Morphological and Functional Ear Development

Chapter
Part of the Springer Handbook of Auditory Research book series (SHAR, volume 42)

Abstract

The development of peripheral auditory function in humans has been observed and documented using a variety of investigative tools. Because these tools must all be noninvasive in nature, they are indirect and, therefore, somewhat imprecise probes of function. Measured function at one level of the peripheral auditory system is undoubtedly influenced by the functional status of other parts of the system. Thus, the most effective way to define and document the physiology and developmental course of the human auditory system is to consider and integrate findings, with an acute awareness of the limitations of each assay and the relationship among results. To make this treatise a reasonable endeavor, only human auditory developmental data are presented and discussed, although when it elucidates a pattern common to humans, mammalian development in general may be considered.

Keywords

Attenuation Coherence daPa Coupler Acoustics 

Notes

Acknowledgments

This work was supported by a grant from the National Institutes of Health, R01 DC003552 (CA) and by the House Research Institute. C. Abdala thanks Dr. Rangasamy Ramanathan, Chief of Neonatology at the University of Southern California, Keck School of Medicine for continued support of neonatal auditory research and Dr. Silvia Batezati for assistance with the preparation of this chapter.

References

  1. Abbas, P. J., & Sachs, M. B. (1976). Two-tone suppression in auditory nerve fibers: Extension of a stimulus-response relationship. Journal of the Acoustical Society of America, 59, 112–122.PubMedGoogle Scholar
  2. Abdala, C. (1996). Distortion product otoacoustic emission (2f 1f 2) amplitude as a function of f 2/f 1 frequency ratio and primary tone level separation in human adults and neonates. Journal of the Acoustical Society of America, 100, 3726–3740.PubMedGoogle Scholar
  3. Abdala, C., Sininger, Y. S., Ekelid, M., & Zeng, F-G. (1996). Distortion product otoacoustic emissions suppression tuning curves in human adults and neonates. Hearing Research, 98, 38–53.PubMedGoogle Scholar
  4. Abdala, C. (1998). A developmental study of distortion product otoacoustic emission (2f 1f 2) suppression in humans. Hearing Research, 121, 125–138.PubMedGoogle Scholar
  5. Abdala, C. (2000). Distortion product otoacoustic emission (2f 1f 2) amplitude growth in human adults and neonates. Journal of the Acoustical Society of America, 107, 446–456.PubMedGoogle Scholar
  6. Abdala, C. (2001). Maturation of the human cochlear amplifier: Distortion product otoacoustic emission suppression tuning curves recorded at low and high primary tone levels. Journal of the Acoustical Society of America, 110, 1465–1476.PubMedGoogle Scholar
  7. Abdala, C. (2003). A longitudinal study of distortion product otoacoustic emission ipsilateral suppression and input/output characteristics in human neonates. Journal of the Acoustical Society of America, 114, 3239–3250.PubMedGoogle Scholar
  8. Abdala, C., & Chatterjee, M. (2003). Maturation of cochlear nonlinearity as measured by distortion product otoacoustic emission suppression growth in humans. Journal of the Acoustical Society of America, 114, 932–943.PubMedGoogle Scholar
  9. Abdala, C., & Dhar, S. (2010). Distortion product otoacoustic emission (DPOAE) phase and component analysis in human newborns. Journal of the Acoustical Society of America, 127(1), 316–325.PubMedGoogle Scholar
  10. Abdala, C., & Keefe, D. H. (2006). Effects of middle-ear immaturity on distortion product otoacoustic emission suppression tuning in infant ears. Journal of the Acoustical Society of America, 120, 3832–3842.PubMedGoogle Scholar
  11. Abdala, C., Ma, E., & Sininger, Y. (1999). Maturation of medial efferent system function in humans. Journal of the Acoustical Society of America, 105, 2392–2402.PubMedGoogle Scholar
  12. Abdala, C., Keefe, D. H., & Oba, S. I. (2007). Distortion product otoacoustic emission suppression tuning and acoustic admittance in human infants: Birth through six months. Journal of the Acoustical Society of America, 121, 3617–3627.PubMedGoogle Scholar
  13. Abdala, C., Oba, S. I., & Ramanathan, R. (2008). Changes in the DP-gram during the preterm and early-postnatal period. Ear and Hearing, 29, 512–523.PubMedGoogle Scholar
  14. Abdala, C., Mishra, S. R., & Williams, T. L. (2009). Considering distortion product otoacoustic emission fine structure in measurements of the medial olivocochlear reflex. Journal of the Acoustical Society of America, 125, 1584–1594.PubMedGoogle Scholar
  15. Abdala, C., Dhar, S., & Kalluri, R. (2011a). Level dependence of DPOAE phase is attributed to component mixing. Journal of the Acoustical Society of America, 129, 3123–3134.PubMedGoogle Scholar
  16. Abdala, C., Dhar, S., & Mishra, S. (2011b). The breaking of cochlear scaling symmetry in human newborns and adults. Journal of the Acoustical Society of America, 129, 3104–3115.PubMedGoogle Scholar
  17. Abdala, C., Mishra, S. R., Batezati, S. C., & Wiley, J. M. (2011c). Maturation of the MOC reflex in humans: 12 years later. Abstract 376. Association for Research in Otolaryngology 34th Midwinter Meeting, February 19–23, 2011, Baltimore, MD.Google Scholar
  18. Anson, B. J., & Donaldson, J. A. (1981). Surgical anatomy of the temporal bone and ear. Philadelphia: W. B. Saunders.Google Scholar
  19. Birnholz, J. C., & Benacerraf, B. R. (1983). The development of human fetal hearing. Science, 222, 516–518.PubMedGoogle Scholar
  20. Bonfils, P., Uziel, A., & Narcy, P. (1989). The properties of spontaneous and evoked acoustic emissions in neonates and children: A preliminary report. Archives of Oto-rhino-laryngology, 246, 249–251.PubMedGoogle Scholar
  21. Bonfils, P., Avan, P., Francois, M., Trotoux, J., & Narcy, P. (1992). Distortion-product otoacoustic emissions in neonates: Normative data. Acta Oto-Laryngologica, 112, 739–744.PubMedGoogle Scholar
  22. Bredberg, G. (1968). Cellular pattern and nerve supply of the human organ of Corti. Acta Oto-Laryngologica Supplementum, 236, 1.Google Scholar
  23. Brienesse, P., Antenius, L. J., Maertzdorf, W. J., Blanco, C. E., & Manni, J. J. (1997). Frequency shift of individual spontaneous otoacoustic emissions in preterm infants. Pediatric Research, 42, 478–483.PubMedGoogle Scholar
  24. Brown, A. M., & Kemp, D. T. (1984). Suppressibility of the 2f 1f 2 stimulated acoustic emissions in gerbil and man. Hearing Research, 13, 29–37.PubMedGoogle Scholar
  25. Brown, A. M., Sheppard, S., & Russell, P. (1994). Acoustic distortion products (ADP) from the ears of term infants and young adults using low stimulus levels. British Journal of Audiology, 28, 273–280.PubMedGoogle Scholar
  26. Brown, A. M., Sheppard, S., & Russell, P. (1995). Differences between neonate and adult cochlear mechanical responses. Auditory Neuroscience, 1, 169–181.Google Scholar
  27. Burns, E. M., Arehart, K. H., & Campbell, S. L. (1992). Prevalence of spontaneous otoacoustic emissions in neonates. Journal of the Acoustical Society of America, 91, 1571–1575.PubMedGoogle Scholar
  28. Burns, E. M., Campbell, S. L., & Arehart, K. H. (1994). Longitudinal measurements of spontaneous otoacoustic emissions in infants. Journal of the Acoustical Society of America, 95, 385–394.PubMedGoogle Scholar
  29. Collet, L. (1993). Use of otoacoustic emissions to explore the medial olivocochlear system in humans. British Journal of Audiology, 27, 155–159.PubMedGoogle Scholar
  30. Cooper, N., & Rhode, W. (1995). Nonlinear mechanisms at the apex of the guinea pig cochlea. Hearing Research, 82, 225–243.PubMedGoogle Scholar
  31. Crelin, E. S. (1973). Functional anatomy of the newborn. New Haven and London: Yale University Press.Google Scholar
  32. Deeter, R., Abel, R., Calandruccio, L., & Dhar, S. (2009). Contralateral acoustic stimulation alters the magnitude and phase of distortion product otoacoustic emissions. Journal of the Acoustical Society of America, 126, 2413–2424.PubMedGoogle Scholar
  33. Delgutte, B. (1990). Two-tone suppression in auditory nerve fibers: Dependence on suppressor frequency and level. Hearing Research, 49, 225–246.PubMedGoogle Scholar
  34. Dempster, J. H., & Mackenzie, K. (1990). The resonance frequency of the external auditory canal in children. Ear and Hearing, 11, 296–298.PubMedGoogle Scholar
  35. Dhar, S., & Abdala, C. (2007). A comparative study of DPOAE fine structure in human newborns and adults with normal hearing. Journal of the Acoustical Society of America, 122, 2191–2202.PubMedGoogle Scholar
  36. Eby, T. L., & Nadol, J. B., Jr. (1986). Postnatal growth of the human temporal bone: Implications for cochlear implants in children. The Annals of Otology, Rhinology, and Laryngology, 95, 356–364.PubMedGoogle Scholar
  37. Eggermont, J., Brown, D., Ponton, C., & Kimberley, B. (1996). Comparisons of DPE and ABR traveling wave delay measurements suggest frequency specific synapse maturation. Ear and Hearing, 17, 386–394.PubMedGoogle Scholar
  38. Feeney, M. P., & Keefe, D. H. (2011). Physiological mechanisms assessed by aural acoustic transfer functions. In K. Tremblay & R. Burkard (Eds.), Translational perspectives in auditory neuroscience (in press). San Diego: Plural.Google Scholar
  39. Fex, J. H. (1962). Augmentation of cochlear microphonic by stimulation of efferent fibers to the cochlea. Acta Oto-Laryngologica, 50, 540–541.Google Scholar
  40. Galambos, R., & Hecox, K. E. (1978). Clinical applications of the auditory brain stem response. Otolaryngologic Clinics of North America, 11, 709–722.PubMedGoogle Scholar
  41. Guinan, J. J., Jr. (2006). Olivocochlear efferents: Anatomy, physiology, function, and the measurement of efferent effects in humans. Ear and Hearing, 27, 589–607.PubMedGoogle Scholar
  42. Holte, L., Margolis, R. L., & Cavanaugh, R. M., Jr. (1991). Developmental changes in multifrequency tympanograms. Audiology, 30, 1–24.PubMedGoogle Scholar
  43. Igarishi, Y. (1980). Cochlea of the human fetus: A scanning electron microscope study. Archivum Histologicum Japonicum, 43, 195–209.Google Scholar
  44. Ikui, A., Sando, I., Sudo, M., & Fujita, S. (1997). Postnatal change in angle between the tympanic annulus and surrounding structures. The Annals of Otology, Rhinology and Laryngology, 106, 33–36.Google Scholar
  45. Ikui, A., Sando, I., Haginomori, S., & Sudo, M. (2000). Postnatal development of the tympanic cavity: A computer-aided reconstruction and measurement study. Acta Oto-Laryngologica, 120, 375–379.PubMedGoogle Scholar
  46. Kalluri, R., Abdala, C, Mishra, S., & Gharibian, L. (2011). Stimulus-frequency otoacoustic emissions in human newborns. Abstract 369. Association for Research in Otolaryngology 34th Midwinter Meeting, February 19–23, 2011, Baltimore, MD.Google Scholar
  47. Keefe, D. H., & Abdala, C. (2007). Theory of forward and reverse middle-ear transmission applied to otoacoustic emissions in infant and adult ears. Journal of the Acoustical Society of America, 121, 978–993.PubMedGoogle Scholar
  48. Keefe, D. H., & Abdala, C. (2011). Distortion-product otoacoustic-emission suppression tuning in human infants and adults using absorbed sound power. Journal of the Acoustical Society of America – Express Letters, 129, 108–113.Google Scholar
  49. Keefe, D. H., & Schairer, K. S. (2011). Specification of absorbed-sound power in the ear canal. Journal of the Acoustical Society of America, 129, 779–791.PubMedGoogle Scholar
  50. Keefe, D. H., Bulen, J. C., Arehart, K. H., & Burns, E. M. (1993). Ear-canal impedance and reflection coefficient in humans infants and adults. Journal of the Acoustical Society of America, 94, 2617–2638.PubMedGoogle Scholar
  51. Keefe, D. H., Bulen, J. C., Campbell, S. L., & Burns, E. M. (1994). Pressure transfer function and absorption cross section from the diffuse field to the human infant ear canal. Journal of the Acoustical Society of America, 95, 355–371.PubMedGoogle Scholar
  52. Keefe, D. H., Fitzpatrick, D., Liu, Y. W., Sanford, C. A., & Gorga, M. P. (2010). Wideband acoustic-reflex test in a test battery to predict middle-ear dysfunction. Hearing Research, 263, 52–65.PubMedGoogle Scholar
  53. Kemp, D. T. (1979). Evidence of mechanical nonlinearity and frequency selective wave amplification in the cochlea. Archives of Oto-rhino-laryngology, 224, 37–45.PubMedGoogle Scholar
  54. Knight, R. D., & Kemp, D. T. (2001). Wave and place fixed DPOAE maps of the human ear. Journal of the Acoustical Society of America, 109, 1513–1525.PubMedGoogle Scholar
  55. Kuypers, L. C., Decraemer, S. F., & Dirckx, J. J. J. (2006). Thickness distribution of fresh and preserved human eardrums measured with confocal microscopy. Otology & Neurotology, 27, 256–264.Google Scholar
  56. Lasky, R. E. (1998). Distortion product otoacoustic emissions in human newborns and adults. I. Frequency effects. Journal of the Acoustical Society of America, 103, 981–991.PubMedGoogle Scholar
  57. Lasky, R. E., Perlman, J., & Hecox, K. (1992). Distortion-product otoacoustic emissions in human newborns and adults. Ear and Hearing, 13, 430–441.PubMedGoogle Scholar
  58. Lavigne-Rebillard, M., & Pujol, R. (1986). Development of the auditory hair cell surface in human fetuses. A scanning electron microscopy study. Anatomy and Embryology, 174, 369–377.PubMedGoogle Scholar
  59. Lavigne-Rebillard, M., & Pujol, R. (1987). Surface aspects of the developing human organ of Corti. Acta Oto-Laryngologica Supplementum, 436, 43–50.PubMedGoogle Scholar
  60. Lavigne-Rebillard, M., & Pujol, R. (1990). Auditory hair cells in human fetuses: Synaptogenesis and ciliogenesis. Journal of Electron Microscopy Technique, 15, 115–122.PubMedGoogle Scholar
  61. Lim, D. J. (1970). Human tympanic membrane. An ultrastructural observation. Acta Oto-Laryngologica 70, 176–186.PubMedGoogle Scholar
  62. Lim, D. J., & Rudea, J. (1992). Structural development of the cochlea. In R. Romand (Ed.), Development of the auditory and vestibular systems, Vol. 2 (pp. 33–58). Amsterdam: Elsevier.Google Scholar
  63. Lonsbury-Martin, B., Harris, F., Hawkins, M., Stagner, B., & Martin, G. (1990). Distortion product otoacoustic emissions in humans: I. Basic properties in normal-hearing subjects. Annals of Otology, Rhinology & Laryngology Supplementum, 147, 3–14.Google Scholar
  64. Maison, S. F., & Liberman, M. C. (2000). Predicting vulnerability to acoustic injury with a noninvasive assay of olivocochlear reflex strength. The Journal of Neuroscience, 20, 4701–4707.PubMedGoogle Scholar
  65. Martin, G., Lonsburry-Martin, B., Prost, R., Scheinin, S., & Coats, A. (1987). Acoustic distortion products in rabbit ear canal. II. Sites of origin revealed by suppression contours and pure-tone exposures. Hearing Research, 28, 191–208.PubMedGoogle Scholar
  66. McLellan, M. S., & Webb, C. H. (1957). Ear studies in the newborn infant. Journal of Pediatrics, 51, 672–677.PubMedGoogle Scholar
  67. Micheyl, C., & Collet, L. (1996). Involvement of the olivocochlear bundle in the detection of tones in noise. Journal of the Acoustical Society of America, 99, 1604–1610.PubMedGoogle Scholar
  68. Mills, D. M., & Rubel, E. W. (1996). Development of the cochlear amplifier. Journal of the Acoustical Society of America, 100, 428–441.PubMedGoogle Scholar
  69. Morales B., Choi S. Y., & Kirkwood, A. (2002). Dark rearing alters the development of GABAergic transmission in visual cortex. Journal of Neuroscience, 22, 8084–8090.PubMedGoogle Scholar
  70. Morlet, T., Collet, L., Salle, B., & Morgon, A. (1993). Functional maturation of cochlear active mechanisms and of the medial olivocochlear system in humans. Acta Oto-Laryngologica, 113, 271–277.PubMedGoogle Scholar
  71. Morlet, T., Lapillonne, A., Ferber, C., Duclaux, R., Sann, L., Putet, G., Salle, B., & Collet, L. (1995). Spontaneous otoacoustic emissions in preterm neonates: Prevalence and gender effects. Hearing Research, 90, 44–54.PubMedGoogle Scholar
  72. Mountain, D. (1980). Changes in endolymphatic potential and crossed olivocochlear bundle stimulation alter cochlear mechanisms. Science, 210, 71–72.PubMedGoogle Scholar
  73. Northern, J. L., & Downs, M. P. (1984). Hearing in children. Baltimore: Williams & Wilkins.Google Scholar
  74. Norton, S. J., & Widen, J. (1990). Evoked otoacoustic emissions in normal-hearing infants and children: emerging data and issues. Ear and Hearing, 11, 121–127.PubMedGoogle Scholar
  75. Nowotny, M., & Gummer, A.W. (2006). Electromechanical transduction: Influence of the outer hair cells on the motion of the organ of Corti. HNO, 54, 536–543.Google Scholar
  76. Okabe, K., Tanaka, S., Hamada, H., Miura, T., & Funai, H. (1988). Acoustic impedance measurement on normal ears of children. Journal of Acoustical Society of Japan, 9, 287–294.Google Scholar
  77. Overstreet, E. H. III, Temchin, A. N., & Ruggero, M. A. (2002). Passive basilar membrane vibrations in gerbil neonates: Mechanical bases of cochlear maturation. Journal of Physiology, 545, 279–288.PubMedGoogle Scholar
  78. Popelka, G. R., Karson, R. K., & Arjmand, E. M. (1995). Growth of the 2f 1f 2 distortion product otoacoustic emission for low-level stimuli in human neonates. Ear and Hearing, 16, 159–165.PubMedGoogle Scholar
  79. Prieve, B. A. (1992). Otoacoustic emissions in infants and children: Basic characteristics and clinical application. Seminars in Hearing, 13, 37–52.Google Scholar
  80. Prieve, B. A., Fitzgerald, T. S., & Schulte, L. E. (1997a). Basic characteristics of click-evoked otoacoustic emissions in infants and children. Journal of the Acoustical Society of America, 102, 2860–2870.PubMedGoogle Scholar
  81. Prieve, B. A., Fitzgerald, T. S., Schulte, L. E., & Kemp, D. T. (1997b). Basic characteristics of distortion product otoacoustic emissions in infants and children. Journal of the Acoustical Society of America, 102, 2871–2879.PubMedGoogle Scholar
  82. Puel, J. L., & Rebillard, G. (1990). Effect of contralateral sound stimulation on the distortion product 2f 1f 2: Evidence that the medial efferent system is involved. Journal of the Acoustical Society of America, 87, 1630–1635.PubMedGoogle Scholar
  83. Pujol, R., & Hilding, D. (1973). Anatomy and physiology of the onset of auditory function. Acta Oto-Laryngologica, 76, 1–11.PubMedGoogle Scholar
  84. Pujol, R., & Lavigne-Rebillard, M. (1985). Early stages of innervation and sensory dell differentiation in the human fetal organ of Corti. Acta Oto-Laryngologica Supplementum, 423, 43–50.PubMedGoogle Scholar
  85. Pujol, R., Carlier, E., & Lenoir, M. (1980). Ontogenetic approach to inner and outer hair cells functions. Hearing Research, 2, 423–430.PubMedGoogle Scholar
  86. Pujol, R., Zajic, G., Dulon, D., Raphael, Y., Altschuler, R. A., & Schacht, J. (1991). First appearance and development of motile properties in outer hair cells isolated from guinea-pig cochlea. Hearing Research, 57, 129–141.PubMedGoogle Scholar
  87. Pujol, R., Lenoir, M., Ladrech, S., Tribillac, F., & Rebillard, G. (1992). Correlation between the length of outer hair cells and the frequency coding of the cochlea. In Y. Cazals, L. Demany, & K. C. Horner (Eds.), Auditory physiology and perception (pp. 45–52). Oxford: Pergamon Press.Google Scholar
  88. Pujol, R., Lavigne-Rebillard, M., & Lenoir, M. (1998). Development of sensory and neural structures in the mammalian cochlea. In E. Rubel, A. Popper, & R. Fay (Eds.), Development of the auditory system (pp. 146–192). New York: Springer.Google Scholar
  89. Qi, L., Liu, H., Lutfy, J., Funnell, W. R. J., & Daniel, S. J. (2006). A nonlinear finite-element model of the newborn ear canal. Journal of the Acoustical Society of America, 120, 3789–3798.PubMedGoogle Scholar
  90. Qi, L., Funnell, W. R. J., & Daniel, S. J. (2008). A nonlinear finite-element model of the newborn middle ear. Journal of the Acoustical Society of America, 124, 337–347.PubMedGoogle Scholar
  91. Raphael, Y., Marshak, G., Barash, A., & Geiger, B. (1987). Modulation of intermediate-filament expression in developing cochlear epithelium. Differentiation, 35, 151–162.PubMedGoogle Scholar
  92. Ren, T. & Nuttall, A. L. (2001). Basilar membrane vibration in the basal turn of the sensitive gerbil cochlea. Hearing Research 151, 48–60.PubMedGoogle Scholar
  93. Romand, R. (1987). Tonotopic evolution during development. Hearing Research, 28, 117–123.PubMedGoogle Scholar
  94. Rosowski, J. J., Carney, L. H., & Peake, W. T. (1988). The radiation impedance of the external ear of cat: Measurements and applications. Journal of the Acoustical Society of America, 84, 1695–1708.PubMedGoogle Scholar
  95. Ruah, C. B., Schachern, P. A., Zelterman, D., Paparella, M. M., & Yoon T. H. (1991). Age-related morphologic changes in the human tympanic membrane. A light and electron microscopic study. Archives of Otolaryngology, Head & Neck Surgery, 117, 627–634.Google Scholar
  96. Ruggero, M. A., Robles, L., & Rich, N. C. (1992). Two-tone suppression in the basilar membrane of the cochlea: Mechanical basis of auditory-nerve rate suppression. Journal of Neurophysiology, 68, 1087–1099.PubMedGoogle Scholar
  97. Ryan, S., & Piron, J. (1994). Functional maturation of the medial efferent olivocochlear system in human neonates. Acta Oto-Laryngologica, 114, 485–489.PubMedGoogle Scholar
  98. Sanchez-Fernandez, J. M., Rivera, J. M., & Macias, J. A. (1983). Early aspects of human cochlea development and tectorial membrane histogenesis. Acta Oto-Laryngologica, 95, 460–469.PubMedGoogle Scholar
  99. Saunders, J. C., Kaltenbach, J. A., & Relkin, E. M. (1983). The structural and functional development of the outer and middle ear. In R. Romand & M. R. Romand (Eds.), Development of auditory and vestibular systems (pp. 3–25). New York: Academic Press.Google Scholar
  100. Shaw, E. A. G. (1988). Diffuse field response, receiver impedance, and the acoustical reciprocity principle. Journal of the Acoustical Society of America, 84, 2284–2287.Google Scholar
  101. Shaw, E. A. G., & Teranishi, R. (1968). Sound pressure generated in an external-ear replica and real human ears by a nearly point source. Journal of the Acoustical Society of America, 44, 240–249.PubMedGoogle Scholar
  102. Shera, C. A. (2003). Mammalian spontaneous otoacoustic emissions are amplitude-stabilized cochlear standing waves. Journal of the Acoustical Society of America, 114, 244–262.PubMedGoogle Scholar
  103. Shera, C. A. (2004). Mechanisms of mammalian otoacoustic emission and their implications for the clinical utility of otoacoustic emissions. Ear and Hearing, 25, 86–97.PubMedGoogle Scholar
  104. Shera, C. A., & Abdala, C. (2011). Otoacoustic emissions – mechanisms and applications. In K. Tremblay & R. Burkard (Eds.), Translational perspectives in auditory neuroscience. (In press), San Diego: Plural.Google Scholar
  105. Shera, C. A., & Guinan, J. J. (1999). Evoked otoacoustic emissions arise by two fundamentally different mechanisms: A taxonomy for mammalian OAEs. Journal of the Acoustical Society of America, 105, 782–798.PubMedGoogle Scholar
  106. Shera, C. A., Talmadge, C. L., & Tubis, A. (2000). Interrelations among distortion-product phase-gradient delays: Their connection to scaling symmetry and its breaking. Journal of the Acoustical Society of America, 108, 2933–2948.PubMedGoogle Scholar
  107. Shera, C. A. Guinan, J. J., & Oxenham, A. J. (2010). Otoacoustic estimation of cochlear tuning: Validation in the chinchilla. Journal of the Association for Research in Otolaryngology, 11, 343–365.PubMedGoogle Scholar
  108. Siegel, J., & Kim, D. (1982). Efferent neural control of cochlear mechanics? Olivocochlear bundle stimulation affects cochlear biomechanical nonlinearity. Hearing Research, 6, 171–182.PubMedGoogle Scholar
  109. Simmons, D. D. (2002). Development of the inner ear efferent system across vertebrate species. Journal of Neurobiology, 53(2), 228–250.PubMedGoogle Scholar
  110. Smurzynski, J. (1994). Longitudinal measurements of distortion-product and click-evoked otoacoustic emissions of preterm and full-term infants. Ear and Hearing, 14, 258–274.Google Scholar
  111. Smurzynski, J., Jung, M. D., Lafreniere, D., Kim, D. O., Kamath, M. V., Rowe, J. C., Holman, M. C., & Leonard, G. (1993). Distortion-product and click-evoked otoacoustic emissions of preterm and full-term infants. Ear and Hearing, 14, 258–274.PubMedGoogle Scholar
  112. Song, L., McGee, J., & Walsh, E. J. (2008). Development of cochlear amplification, frequency tuning, and two-tone suppression in the mouse. Journal of Neurophysiology, 99, 344–355.PubMedGoogle Scholar
  113. Stevens, J. C., Webb, H. D., Smith, M. F., & Buffin, J. T. (1990). The effect of stimulus level on click evoked oto-acoustic emissions and brainstem responses in neonates under intensive care. British Journal of Audiology, 24, 293–300.PubMedGoogle Scholar
  114. Strickland, E. A., Burns, E. M., & Tubis, A. (1985). Incidence of spontaneous otoacoustic emissions in children and infants. Journal of the Acoustical Society of America, 78, 931–935.PubMedGoogle Scholar
  115. Talmadge, C. L., Tubis, A., Long, G. R., & Piskorski, P. (1998). Modeling otoacoustic emission and hearing threshold fine structures. Journal of the Acoustical Society of America, 104, 1517–1543.PubMedGoogle Scholar
  116. Tanaka, K., Sakai, N., & Terayama, Y. (1979). Organ of corti in the human fetus. Scanning and transmission electronmiscroscope studies. Annals of Otology, 88, 749–758.Google Scholar
  117. Tubis, A., Talmadge, C. L., Tong, C., & Dhar, S. (2000). On the relationships between the fixed-f 1, fixed-f 2, and fixed-ratio phase derivatives of the 2f 1f 2 distortion product otoacoustic emission. Journal of the Acoustical Society of America, 108, 1772–1785.PubMedGoogle Scholar
  118. Walsh, E. J., McGee, J., McFadden, S. L., & Liberman, M. C. (1998). Long-term effects of sectioning the olivocochlear bundle in neonatal cats. The Journal of Neuroscience, 18, 3859–3869.PubMedGoogle Scholar
  119. Zweig, G. (1976). Basilar membrane motion. Cold Spring Harbor Symposia on Quantitative Biology, 40, 619–633.PubMedGoogle Scholar
  120. Zweig, G. (1991). Finding the impedance of the organ of Corti. Journal of the Acoustical Society of America, 89, 1229–1254.PubMedGoogle Scholar
  121. Zweig, G., & Shera, C. A. (1995). The origin of periodicity in the spectrum of evoked otoacoustic emissions. Journal of the Acoustical Society of America, 98, 2018–2047.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Division of Communication & Auditory NeuroscienceHouse Research InstituteLos AngelesUSA
  2. 2.Boys Town National Research HospitalOmahaUSA

Personalised recommendations