Skip to main content

Calcium: The Answer to Life, the Universe, and Everything

  • Chapter
  • First Online:
20 Years of Computational Neuroscience

Part of the book series: Springer Series in Computational Neuroscience ((NEUROSCI,volume 9))

Abstract

Calcium plays a critical role in numerous physiological processes, both inside and out of the nervous system, and thus is widely studied by both experimental and theoretical neuroscientists. While the role of calcium in the nervous system has been studied by experimentalists for many decades, the last 20 years has seen considerable growth in the use of computational modeling as a tool to unravel the complex cellular mechanisms requiring calcium. For example, computational modeling has enhanced our understanding of processes such as release of neurotransmitter and excitation–contraction coupling in myocytes. Long-term synaptic plasticity and the control of neuronal activity patterns are two additional functions of calcium that are of particular interest to computational neuroscientists. This chapter presents a brief history of computational modeling studies that investigate either the relationship between calcium and long-term synaptic plasticity, or the relationship between calcium and neuronal firing patterns. The focus is on the subset of models that made advancements either in the form of the model or by addressing a novel scientific question.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alkon DL, Lederhendler II, Shoukimas JL (1982) Primary changes of membrane currents during retention of associative learning. Science 215:693–695

    Article  PubMed  CAS  Google Scholar 

  • Amini B, Clark JW Jr, Canavier CC (1999) Calcium dynamics underlying pacemaker-like and burst firing oscillations in midbrain dopaminergic neurons: a computational study. J Neurophysiol 82:2249–2261

    PubMed  CAS  Google Scholar 

  • Bear MF, Malenka RC (1994) Synaptic plasticity: LTP and LTD. Curr Opin Neurobiol 4:389–399

    Article  PubMed  CAS  Google Scholar 

  • Berkefeld H, Sailer CA, Bildl W, Rohde V, Thumfart JO, Eble S, Klugbauer N, Reisinger E, Bischofberger J, Oliver D, Knaus HG, Schulte U, Fakler B (2006) BKCa-Cav channel complexes mediate rapid and localized Ca2+-activated K+ signaling. Science 314:615–620

    Article  PubMed  CAS  Google Scholar 

  • Bi GQ, Wang HX (2002) Temporal asymmetry in spike timing-dependent synaptic plasticity. Physiol Behav 77:551–555

    Article  PubMed  CAS  Google Scholar 

  • Blackwell KT (2004) Paired turbulence and light do not produce a supralinear calcium increase in Hermissenda. J Comput Neurosci 17:81–99

    Article  PubMed  Google Scholar 

  • Bond CT, Maylie J, Adelman JP (2005) SK channels in excitability, pacemaking and synaptic integration. Curr Opin Neurobiol 15:305–311

    Article  PubMed  CAS  Google Scholar 

  • Canavier CC, Clark JW, Byrne JH (1991) Simulation of the bursting activity of neuron R15 in Aplysia: role of ionic currents, calcium balance, and modulatory transmitters. J Neurophysiol 66:2107–2124

    PubMed  CAS  Google Scholar 

  • Chay TR (1996a) Electrical bursting and luminal calcium oscillation in excitable cell models. Biol Cybern 75:419–431

    Article  PubMed  CAS  Google Scholar 

  • Chay TR (1996b) Modeling slowly bursting neurons via calcium store and voltage-independent calcium current. Neural Comput 8:951–978

    Article  PubMed  CAS  Google Scholar 

  • De Schutter E, Smolen P (1998) Calcium dynamics in large neuronal models. In: Koch C, Segev I (eds) Methods in Neuronal Modeling. MIT Press, Cambridge, Massachusetts, pp 211–250

    Google Scholar 

  • Doi T, Kuroda S, Michikawa T, Kawato M, Doi T, Kuroda S, Michikawa T, Kawato M (2005) Inositol 1,4,5-trisphosphate-dependent Ca2+ threshold dynamics detect spike timing in cerebellar Purkinje cells. J Neurosci 25:950–961

    Article  PubMed  CAS  Google Scholar 

  • Dupont G, Combettes L, Leybaert L (2007) Calcium dynamics: spatio-temporal organization from the subcellular to the organ level. Int Rev Cytol 261:193–245

    Article  PubMed  CAS  Google Scholar 

  • Engel J, Schultens HA, Schild D (1999) Small conductance potassium channels cause an activity-dependent spike frequency adaptation and make the transfer function of neurons logarithmic. Biophys J 76:1310–1319

    Article  PubMed  CAS  Google Scholar 

  • Faber ES, Sah P (2003) BK channel inactivation contributes to spike broadening during repetitive firing in the rat lateral amygdala. J Physiol 552(Pt 2):483–497

    Article  PubMed  CAS  Google Scholar 

  • Gamble E, Koch C (1987) The dynamics of free calcium in dendritic spines in response to repetitive synaptic input. Science 236:1311–1315

    Article  PubMed  CAS  Google Scholar 

  • Goldberg JA, Wilson CJ (2005) Control of spontaneous firing patterns by the selective coupling of calcium currents to calcium-activated potassium currents in striatal cholinergic interneurons. J Neurosci 25:10230–10238

    Article  PubMed  CAS  Google Scholar 

  • Goldberg JA, Teagarden MA, Foehring RC, Wilson CJ (2009) Nonequilibrium calcium dynamics regulate the autonomous firing pattern of rat striatal cholinergic interneurons. J Neurosci 29:8396–8407

    Article  PubMed  CAS  Google Scholar 

  • Gould TJ, Steinmetz JE (1996) Changes in rabbit cerebellar cortical and interpositus nucleus activity during acquisition, extinction, and backward classical eyelid conditioning. Neurobiol Learn Mem 65:17–34

    Article  PubMed  CAS  Google Scholar 

  • Gu N, Vervaeke K, Hu H, Storm JF (2005) Kv7/KCNQ/M and HCN/h, but not KCa2/SK channels, contribute to the somatic medium after-hyperpolarization and excitability control in CA1 hippocampal pyramidal cells. J Physiol 566:689–715

    Article  PubMed  CAS  Google Scholar 

  • Gu N, Vervaeke K, Storm JF (2007) BK potassium channels facilitate high-frequency firing and cause early spike frequency adaptation in rat CA1 hippocampal pyramidal cells. J Physiol 580:859–882

    Article  PubMed  CAS  Google Scholar 

  • Hernjak N, Slepchenko BM, Fernald K, Fink CC, Fortin D, Moraru II, Watras J, Loew LM (2005) Modeling and analysis of calcium signaling events leading to long-term depression in cerebellar Purkinje cells. Biophys J 89:3790–3806

    Article  PubMed  CAS  Google Scholar 

  • Holmes WR, Levy WB (1990) Insights into associative long-term potentiation from computational models of NMDA receptor-mediated calcium influx and intracellular calcium changes. J Neurophysiol 63:1148–1168

    PubMed  CAS  Google Scholar 

  • Holmes WR, Levy W (1997) Quantifying the role of inhibition in associative long-term potentiation in dentate granule cells with computational models. J Neurophysiol 78:103–115

    Google Scholar 

  • Ito M (2001) Cerebellar long-term depression: characterization, signal transduction, and functional roles. Physiol Rev 81:1143–1195

    PubMed  CAS  Google Scholar 

  • Katz B, Miledi R (1967) A study of synaptic transmission in the absence of nerve impulses. J Physiol 192:407–436

    PubMed  CAS  Google Scholar 

  • Keller DX, Franks KM, Bartol TM Jr, Sejnowski TJ (2008) Calmodulin activation by calcium transients in the postsynaptic density of dendritic spines. PLoS One 3:e2045

    Article  PubMed  Google Scholar 

  • Kotaleski JH, Blackwell KT (2010) Modelling the molecular mechanisms of synaptic plasticity using systems biology approaches. Nat Rev Neurosci 11:239–251

    Article  PubMed  Google Scholar 

  • Kotaleski JH, Lester DS, Blackwell KT (2002) Subcellular interactions between parallel fibre and climbing fibre signals in Purkinje cells predict sensitivity of classical conditioning to interstimulus interval. Integr Physiol Behav Sci 37:265–292

    Article  PubMed  Google Scholar 

  • Kubota Y, Putkey JA, Waxham MN (2007) Neurogranin controls the spatiotemporal pattern of postsynaptic Ca2+/CaM signaling. Biophys J 93:3848–3859

    Article  PubMed  CAS  Google Scholar 

  • Li Y-X, Rinzel J (1994) Equations for InsP3 receptor-mediated [Ca2+]; oscillations derived from a detailed kinetic model: a Hodgkin-Huxley like formalism. J Theor Biol 166:461–473

    Article  PubMed  CAS  Google Scholar 

  • Malenka RC, Lancaster B, Zucker RS (1992) Temporal limits on the rise in postsynaptic calcium required for the induction of long-term potentiation. Neuron 9:121–128

    Article  PubMed  CAS  Google Scholar 

  • Markram H, Roth A, Helmchen F (1998) Competitive calcium binding: implications for dendritic calcium signaling. J Comput Neurosci 5:331–348

    Article  PubMed  CAS  Google Scholar 

  • Naoki H, Sakumura Y, Ishii S (2005) Local signaling with molecular diffusion as a decoder of Ca2+ signals in synaptic plasticity. Mol Syst Biol 1:2005.0027

    Article  PubMed  Google Scholar 

  • Nevian T, Sakmann B (2006) Spine Ca2+ signaling in spike-timing-dependent plasticity. J Neurosci 26:11001–11013

    Article  PubMed  CAS  Google Scholar 

  • Nowycky MC, Pinter MJ (1993) Time courses of calcium and calcium-bound buffers following calcium influx in a model cell. Biophys J 64(77–91):77–91

    Article  PubMed  CAS  Google Scholar 

  • Sala F, Hernandez-Cruz A (1990) Calcium diffusion modeling in a spherical neuron Relevance of buffering properties. Biophys J 57:313–324

    Article  PubMed  CAS  Google Scholar 

  • Schiegg A, Gerstner W, Ritz R, Leo van Hemmen J (1995) Intracellular Ca2+ stores can account for the time course of LTP Induction: a model of CA2+ dynamics in dendritic spines. Am Physiol Soc 74:1046–1055

    CAS  Google Scholar 

  • Schmidt H, Eilers J (2009) Spine neck geometry determines spino-dendritic cross-talk in the presence of mobile endogenous calcium binding proteins. J Comput Neurosci 27:229–243

    Article  PubMed  Google Scholar 

  • Schneggenburger R, Neher E (2005) Presynaptic calcium and control of vesicle fusion. Curr Opin Neurobiol 15:266–274

    Article  PubMed  CAS  Google Scholar 

  • Schreurs BG, Oh MM, Alkon DL (1996) Pairing-specific long-term depression of Purkinje cell excitatory postsynaptic potentials results from a classical conditioning procedure in rabbit. J Neurophysiol 75(1051–1060):1051–1060

    PubMed  CAS  Google Scholar 

  • Shao LR, Halvorsrud R, Borg-Graham L, Storm JF (1999) The role of BK-type Ca2+-dependent K+ channels in spike broadening during repetitive firing in rat hippocampal pyramidal cells. J Physiol 521(Pt 1):135–146

    Article  PubMed  CAS  Google Scholar 

  • Teyler TJ, Cavus I, Coussens C, DiScenna P, Grover L, Lee YP, Little Z (1994) Multideterminant role of calcium in hippocampal synaptic plasticity. Hippocampus 4:623–634

    Article  PubMed  CAS  Google Scholar 

  • Thompson RF, Steinmetz JE (2009) The role of the cerebellum in classical conditioning of discrete behavioral responses. Neuroscience 162:732–755

    Article  PubMed  CAS  Google Scholar 

  • Volfovsky N, Parnas H, Segal M, Korkotian E (1999) Geometry of dendritic spines affects calcium dynamics in hippocampal neurons: theory and experiments. J Neurophysiol 82:450–462

    PubMed  CAS  Google Scholar 

  • Wigstrom H, Gustafsson B (1986) Postsynaptic control of hippocampal long-term potentiation. J Physiol Paris 81:228–236

    PubMed  CAS  Google Scholar 

  • Williams GS, Smith GD, Sobie EA, Jafri MS (2010) Models of cardiac excitation-contraction coupling in ventricular myocytes. Math Biosci 226:1–15

    Article  PubMed  CAS  Google Scholar 

  • Wilson CJ, Callaway JC (2000) Coupled oscillator model of the dopaminergic neuron of the substantia nigra. J Neurophysiol 83:3084–3100

    PubMed  CAS  Google Scholar 

  • Yamada WM, Koch C, Adams PR (1989) Multiple channels and calcium dynamics. In: Koch C, Segev I (eds) Methods in neuronal modeling (Chap 4). MIT Press, Cambridge, pp 97–133

    Google Scholar 

  • Zador A, Koch C, Brown TH (1990) Biophysical model of a Hebbian synapse. Proc Natl Acad Sci USA 87:6718–6722

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Support is gratefully acknowledged from ONR grant MURI N00014-10-1-0198 and the CRCNS program through NIAAA R01 AA180660, and NIAAA R01 AA016022. The author thanks Rebekah Evans for kindly reviewing and providing comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kim Blackwell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Blackwell, K. (2013). Calcium: The Answer to Life, the Universe, and Everything. In: Bower, J. (eds) 20 Years of Computational Neuroscience. Springer Series in Computational Neuroscience, vol 9. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1424-7_6

Download citation

Publish with us

Policies and ethics