Skip to main content

20 Years of Learning About Vision: Questions Answered, Questions Unanswered, and Questions Not Yet Asked

  • Chapter
  • First Online:
20 Years of Computational Neuroscience

Part of the book series: Springer Series in Computational Neuroscience ((NEUROSCI,volume 9))

Abstract

I have been asked to review the progress that computational neuroscience has made over the past 20 years in understanding how vision works. In reflecting on this question, I come to the conclusion that perhaps the most important advance we have made is in gaining a deeper appreciation of the magnitude of the problem before us. While there has been steady progress in our understanding—and I will review some highlights here—we are still confronted with profound mysteries about how visual systems work. These are not just mysteries about biology, but also about the general principles that enable vision in any system whether it be biological or machine. I devote much of this chapter to examining these open questions, as they are crucial in guiding and motivating current efforts. Finally, I shall argue that the biggest mysteries are likely to be ones we are not currently aware of, and that bearing this in mind is important as it encourages a more exploratory, as opposed to strictly hypothesis-driven, approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adelson EH (1993) Perceptual organization and the judgment of brightness. Science 262(5142):2042–2044

    Article  PubMed  CAS  Google Scholar 

  • Adelson EH (2000) Lightness perception and lightness illusions. In: Gazzaniga M (ed) The new cognitive neurosciences, 2nd edn. MIT, Cambridge, MA, pp 339–351

    Google Scholar 

  • Andolina IM, Jones HE et al (2007) Corticothalamic feedback enhances stimulus response precision in the visual system. Proc Natl Acad Sci USA 104(5):1685–1690

    Article  PubMed  CAS  Google Scholar 

  • Angelucci A, Bullier J (2003) Reaching beyond the classical receptive field of V1 neurons: horizontal or feedback axons? J Physiol Paris 97(2–3):141–154

    Article  PubMed  Google Scholar 

  • Arathorn DW (2005) Computation in the higher visual cortices: map-seeking circuit theory and application to machine vision. In: Proceedings of the 33rd applied imagery pattern recognition workshop (AIPR 2004), Washington, DC, 1–6

    Google Scholar 

  • Arathorn DW, Yang Q et al (2007) Retinally stabilized cone-targeted stimulus delivery. Opt Express 15(21):13731–13744

    Article  PubMed  Google Scholar 

  • Atick J, Redlich A (1992) What does the retina know about natural scenes? Neural Comput 4:196–210

    Article  Google Scholar 

  • Barlow H (1961) Possible principles underlying the transformation of sensory messages. In: Rosenblith WA (ed) Sensory communications. MIT, Cambridge, MA, pp 217–234

    Google Scholar 

  • Barron JT, Malik J (2012) Shape, albedo, and illumination from a single image of an unknown object. In: Conference on computer vision and pattern recognition, Washington, DC, 1–8

    Google Scholar 

  • BBC (1973) Controversy. http://www.aiai.ed.ac.uk/events/lighthill1973/1973-BBC-Lighthill-Controversy.mov

  • Blakemore C, Campbell FW (1969) On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images. J Physiol 203(1):237–260

    PubMed  CAS  Google Scholar 

  • Boyaci H, Fang F, Murray SO, Kersten D (2007) Responses to lightness variations in early human visual cortex. Curr Biol 17:989–993

    Article  PubMed  CAS  Google Scholar 

  • Brainard DH, Williams DR et al (2008) Trichromatic reconstruction from the interleaved cone mosaic: Bayesian model and the color appearance of small spots. J Vis 8(5):15

    Article  PubMed  Google Scholar 

  • Briggs F, Usrey WM (2007) A fast, reciprocal pathway between the lateral geniculate nucleus and visual cortex in the macaque monkey. J Neurosci 27(20):5431–5436

    Article  PubMed  CAS  Google Scholar 

  • Brown M, Lowe DG (2005) Unsupervised 3D object recognition and reconstruction in unordered datasets. In: Fifth international conference on 3-D digital imaging and modeling, 2005, 3DIM 2005, Ottawa, 56–63

    Google Scholar 

  • Cadieu CF, Olshausen BA (2012) Learning intermediate-level representations of form and motion from natural movies. Neural Comput 24(4):827–866

    Article  PubMed  Google Scholar 

  • Carandini M, Demb JB et al (2005) Do we know what the early visual system does? J Neurosci 25(46):10577–10597

    Article  PubMed  CAS  Google Scholar 

  • Clark D, Uetz G (1990) Video image recognition by the jumping spider, Maevia inclemens(Araneae: Salticidae). Anim Behav 40:884–890

    Article  Google Scholar 

  • Dan Y, Atick JJ et al (1996) Efficient coding of natural scenes in the lateral geniculate nucleus: experimental test of a computational theory. J Neurosci 16(10):3351–3362

    PubMed  CAS  Google Scholar 

  • Daugman J (1985) Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. J Opt Soc Am 2:1160–1169

    Article  CAS  Google Scholar 

  • David SV, Vinje WE et al (2004) Natural stimulus statistics alter the receptive field structure of v1 neurons. J Neurosci 24(31):6991–7006

    Article  PubMed  CAS  Google Scholar 

  • Dayan P, Hinton GE et al (1995) The Helmholtz machine. Neural Comput 7(5):889–904

    Article  PubMed  CAS  Google Scholar 

  • De Valois RL, Albrecht DG et al (1982) Spatial frequency selectivity of cells in macaque visual cortex. Vision Res 22(5):545–559

    Article  PubMed  Google Scholar 

  • Douglas RJ, Martin KAC (2004) Neuronal circuits of the neocortex. Annu Rev Neurosci 27(1):419–451

    Article  PubMed  CAS  Google Scholar 

  • Douglas RJ, Martin KAC et al (1989) A canonical microcircuit for neocortex. Neural Comput 1(4):480–488

    Article  Google Scholar 

  • Drees O (1952) Untersuchungen über die angeborenen verhaltensweisen bei springspinnen (salticidae). Z Tierpsychol 9(2):169–207

    Google Scholar 

  • Dreyfus HL, Dreyfus SE (1988) Making a mind versus modeling the brain: artificial intelligence back at a branchpoint. Daedalus 117(1):15–43

    Google Scholar 

  • Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1(1):1–47

    Article  PubMed  CAS  Google Scholar 

  • Field D (1987) Relations between the statistics of natural images and the response properties of cortical-cells. J Opt Soc Am A 4:2379–2394

    Article  PubMed  CAS  Google Scholar 

  • Frégnac Y, Baudot P, Levy M, Marre O (2005) An intracellular view of time coding and sparseness in V1 during virtual oculomotor exploration of natural scenes. In: 2nd International Cosyne conference in computational and systems neuroscience, Salt Lake City, UT, 17

    Google Scholar 

  • Freiwald WA, Tsao DY et al (2009) A face feature space in the macaque temporal lobe. Nat Neurosci 12(9):1187–1196

    Article  PubMed  CAS  Google Scholar 

  • Fukushima K (1980) Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol Cybern 36(4):193–202

    Article  PubMed  CAS  Google Scholar 

  • Gauthier JL, Field GD et al (2009a) Receptive fields in primate retina are coordinated to sample visual space more uniformly. PLoS Biol 7(4):e1000063

    Article  PubMed  CAS  Google Scholar 

  • Gauthier JL, Field GD et al (2009b) Uniform signal redundancy of parasol and midget ganglion cells in primate retina. J Neurosci 29(14):4675–4680

    Article  PubMed  CAS  Google Scholar 

  • Geisler WS, Perry JS et al (2001) Edge co-occurrence in natural images predicts contour grouping performance. Vision Res 41(6):711–724

    Article  PubMed  CAS  Google Scholar 

  • Gibson J (1986) The ecological approach to visual perception—James Jerome Gibson—Google books. Erlbaum, Hillsdale, NJ

    Google Scholar 

  • Gordon G, Kaplan DM, Lankow B, Little DY, Sherwin J, Suter BA, Thaler L (2011) Toward an integrated approach to perception and action: conference report and future directions. Front Syst Neurosci 5:20

    Article  PubMed  Google Scholar 

  • Gray CM, Singer W (1989) Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proc Natl Acad Sci USA 86:1698–1702

    Article  PubMed  CAS  Google Scholar 

  • Grill-Spector K, Kushnir T et al (2000) The dynamics of object-selective activation correlate with recognition performance in humans. Nat Neurosci 3(8):837–843

    Article  PubMed  CAS  Google Scholar 

  • Hartley R, Zisserman A (2003) Multiple view geometry in computer vision. Cambridge University Press, Cambridge, MA

    Google Scholar 

  • Heeger DJ (1999) Linking visual perception with human brain activity. Curr Opin Neurobiol 9(4):474–479

    Article  PubMed  CAS  Google Scholar 

  • Hofer H, Williams D (2005) Different sensations from cones with the same photopigment. J Vis 5(5):444–454

    Article  PubMed  Google Scholar 

  • Hofer H, Carroll J et al (2005) Organization of the human trichromatic cone mosaic. J Neurosci 25(42):9669–9679

    Article  PubMed  CAS  Google Scholar 

  • Hubel DH (1982) Exploration of the primary visual cortex, 1955–78. Nature 299(5883):515–524

    Article  PubMed  CAS  Google Scholar 

  • Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol 160:106–154

    PubMed  CAS  Google Scholar 

  • Hubel DH, Wiesel TN (1965) Receptive fields and functional architecture in two nonstriate visual areas (18 and 19) of the cat. J Neurophysiol 28:229–289

    PubMed  CAS  Google Scholar 

  • Hung CP, Kreiman G et al (2005) Fast readout of object identity from macaque inferior temporal cortex. Science 310(5749):863–866

    Article  PubMed  CAS  Google Scholar 

  • Hupé JM, James AC et al (2001) Feedback connections act on the early part of the responses in monkey visual cortex. J Neurophysiol 85(1):134–145

    PubMed  Google Scholar 

  • Hyvarinen A, Hoyer PO (2001) A two-layer sparse coding model learns simple and complex cell receptive fields and topography from natural images. Vision Res 41(18):2413–2423

    Article  PubMed  CAS  Google Scholar 

  • Hyvarinen A, Gutmann M et al (2005) Statistical model of natural stimuli predicts edge-like pooling of spatial frequency channels in V2. BMC Neurosci 6(1):12

    Article  PubMed  Google Scholar 

  • Julesz B (1981) Textons, the elements of texture perception, and their interactions. Nature 290(5802):91–97

    Article  PubMed  CAS  Google Scholar 

  • Karklin Y, Lewicki M (2003) Learning higher-order structures in natural images. Network 14(3):483–499

    Article  PubMed  Google Scholar 

  • Karklin Y, Lewicki M (2005) A hierarchical Bayesian model for learning nonlinear statistical regularities in nonstationary natural signals. Neural Comput 17(2):397–423

    Article  PubMed  Google Scholar 

  • Karklin Y, Lewicki MS (2009) Emergence of complex cell properties by learning to generalize in natural scenes. Nature 457(7225):83–85

    Article  PubMed  CAS  Google Scholar 

  • Kersten D, Mamassian P et al (2004) Object perception as Bayesian inference. Annu Rev Psychol 55:271–304

    Article  PubMed  Google Scholar 

  • Khosrowshahi A, Baker J et al (2007) Predicting responses of V1 neurons to natural movies. Society for Neuroscience, San Diego, CA, p 33

    Google Scholar 

  • Knill D, Richards W (1996) Perception as Bayesian inference. Cambridge University Press, Cambridge, MA

    Book  Google Scholar 

  • Knill DC, Saunders JA (2003) Do humans optimally integrate stereo and texture information for judgments of surface slant? Vision Res 43(24):2539–2558

    Article  PubMed  Google Scholar 

  • Koepsell K, Wei Y, Wang Q, Rathbun DL, Usrey WM, Hirsch JA, Sommer FT (2009) Retinal oscillations carry visual information to cortex. Front Syst Neurosci 3

    Google Scholar 

  • Koepsell K, Wang X et al (2010) Exploring the function of neural oscillations in early sensory systems. Front Neurosci 4:53

    PubMed  Google Scholar 

  • Kourtzi Z, Kanwisher N (2001) Representation of perceived object shape by the human lateral occipital complex. Science 293(5534):1506–1509

    Article  PubMed  CAS  Google Scholar 

  • Land MF (1969) Movements of the retinae of jumping spiders (Salticidae: dendryphantinae) in response to visual stimuli. J Exp Biol 51(2):471–493

    PubMed  CAS  Google Scholar 

  • Land MF (1971) Orientation by jumping spiders in the absence of visual feedback. J Exp Biol 54(1):119–139

    PubMed  CAS  Google Scholar 

  • Land MF (1985) Fields of view of the eyes of primitive jumping spiders. J Exp Biol 119:381–384

    Google Scholar 

  • Lee TS, Mumford D (2003) Hierarchical Bayesian inference in the visual cortex. J Opt Soc Am A Opt Image Sci Vis 20(7):1434–1448

    Article  PubMed  Google Scholar 

  • Lee TS, Yang CF et al (2002) Neural activity in early visual cortex reflects behavioral experience and higher-order perceptual saliency. Nat Neurosci 5(6):589–597

    Article  PubMed  CAS  Google Scholar 

  • Lennie P (1998) Single units and visual cortical organization. Perception 27(8):889–935

    Article  PubMed  CAS  Google Scholar 

  • Litke AM, Bezayiff N et al (2004) What does the eye tell the brain? Development of a system for the large-scale recording of retinal output activity. IEEE Trans Nucl Sci 51(4):1434–1440

    Article  Google Scholar 

  • Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110

    Article  Google Scholar 

  • Ma WJ, Beck JM et al (2006) Bayesian inference with probabilistic population codes. Nat Neurosci 9(11):1432–1438

    Article  PubMed  CAS  Google Scholar 

  • Mamassian P, Knill DC et al (1998) The perception of cast shadows. Trends Cogn Sci 2(8):288–295

    Article  PubMed  CAS  Google Scholar 

  • Mancilla JG, Lewis TJ et al (2007) Synchronization of electrically coupled pairs of inhibitory interneurons in neocortex. J Neurosci 27(8):2058–2073

    Article  PubMed  CAS  Google Scholar 

  • Marcelja S (1980) Mathematical description of the responses of simple cortical cells. J Opt Soc Am 70(11):1297–1300

    Article  PubMed  CAS  Google Scholar 

  • Marr D (1982) Vision: a computational investigation into the human representation and processing of visual information. WH Freeman, San Francisco, CA

    Google Scholar 

  • Mumford D (1994) Neuronal architectures for pattern-theoretic problems. Large-scale neuronal theories of the brain. MIT, Cambridge, MA

    Google Scholar 

  • Murray SO, Kersten D et al (2002) Shape perception reduces activity in human primary visual cortex. Proc Natl Acad Sci USA 99(23):15164–15169

    Article  PubMed  CAS  Google Scholar 

  • Nakayama K, He Z et al (1995) Visual surface representation: a critical link between lower-level and higher-level vision. In: Kosslyn SM, Osherson DN (eds) An invitation to cognitive science: visual cognition, vol 2. MIT, Cambridge, MA, pp 1–70

    Google Scholar 

  • Naselaris T, Prenger RJ et al (2009) Bayesian reconstruction of natural images from human brain activity. Neuron 63(6):902–915

    Article  PubMed  CAS  Google Scholar 

  • Naselaris T, Kay KN et al (2011) Encoding and decoding in fMRI. Neuroimage 56(2):400–410

    Article  PubMed  Google Scholar 

  • Newcombe RA, Davison AJ (2010) Live dense reconstruction with a single moving camera. In: 2010 IEEE conference on computer vision and pattern recognition (CVPR), San Francisco, CA, 1498–1505

    Google Scholar 

  • Nishimoto S, Vu AT et al (2011) Reconstructing visual experiences from brain activity evoked by natural movies. Curr Biol 21(19):1641–1646

    Article  PubMed  CAS  Google Scholar 

  • O’Rourke NA, Weiler NC, Micheva KD, Smith SJ (2012) Deep molecular diversity of mammalian synapses: why it matters and how to measure it. Nat Rev Neurosci 13:365–379

    PubMed  Google Scholar 

  • Olshausen BA, Field DJ (1996) Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381(6583):607–609

    Article  PubMed  CAS  Google Scholar 

  • Oram MW, Perrett DI (1992) Time course of neural responses discriminating different views of the face and head. J Neurophysiol 68(1):70–84

    PubMed  CAS  Google Scholar 

  • Papert S (1966) The summer vision project. MIT Artificial Intelligence Group, Vision Memo No. 100, 1–6

    Google Scholar 

  • Pearl J (1988) Probabilistic reasoning in intelligent systems: networks of plausible inference—Judea Pearl—Google books. Morgan Kaufmann Publishers, San Francisco, CA

    Google Scholar 

  • Poirazi P, Brannon T et al (2003) Pyramidal neuron as two-layer neural network. Neuron 37(6):989–999

    Article  PubMed  CAS  Google Scholar 

  • Polsky A, Mel BW et al (2004) Computational subunits in thin dendrites of pyramidal cells. Nat Neurosci 7(6):621–627

    Article  PubMed  CAS  Google Scholar 

  • Qiu FT, von der Heydt R (2005) Figure and ground in the visual cortex: v2 combines stereoscopic cues with gestalt rules. Neuron 47(1):155–166

    Article  PubMed  CAS  Google Scholar 

  • Quiroga RQ, Reddy L et al (2005) Invariant visual representation by single neurons in the human brain. Nature 435(7045):1102–1107

    Article  PubMed  CAS  Google Scholar 

  • Rao RP, Ballard DH (1999) Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat Neurosci 2(1):79–87

    Article  PubMed  CAS  Google Scholar 

  • Rao RPN, Olshausen BA et al (2002) Probabilistic models of the brain: perception and neural function. MIT, Cambridge, MA

    Google Scholar 

  • Ress D, Heeger DJ (2003) Neuronal correlates of perception in early visual cortex. Nat Neurosci 6(4):414–420

    Article  PubMed  CAS  Google Scholar 

  • Riesenhuber M, Poggio T (2004) How the visual cortex recognizes objects: the tale of the standard model. In: Chalupa L, Werner J (eds) The visual neurosciences. MIT, Cambridge, MA, pp 1–14

    Google Scholar 

  • Roorda A (2011) Adaptive optics for studying visual function: a comprehensive review. J Vis 11(7)

    Google Scholar 

  • Roorda A, Williams DR (1999) The arrangement of the three cone classes in the living human eye. Nature 397(6719):520–522

    Article  PubMed  CAS  Google Scholar 

  • Rossi AF, Rittenhouse CD et al (1996) The representation of brightness in primary visual cortex. Science 273(5278):1104–1107

    Article  PubMed  CAS  Google Scholar 

  • Rust N, Movshon J (2005) In praise of artifice. Nat Neurosci 8(12):1647–1650

    Article  PubMed  CAS  Google Scholar 

  • Schwartz O, Simoncelli EP (2001) Natural signal statistics and sensory gain control. Nat Neurosci 4:819–825

    Article  PubMed  CAS  Google Scholar 

  • Sincich LC, Zhang Y et al (2009) Resolving single cone inputs to visual receptive fields. Nat Neurosci 12(8):967–969

    Article  PubMed  CAS  Google Scholar 

  • Smith E, Lewicki M (2006) Efficient auditory coding. Nature 439(7079):978–982

    Article  PubMed  CAS  Google Scholar 

  • Snavely N, Seitz SM et al (2006) Photo tourism: exploring photo collections in 3D. ACM, New York, NY

    Google Scholar 

  • Srinivasan MV, Laughlin SB et al (1982) Predictive coding: a fresh view of inhibition in the retina. Proc R Soc Lond B Biol Sci 216(1205):427–459

    Article  PubMed  CAS  Google Scholar 

  • Tappen MF, Freeman WT et al (2005) Recovering intrinsic images from a single image. IEEE Trans Pattern Anal Mach Intell 27(9):1459–1472

    Article  PubMed  Google Scholar 

  • Tarsitano M, Andrew R (1999) Scanning and route selection in the jumping spider Portia labiata. Anim Behav 58(2):255–265

    Article  PubMed  Google Scholar 

  • Tarsitano M, Jackson RR (1997) Araneophagic jumping spiders discriminate between detour routes that do and do not lead to prey. Anim Behav 53:257–266

    Article  Google Scholar 

  • Thomson AM, Bannister AP (2003) Interlaminar connections in the neocortex. Cereb Cortex 13(1):5–14

    Article  PubMed  Google Scholar 

  • Thorpe SJ, Imbert M (1989) Biological constraints on connectionist models. In: Pfeifer R, Schreter Z, Fogelman-Soulie F, Steels L (eds) Connectionism in perspective. Elsevier Inc., Amsterdam, pp 63–92

    Google Scholar 

  • Thorpe S, Fize D et al (1996) Speed of processing in the human visual system. Nature 381:520–522

    Article  PubMed  CAS  Google Scholar 

  • Thrun S, Montemerlo M et al (2006) Stanley: the robot that won the DARPA grand challenge. J Field Robot 23(9):661–692

    Article  Google Scholar 

  • Tinbergen N (1974) Curious naturalists (revised edition). University of Massachusetts Press, Amherst, MA

    Google Scholar 

  • Treisman AM, Gelade G (1980) A feature-integration theory of attention. Cogn Psychol 12(1):97–136

    Article  PubMed  CAS  Google Scholar 

  • Tsao DY, Freiwald WA et al (2006) A cortical region consisting entirely of face-selective cells. Science 311(5761):670–674

    Article  PubMed  CAS  Google Scholar 

  • Tsao DY, Moeller S et al (2008) Comparing face patch systems in macaques and humans. Proc Natl Acad Sci 105(49):19514–19519

    Article  PubMed  CAS  Google Scholar 

  • Van Essen DC, Anderson CH (1995) Information processing strategies and pathways in the primate visual system. In: Zornetzer SF, Davis JL, Lau C, McKenna T (eds) An introduction to neural and electronic networks. Academic, San Diego, CA, pp 45–76

    Google Scholar 

  • Vinje WE, Gallant JL (2000) Sparse coding and decorrelation in primary visual cortex during natural vision. Science 287(5456):1273–1276

    Article  PubMed  CAS  Google Scholar 

  • Vogel CR, Arathorn DW et al (2006) Retinal motion estimation in adaptive optics scanning laser ophthalmoscopy. Opt Express 14(2):487–497

    Article  PubMed  Google Scholar 

  • Wandell BA, Dumoulin SO et al (2007) Visual field maps in human cortex. Neuron 56(2):366–383

    Article  PubMed  CAS  Google Scholar 

  • Zhou H, Friedman HS et al (2000) Coding of border ownership in monkey visual cortex. J Neurosci 20(17):6594–6611

    PubMed  CAS  Google Scholar 

  • Zhu M, Rozell C (2011) Population characteristics and interpretations of nCRF effects emerging from sparse coding. In: Computational and Systems Neuroscience (COSYNE), Salt Lake City, UT

    Google Scholar 

Download references

Acknowledgments

I thank Jim Bower for encouraging me to write this article and for his patience in giving me the time to complete it, and Jim DiCarlo for providing the MIT AI Memo. Supported by funding from NSF (IIS-1111654), NIH (EY019965), NGA (HM1582-08-1-0007), and the Canadian Institute for Advanced Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno A. Olshausen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Olshausen, B.A. (2013). 20 Years of Learning About Vision: Questions Answered, Questions Unanswered, and Questions Not Yet Asked. In: Bower, J. (eds) 20 Years of Computational Neuroscience. Springer Series in Computational Neuroscience, vol 9. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1424-7_12

Download citation

Publish with us

Policies and ethics