Skip to main content

Spatiotemporal Coding in the Olfactory System

  • Chapter
  • First Online:
20 Years of Computational Neuroscience

Part of the book series: Springer Series in Computational Neuroscience ((NEUROSCI,volume 9))

Abstract

Beginning in 1994, Gilles Laurent and colleagues published a series of studies describing odor-induced field potential oscillations in the locust olfactory system. While field oscillations had been described in the olfactory system previously—beginning with the work of Lord Adrian in the 1940s and including the extensive studies performed by Walter Freeman and colleagues and the later work of Gelperin and colleagues—the Laurent laboratory’s work emerged at a time in which oscillations and spike synchronization in the visual system were attracting substantial attention, such that the emergence of this work triggered a renewed interest in the temporal properties of olfactory system activation and what it implied for the representation of odor stimuli.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adrian ED (1942) Olfactory reactions in the brain of the hedgehog. J Physiol 100:459–473

    PubMed  CAS  Google Scholar 

  • Adrian ED (1950) The electrical activity of the mammalian olfactory bulb. Electroencephalogr Clin Neurophysiol 2:377–388

    Article  PubMed  CAS  Google Scholar 

  • Adrian ED (1957) Electrical oscillations recorded from the olfactory organ. J Physiol 136:29P–30P

    PubMed  CAS  Google Scholar 

  • Arevian AC, Kapoor V, Urban NN (2008) Activity-dependent gating of lateral inhibition in the mouse olfactory bulb. Nat Neurosci 11:80–87

    Article  PubMed  CAS  Google Scholar 

  • Aungst JL, Heyward PM, Puche AC, Karnup SV, Hayar A, Szabo G, Shipley MT (2003) Centre-surround inhibition among olfactory bulb glomeruli. Nature 426:623–629

    Article  PubMed  CAS  Google Scholar 

  • Bathellier B, Carleton A, Gerstner W (2008) Gamma oscillations in a nonlinear regime: a minimal model approach using heterogeneous integrate-and-fire networks. Neural Comput 20:2973–3002

    Article  PubMed  Google Scholar 

  • Beshel J, Kopell N, Kay LM (2007) Olfactory bulb gamma oscillations are enhanced with task demands. J Neurosci 27:8358–8365

    Article  PubMed  CAS  Google Scholar 

  • Brea JN, Kay LM, Kopell NJ (2009) Biophysical model for gamma rhythms in the olfactory bulb via subthreshold oscillations. Proc Natl Acad Sci USA 106:21954–21959

    Article  PubMed  CAS  Google Scholar 

  • Carlsson MA, Galizia CG, Hansson BS (2002) Spatial representation of odours in the antennal lobe of the moth Spodoptera littoralis (Lepidoptera: Noctuidae). Chem Senses 27:231–244

    Article  PubMed  Google Scholar 

  • Cleland TA (2010) Early transformations in odor representation. Trends Neurosci 33:130–139

    Article  PubMed  CAS  Google Scholar 

  • Cleland TA, Linster C (2002) How synchronization properties among second-order sensory neurons can mediate stimulus salience. Behav Neurosci 116:212–221

    Article  PubMed  Google Scholar 

  • Cleland TA, Linster C (2005) Computation in the olfactory system. Chem Senses 30:801–813

    Article  PubMed  Google Scholar 

  • Cleland TA, Sethupathy P (2006) Non-topographical contrast enhancement in the olfactory bulb. BMC Neurosci 7:7

    Article  PubMed  Google Scholar 

  • Cleland TA, Morse A, Yue EL, Linster C (2002) Behavioral models of odor similarity. Behav Neurosci 116:222–231

    Article  PubMed  Google Scholar 

  • Cleland TA, Johnson BA, Leon M, Linster C (2007) Relational representation in the olfactory system. Proc Natl Acad Sci USA 104:1953–1958

    Article  PubMed  CAS  Google Scholar 

  • Coopersmith R, Leon M (1986) Enhanced neural response by adult rats to odors experienced early in life. Brain Res 371:400–403

    Article  PubMed  CAS  Google Scholar 

  • Coopersmith R, Lee S, Leon M (1986) Olfactory bulb responses after odor aversion learning by young rats. Brain Res 389:271–277

    PubMed  CAS  Google Scholar 

  • David FO, Hugues E, Cenier T, Fourcaud-Trocme N, Buonviso N (2009) Specific entrainment of mitral cells during gamma oscillation in the rat olfactory bulb. PLoS Comput Biol 5:e1000551

    Article  PubMed  Google Scholar 

  • Davison AP, Feng J, Brown D (2003) Dendrodendritic inhibition and simulated odor responses in a detailed olfactory bulb network model. J Neurophysiol 90:1921–1935

    Article  PubMed  CAS  Google Scholar 

  • Delaney KR, Gelperin A, Fee MS, Flores JA, Gervais R, Tank DW, Kleinfeld D (1994) Waves and stimulus-modulated dynamics in an oscillating olfactory network. Proc Natl Acad Sci USA 91:669–673

    Article  PubMed  CAS  Google Scholar 

  • Di Prisco GV, Freeman WJ (1985) Odor-related bulbar EEG spatial pattern analysis during appetitive conditioning in rabbits. Behav Neurosci 99:964–978

    Article  PubMed  Google Scholar 

  • Engel AK, Konig P, Gray CM, Singer W (1990) Stimulus-dependent neuronal oscillations in cat visual cortex: inter-columnar interaction as determined by cross-correlation analysis. Eur J Neurosci 2:588–606

    Article  PubMed  Google Scholar 

  • Ermentrout GB, Galan RF, Urban NN (2007) Relating neural dynamics to neural coding. Phys Rev Lett 99:248103

    Article  PubMed  Google Scholar 

  • Faber T, Joerges J, Menzel R (1999) Associative learning modifies neural representations of odors in the insect brain. Nat Neurosci 2:74–78

    Article  PubMed  CAS  Google Scholar 

  • Fernandez PC, Locatelli FF, Person-Rennell N, Deleo G, Smith BH (2009) Associative conditioning tunes transient dynamics of early olfactory processing. J Neurosci 29:10191–10202

    Article  PubMed  CAS  Google Scholar 

  • Freeman WJ (1978) Spatial properties of an EEG event in the olfactory bulb and cortex. Electroencephalogr Clin Neurophysiol 44:586–605

    Article  PubMed  CAS  Google Scholar 

  • Freeman WJ (1979a) EEG analysis gives model of neuronal template-matching mechanism for sensory search with olfactory bulb. Biol Cybern 35:221–234

    Article  PubMed  CAS  Google Scholar 

  • Freeman WJ (1979b) Nonlinear dynamics of paleocortex manifested in the olfactory EEG. Biol Cybern 35:21–37

    Article  PubMed  CAS  Google Scholar 

  • Freeman WJ, Grajski KA (1987) Relation of olfactory EEG to behavior: factor analysis. Behav Neurosci 101:766–777

    Article  PubMed  CAS  Google Scholar 

  • Freeman WJ, Schneider W (1982) Changes in spatial patterns of rabbit olfactory EEG with conditioning to odors. Psychophysiology 19:44–56

    Article  PubMed  CAS  Google Scholar 

  • Freeman WJ, Skarda CA (1985) Spatial EEG patterns, non-linear dynamics and perception: the neo-Sherringtonian view. Brain Res 357:147–175

    PubMed  CAS  Google Scholar 

  • Galan RF, Fourcaud-Trocme N, Ermentrout GB, Urban NN (2006) Correlation-induced synchronization of oscillations in olfactory bulb neurons. J Neurosci 26:3646–3655

    Article  PubMed  CAS  Google Scholar 

  • Galizia CG, Menzel R (2000) Odour perception in honeybees: coding information in glomerular patterns. Curr Opin Neurobiol 10:504–510

    Article  PubMed  CAS  Google Scholar 

  • Gelperin A, Tank DW (1990) Odour-modulated collective network oscillations of olfactory interneurons in a terrestrial mollusc. Nature 345:437–440

    Article  PubMed  CAS  Google Scholar 

  • Gelperin A, Rhines LD, Flores J, Tank DW (1993) Coherent network oscillations by olfactory interneurons: modulation by endogenous amines. J Neurophysiol 69:1930–1939

    PubMed  CAS  Google Scholar 

  • Grajski KA, Freeman WJ (1989) Spatial EEG correlates of nonassociative and associative olfactory learning in rabbits. Behav Neurosci 103:790–804

    Article  PubMed  CAS  Google Scholar 

  • Gray CM, Freeman WJ, Skinner JE (1986) Chemical dependencies of learning in the rabbit olfactory bulb: acquisition of the transient spatial pattern change depends on norepinephrine. Behav Neurosci 100:585–596

    Article  PubMed  CAS  Google Scholar 

  • Gray CM, Freeman WJ, Skinner JE (1987) Induction and maintenance of epileptiform activity in the rabbit olfactory bulb depends on centrifugal input. Exp Brain Res 68:210–212

    Article  PubMed  CAS  Google Scholar 

  • Gray CM, Engel AK, Konig P, Singer W (1990) Stimulus-dependent neuronal oscillations in cat visual cortex: receptive field properties and feature dependence. Eur J Neurosci 2:607–619

    Article  PubMed  Google Scholar 

  • Gray CM, Engel AK, Konig P, Singer W (1992) Synchronization of oscillatory neuronal responses in cat striate cortex: temporal properties. Vis Neurosci 8:337–347

    Article  PubMed  CAS  Google Scholar 

  • Guerrieri F, Schubert M, Sandoz JC, Giurfa M (2005) Perceptual and neural olfactory similarity in honeybees. PLoS Biol 3:e60

    Article  PubMed  Google Scholar 

  • Johnson BA, Leon M (2007) Chemotopic odorant coding in a mammalian olfactory system. J Comp Neurol 503:1–34

    Article  PubMed  CAS  Google Scholar 

  • Kauer JS (1988) Real-time imaging of evoked activity in local circuits of the salamander olfactory bulb. Nature 331:166–168

    Article  PubMed  CAS  Google Scholar 

  • Kauer JS, Senseman DM, Cohen LB (1987) Odor-elicited activity monitored simultaneously from 124 regions of the salamander olfactory bulb using a voltage-sensitive dye. Brain Res 418:255–261

    Article  PubMed  CAS  Google Scholar 

  • Kay LM (2003) Two species of gamma oscillations in the olfactory bulb: dependence on behavioral state and synaptic interactions. J Integr Neurosci 2:31–44

    Article  PubMed  Google Scholar 

  • Kay LM, Beshel J, Brea J, Martin C, Rojas-Libano D, Kopell N (2009) Olfactory oscillations: the what, how and what for. Trends Neurosci 32:207–214

    Article  PubMed  CAS  Google Scholar 

  • Kleinfeld D, Delaney KR, Fee MS, Flores JA, Tank DW, Gelperin A (1994) Dynamics of propagating waves in the olfactory network of a terrestrial mollusk: an electrical and optical study. J Neurophysiol 72:1402–1419

    PubMed  CAS  Google Scholar 

  • Lagier S, Carleton A, Lledo PM (2004) Interplay between local GABAergic interneurons and relay neurons generates gamma oscillations in the rat olfactory bulb. J Neurosci 24:4382–4392

    Article  PubMed  CAS  Google Scholar 

  • Lancet D, Greer CA, Kauer JS, Shepherd GM (1982) Mapping of odor-related neuronal activity in the olfactory bulb by high-resolution 2-deoxyglucose autoradiography. Proc Natl Acad Sci USA 79:670–674

    Article  PubMed  CAS  Google Scholar 

  • Laska M, Galizia CG (2001) Enantioselectivity of odor perception in honeybees (Apis mellifera carnica). Behav Neurosci 115:632–639

    Article  PubMed  CAS  Google Scholar 

  • Laurent G (1996a) Dynamical representation of odors by oscillating and evolving neural assemblies. Trends Neurosci 19:489–496

    Article  PubMed  CAS  Google Scholar 

  • Laurent G (1996b) Odor images and tunes. Neuron 16:473–476

    Article  PubMed  CAS  Google Scholar 

  • Laurent G, Davidowitz H (1994) Encoding of olfactory information with oscillating neural assemblies. Science 265:1872–1875

    Article  PubMed  CAS  Google Scholar 

  • Laurent G, Naraghi M (1994) Odorant-induced oscillations in the mushroom bodies of the locust. J Neurosci 14:2993–3004

    PubMed  CAS  Google Scholar 

  • Laurent G, Wehr M, Davidowitz H (1996) Temporal representations of odors in an olfactory network. J Neurosci 16:3837–3847

    PubMed  CAS  Google Scholar 

  • Leon M, Johnson BA (2003) Olfactory coding in the mammalian olfactory bulb. Brain Res Brain Res Rev 42:23–32

    Article  PubMed  Google Scholar 

  • Leon M, Johnson B (2006) Functional units in the olfactory system. Proc Natl Acad Sci USA 103:14985–14986

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Hopfield JJ (1989) Modeling the olfactory bulb and its neural oscillatory processings. Biol Cybern 61:379–392

    Article  PubMed  CAS  Google Scholar 

  • Linster C, Cleland TA (2001) How spike synchronization among olfactory neurons can contribute to sensory discrimination. J Comput Neurosci 10:187–193

    Article  PubMed  CAS  Google Scholar 

  • Linster C, Cleland TA (2004) Configurational and elemental odor mixture perception can arise from local inhibition. J Comput Neurosci 16:39–47

    Article  PubMed  Google Scholar 

  • Linster C, Cleland TA (2009) Glomerular microcircuits in the olfactory bulb. Neural Netw 22:1169–1173

    Article  PubMed  Google Scholar 

  • Linster C, Cleland TA (2010) Decorrelation of odor representations via spike timing-dependent plasticity. Front Comput Neurosci 4:157

    PubMed  Google Scholar 

  • Linster C, Gervais R (1996) Investigation of the role of interneurons and their modulation by centrifugal fibers in a neural model of the olfactory bulb. J Comput Neurosci 3:225–246

    Article  PubMed  CAS  Google Scholar 

  • Linster C, Hasselmo M (1997) Modulation of inhibition in a model of olfactory bulb reduces overlap in the neural representation of olfactory stimuli. Behav Brain Res 84:117–127

    Article  PubMed  CAS  Google Scholar 

  • Linster C, Johnson BA, Yue E, Morse A, Xu Z, Hingco EE, Choi Y, Choi M, Messiha A, Leon M (2001) Perceptual correlates of neural representations evoked by odorant enantiomers. J Neurosci 21:9837–9843

    PubMed  CAS  Google Scholar 

  • Linster C, Sachse S, Galizia CG (2005) Computational modeling suggests that response properties rather than spatial position determine connectivity between olfactory glomeruli. J Neurophysiol 93:3410–3417

    Article  PubMed  Google Scholar 

  • MacLeod K, Laurent G (1996) Distinct mechanisms for synchronization and temporal patterning of odor-encoding neural assemblies. Science 274:976–979

    Article  PubMed  CAS  Google Scholar 

  • MacLeod K, Backer A, Laurent G (1998) Who reads temporal information contained across synchronized and oscillatory spike trains? Nature 395:693–698

    Article  PubMed  CAS  Google Scholar 

  • Martin C, Gervais R, Chabaud P, Messaoudi B, Ravel N (2004a) Learning-induced modulation of oscillatory activities in the mammalian olfactory system: the role of the centrifugal fibres. J Physiol Paris 98:467–478

    Article  PubMed  Google Scholar 

  • Martin C, Gervais R, Hugues E, Messaoudi B, Ravel N (2004b) Learning modulation of odor-induced oscillatory responses in the rat olfactory bulb: a correlate of odor recognition? J Neurosci 24:389–397

    Article  PubMed  CAS  Google Scholar 

  • Martin C, Gervais R, Messaoudi B, Ravel N (2006) Learning-induced oscillatory activities correlated to odour recognition: a network activity. Eur J Neurosci 23:1801–1810

    Article  PubMed  Google Scholar 

  • McGann JP, Pirez N, Gainey MA, Muratore C, Elias AS, Wachowiak M (2005) Odorant representations are modulated by intra- but not interglomerular presynaptic inhibition of olfactory sensory neurons. Neuron 48:1039–1053

    Article  PubMed  CAS  Google Scholar 

  • Nusser Z, Kay LM, Laurent G, Homanics GE, Mody I (2001) Disruption of GABA(A) receptors on GABAergic interneurons leads to increased oscillatory power in the olfactory bulb network. J Neurophysiol 86:2823–2833

    PubMed  CAS  Google Scholar 

  • Olsen SR, Bhandawat V, Wilson RI (2010) Divisive normalization in olfactory population codes. Neuron 66:287–299

    Article  PubMed  CAS  Google Scholar 

  • Pressler RT, Inoue T, Strowbridge BW (2007) Muscarinic receptor activation modulates granule cell excitability and potentiates inhibition onto mitral cells in the rat olfactory bulb. J Neurosci 27:10969–10981

    Article  PubMed  CAS  Google Scholar 

  • Ravel N, Chabaud P, Martin C, Gaveau V, Hugues E, Tallon-Baudry C, Bertrand O, Gervais R (2003) Olfactory learning modifies the expression of odour-induced oscillatory responses in the gamma (60–90 Hz) and beta (15–40 Hz) bands in the rat olfactory bulb. Eur J Neurosci 17:350–358

    Article  PubMed  Google Scholar 

  • Rojas-Libano D, Kay LM (2008) Olfactory system gamma oscillations: the physiological dissection of a cognitive neural system. Cogn Neurodyn 2:179–194

    Article  PubMed  Google Scholar 

  • Rubin BD, Katz LC (2001) Spatial coding of enantiomers in the rat olfactory bulb. Nat Neurosci 4:355–356

    Article  PubMed  CAS  Google Scholar 

  • Sachse S, Galizia CG (2002) Role of inhibition for temporal and spatial odor representation in olfactory output neurons: a calcium imaging study. J Neurophysiol 87:1106–1117

    PubMed  Google Scholar 

  • Salcedo E, Zhang C, Kronberg E, Restrepo D (2005) Analysis of training-induced changes in ethyl acetate odor maps using a new computational tool to map the glomerular layer of the olfactory bulb. Chem Senses 30:615–626

    Article  PubMed  CAS  Google Scholar 

  • Stewart WB, Kauer JS, Shepherd GM (1979) Functional organization of rat olfactory bulb analysed by the 2-deoxyglucose method. J Comp Neurol 185:715–734

    Article  PubMed  CAS  Google Scholar 

  • Stopfer M, Laurent G (1999) Short-term memory in olfactory network dynamics. Nature 402:664–668

    Article  PubMed  CAS  Google Scholar 

  • Stopfer M, Bhagavan S, Smith BH, Laurent G (1997) Impaired odour discrimination on desynchronization of odour-encoding neural assemblies. Nature 390:70–74

    Article  PubMed  CAS  Google Scholar 

  • Stopfer M, Jayaraman V, Laurent G (2003) Intensity versus identity coding in an olfactory system. Neuron 39:991–1004

    Article  PubMed  CAS  Google Scholar 

  • Sullivan RM, Leon M (1986) Early olfactory learning induces an enhanced olfactory bulb response in young rats. Brain Res 392:278–282

    PubMed  CAS  Google Scholar 

  • Sullivan RM, Wilson DA, Kim MH, Leon M (1988) Behavioral and neural correlates of postnatal olfactory conditioning: I. Effect of respiration on conditioned neural responses. Physiol Behav 44:85–90

    Article  PubMed  CAS  Google Scholar 

  • Urban NN (2002) Lateral inhibition in the olfactory bulb and in olfaction. Physiol Behav 77:607–612

    Article  PubMed  CAS  Google Scholar 

  • Urban NN, Arevian AC (2009) Computing with dendrodendritic synapses in the olfactory bulb. Ann N Y Acad Sci 1170:264–269

    Article  PubMed  Google Scholar 

  • Wachowiak M, Cohen LB, Ache BW (2002) Presynaptic inhibition of olfactory receptor neurons in crustaceans. Microsc Res Tech 58:365–375

    Article  PubMed  CAS  Google Scholar 

  • Wehr M, Laurent G (1999) Relationship between afferent and central temporal patterns in the locust olfactory system. J Neurosci 19:381–390

    PubMed  CAS  Google Scholar 

  • Wellis DP, Scott JW, Harrison TA (1989) Discrimination among odorants by single neurons of the rat olfactory bulb. J Neurophysiol 61:1161–1177

    PubMed  CAS  Google Scholar 

  • Youngentob SL, Johnson BA, Leon M, Sheehe PR, Kent PF (2006) Predicting odorant quality perceptions from multidimensional scaling of olfactory bulb glomerular activity patterns. Behav Neurosci 120:1337–1345

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christiane Linster .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Linster, C., Cleland, T.A. (2013). Spatiotemporal Coding in the Olfactory System. In: Bower, J. (eds) 20 Years of Computational Neuroscience. Springer Series in Computational Neuroscience, vol 9. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1424-7_11

Download citation

Publish with us

Policies and ethics