Frenkel EP, Shete S, Naftalis EZ, Huth JF, Beitsch PD, Leitch M, Hoover S, Euhus D, Haley B, Morrison L, Fleming TP, Herlyn D, Terstappen LWMM, Fehm T, Tucker TF, Lane N, Wang J, Uhr JW (2004) Circulating tumour cells in patients with breast cancer dormancy. Clin Cancer Res 10:8152–8162

    Article  PubMed  Google Scholar 

  22. Marches R, Scheuermann R, Uhr J (2006) Cancer dormancy: from mice to man. Cell Cycle 5:1772–1778

    Article  PubMed  CAS  Google Scholar 

  23. Chambers AF, Macdonald IF, Schmidt E, Koop S, Morris VL, Khokha R, Groom AC (1995) Steps in tumor metastasis: new concepts from intravital videomicroscopy. Cancer Metastasis Rev 14:279–301

    Article  PubMed  CAS  Google Scholar 

  24. Luzzi KJ, MacDonald IC, Schmidt EE, Kerkvliet N, Morris VL, Chambers AF, Groom AC (1998) Multistep nature of metastatic inefficiency. Dormancy of solitary cells after successful extravasation and limited survival of early micrometastases. Am J Pathol 153:865–873

    Article  PubMed  CAS  Google Scholar 

  25. Naumov GN, MacDonald IC, Weinmeister PM, Kerkvliet N, Nadkarni KV, Wilson SM, Morris VL, Groom AC, Chambers AF (2002) Persistence of solitary mammary carcinoma cells in a secondary site: a possible contributor to dormancy. Cancer Res 62:2162–2168

    PubMed  CAS  Google Scholar 

  26. Jonas S, Bechstein WO, Lemmens H-P, Neuhaus R, Thalmann U, Neuhaus P (1996) Liver graft-transmitted glioblastoma multiforme. A case report and experience with 13 multiorgan donors suffering from primary cerebral neoplasia. Transpl Int 9:426–429

    Article  PubMed  CAS  Google Scholar 

  27. Loh E, Couch FG, Hendricksen C, Farid L, Kelly PF, Acker MA, Tomaszewski JE, Malkowicz SB, Weber BL (1997) Development of donor-derived prostate cancer in a recipient following orthotopic heart transplantation. JAMA 277:133–137

    Article  PubMed  CAS  Google Scholar 

  28. Karrison TG, Ferguson DJ, Meier P (1999) Dormancy of mammary carcinoma after mastectomy. Natl Cancer Inst 19:80–85

    Article  Google Scholar 

  29. Ehrlich P, Apolant H (1905) Beobachtungen über maligne Mäusetumoren. Berl Klin Wochenschr 42:871–874

    Google Scholar 

  30. Bashford E, Murray JA, Cramer W (1907) The natural and induced resistance of mice to the growth of cancer. Proc R Soc Lond 79:164–187

    Article  Google Scholar 

  31. Marie P, Clunet J (1910) Fréquences des métastases viscérales chez les souris cancéreuses après ablation chirurgicale de leur tumeur. Bull Assoc Franç L’Étude Cancér 3:19–23

    Google Scholar 

  32. Tyzzer EE (1913) Factors in the production and growth of tumor metastases. J Med Res 23:309–332

    Google Scholar 

  33. Prehn RT (1993) Two competing influences that may explain concomitant tumor resistance. Cancer Res 53:3266–3269

    PubMed  CAS  Google Scholar 

  34. Lange PH, Hekmat K, Bosl G, Kennedy BJ, Fraley EE (1980) Accelerated growth of testicular cancer after cytoreductive surgery. Cancer 45:1498–1506

    Article  PubMed  CAS  Google Scholar 

  35. De Giorgi V, Massi D, Gerlini G, Mannone F, Quercioli E, Carli P (2003) Immediate local and regional recurrence after the excision of a polypoid melanoma: tumor dormancy or tumor activation? Dermatol Surg 29:664–667

    Article  PubMed  Google Scholar 

  36. Tseng WW, Doyle JA, Maguiness S, Horvai AE, Kashani-Sabet M, Leong SPL (2009) Giant cutaneous melanomas: evidence for primary tumour induced dormancy in metastatic sites? BMJ Case Rep. doi:10.1136/bcr.07.2009.2073

  37. Deylgat B, Van Rooy F, Vansteenkiste F, Devriendt D, George C (2011) Postsurgery activation of dormant liver micrometastasis: a case report and review of literature. J Gastrointest Cancer 42:1–4

    Article  PubMed  Google Scholar 

  38. Hoover HC, Ketcham AS (1975) Techniques for inhibiting tumor metastases. Cancer 35:5–14

    Article  PubMed  Google Scholar 

  39. Isern AE, Manjer J, Malina J, Loman N, Mårtensson T, Bofin A, Hagen AI, Tengrup I, Landberg G, Ringberg A (2011) Risk of recurrence following delayed large flap reconstruction after mastectomy for breast cancer. Br J Surg 98:659–666

    Article  PubMed  CAS  Google Scholar 

  40. Maida V, Ennis M, Kuziemsky C, Corban J (2009) Wounds and survival in cancer patients. Eur J Cancer 45:3237–3244

    Article  PubMed  Google Scholar 

  41. Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3:730–737

    Article  PubMed  CAS  Google Scholar 

  42. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100(7):3983–3988

    Article  PubMed  CAS  Google Scholar 

  43. Dick JE (2003) Breast cancer stem cells revealed. Proc Natl Acad Sci USA 100(7): 3547–3549

    Article  PubMed  CAS  Google Scholar 

  44. Kai K, Arima Y, Kamiya T, Saya H (2010) Breast cancer stem cells. Breast Cancer 17:80–85

    Article  PubMed  Google Scholar 

  45. Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ (2005) Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 65:10946–10951

    Article  PubMed  CAS  Google Scholar 

  46. Boyd W (1966) The spontaneous regression of cancer. Thomas, Springfield, IL

    Google Scholar 

  47. Everson TC, Cole WH (2006) Spontaneous regression of cancer. Saunders, Philadelphia

    Google Scholar 

  48. Cole WH (1976) Spontaneous regression of cancer and the importance of finding its cause. Natl Cancer Inst Monogr 44:5–9

    PubMed  CAS  Google Scholar 

  49. Zahl P-H, Mæhlen J, Welch HG (2008) The natural history of invasive breast cancer detected by screening mammography. Arch Intern Med 168:2311–2316

    Article  PubMed  Google Scholar 

  50. Kendal WS (2005) Chance mechanisms affecting the burden of metastases. BMC Cancer 5:138–146

    Article  PubMed  Google Scholar 

  51. Hanin LG, Yakovlev AY (1996) A nonidentifiability aspect of the two-stage model of carcinogenesis. Risk Anal 16:711–715

    Article  PubMed  CAS  Google Scholar 

  52. Hanin LG, Rose J, Zaider M (2006) A stochastic model for the sizes of detectable metastases. J Theor Biol 243:407–417

    Article  PubMed  Google Scholar 

  53. Bartoszyński R, Edler L, Hanin L, Kopp-Schneider A, Pavlova L, Tsodikov A, Zorin A, Yakovlev A (2001) Modeling cancer detection: tumor size as a source of information on unobservable stages of carcinogenesis. Math Biosci 171:113–142

    Article  PubMed  Google Scholar 

  54. Hanin LG (2008) Distribution of the sizes of metastases: mathematical and biomedical considerations. In: Tan WY, Hanin LG (eds) Handbook of cancer models with applications. World Scientific, Singapore, pp 141–169

    Google Scholar 

  55. Hanin LG, Korosteleva O (2010) Does extirpation of the primary breast tumor give boost to growth of metastases? Evidence revealed by mathematical modeling. Math Biosci 223:133–141

    Article  PubMed  Google Scholar 

  56. Hanin LG (2002) Identification problem for stochastic models with application to carcinogenesis, cancer detection and radiation biology. Disc Dyn Nat Soc 7:177–189

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonid Hanin Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hanin, L. (2013). Seeing the Invisible: How Mathematical Models Uncover Tumor Dormancy, Reconstruct the Natural History of Cancer, and Assess the Effects of Treatment. In: Enderling, H., Almog, N., Hlatky, L. (eds) Systems Biology of Tumor Dormancy. Advances in Experimental Medicine and Biology, vol 734. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1445-2_12

Download citation

Publish with us

Policies and ethics