Skip to main content

Overview and Issues in Human Auditory Development

  • Chapter
  • First Online:
Book cover Human Auditory Development

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 42))

Abstract

This chapter provides an overview of the volume Human Auditory Development. In addition, this chapter summarizes some major findings in human auditory development discussed in detail in the remaining chapters, and in particular, emphasizes the interrelatedness of the material presented in the rest of the book. This extends from the relationship between peripheral and central responses to the relationship between the structural and physiological properties of the auditory pathway and auditory perception to the relationship between basic aspects of auditory perception and complex perceptual processes. Another important theme is how experience with sound influences auditory development at all levels of the system and for all types of perception.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdala, C., & Sininger, Y. S. (1996). The development of cochlear frequency resolution in the human auditory system. Ear and Hearing, 17(5), 374–385.

    Article  PubMed  CAS  Google Scholar 

  • Adamson, C. L., Reid, M. A., Mo, Z. L., Bowne-English, J., & Davis, R. L. (2002). Firing features and potassium channel content of murine spiral ganglion neurons vary with cochlear location. Journal of Comparative Neurology, 447(4), 331–350.

    Article  PubMed  CAS  Google Scholar 

  • Anderson, S., & Kraus, N. (2010). Sensory-cognitive interaction in the neural encoding of speech in noise: A review. Journal of the American Academy of Audiology, 21(9), 575–585.

    Article  PubMed  Google Scholar 

  • Ashmead, D. H., Clifton, R. K., & Perris, E. E. (1987). Precision of auditory localization in human infants. Developmental Psychology, 23(5), 641–647.

    Article  Google Scholar 

  • Ashmead, D. H., Davis, D., Whalen, T., & Odom, R. (1991). Sound localization and sensitivity to interaural time differences in human infants. Child Development, 62(6), 1211–1226.

    Article  PubMed  CAS  Google Scholar 

  • Bartgis, J., Lilly, A. R., & Thomas, D. G. (2003). Event-related potential and behavioral measures of attention in 5-, 7-, and 9-year-olds. Journal of Genetic Psychology, 130(3), 311–335.

    Article  Google Scholar 

  • Bertoncini, J. (1993). Infants’ perception of speech units: Primary representation capacities. In B. de Boysson-Bardies, S. de Schonen, P. Jusczyk, P. McNeilage, & J. Morton (Eds.), Developmental neurocognition: Speech and face processing in the first year of life (pp. 249–257). Dordrecht: Kluwer.

    Google Scholar 

  • Bertoncini, J., Bijeljac-Babic, R., Jusczyk, P. W., Kennedy, L. J., & Mehler, J. (1988). An investigation of young infants’ perceptual representations of speech sounds. Journal of Experimental Psychology [General], 117(1), 21–33.

    Article  CAS  Google Scholar 

  • Bertoncini, J., Serniclaes, W., & Lorenzi, C. (2009). Discrimination of speech sounds based upon temporal envelope versus fine structure cues in 5- to 7-year-old children. Journal of Speech Language and Hearing Research, 52, 682–695.

    Article  Google Scholar 

  • Bibas, A., Liang, J., Michaels, L., & Wright, A. (2000). The development of the stria vascularis in the human foetus. Clinical Otolaryngology, 25(2), 126–129.

    Article  PubMed  CAS  Google Scholar 

  • Bibas, A. G., Xenellis, J., Michaels, L., Anagnostopoulou, S., Ferekidis, E., & Wright, A. (2008). Temporal bone study of development of the organ of Corti: Correlation between auditory function and anatomical structure. Journal of Laryngology and Otology, 122(4), 336–342.

    PubMed  CAS  Google Scholar 

  • Bredberg, G. (1968). Cellular pattern and nerve supply of the human organ of Corti. Acta Oto-Laryngologica Supplementum, 236.

    Google Scholar 

  • Bregman, A. S. (1990). Auditory scene analysis: The perceptual organization of sound. Cambridge, MA: MIT Press.

    Google Scholar 

  • Brungart, D. S., Simpson, B. D., Ericson, M. A., & Scott, K. R. (2001). Informational and energetic masking effects in the perception of multiple simultaneous talkers. Journal of the Acoustical Society of America, 110(5), 2527–2538.

    Article  PubMed  CAS  Google Scholar 

  • Buss, E., Hall, J. W., Iii, & Grose, J. H. (2006). Development and the role of internal noise in detection and discrimination thresholds with narrow band stimuli. Journal of the Acoustical Society of America, 120(5), 2777–2788.

    Article  PubMed  Google Scholar 

  • Clarkson, M. G., & Clifton, R. K. (1985). Infant pitch perception: Evidence for responding to pitch categories and the missing fundamental. Journal of the Acoustical Society of America, 77, 1521–1528.

    Article  PubMed  CAS  Google Scholar 

  • Clifton, R. K. (1992). The development of spatial hearing in human infants. In L. A. Werner & E. W. Rubel (Eds.), Developmental psychoacoustics (pp. 135–157). Washington, DC: American Psychological Association.

    Chapter  Google Scholar 

  • Clifton, R. K., Morrongiello, B., Kulig, J., & Dowd, J. (1981). Auditory localization of the newborn infant: Its relevance for cortical development. Child Development, 52, 833–838.

    Article  PubMed  CAS  Google Scholar 

  • Clifton, R. K., Gwiazda, J., Bauer, J., Clarkson, M., & Held, R. (1988). Growth in head size during infancy: Implications for sound localization. Developmental Psychology, 24, 477–483.

    Article  Google Scholar 

  • Durlach, N. I., Mason, C. R., Shinn-Cunningham, B. G., Arbogast, T. L., Colburn, H. S., & Kidd, G. (2003). Informational masking: Counteracting the effects of stimulus uncertainty by decreasing target-masker similarity. Journal of the Acoustical Society of America, 114(1), 368–379.

    Article  PubMed  Google Scholar 

  • Eggermont, J. J. (1991). Frequency dependent maturation of the cochlea and brainstem evoked potentials. Acta Oto-Laryngologica (Stockholm), 111, 220–224.

    Article  CAS  Google Scholar 

  • Eggermont, J. J., Brown, D. K., Ponton, C. W., & Kimberley, B. P. (1996). Comparison of distortion product otoacoustic emission (DPOAE) and auditory brainstem response (ABR) traveling wave delay measurements suggests frequency-specific synapse maturation. Ear and Hearing, 17, 386–394.

    Article  PubMed  CAS  Google Scholar 

  • Eggermont, J. J., & Ponton, C. W. (2003). Auditory-evoked potential studies of cortical maturation in normal hearing and implanted children: Correlations with changes in structure and speech perception. Acta Oto-Laryngologica, 123(2), 249–252.

    Article  PubMed  Google Scholar 

  • Fassbender, C. (1993). Auditory grouping and segregation processes in infancy. Norderstedt, Germany: Kaste Verlag.

    Google Scholar 

  • Folsom, R. C., & Wynne, M. K. (1987). Auditory brain stem responses from human adults and infants: Wave V tuning curves. Journal of the Acoustical Society of America, 81, 412–417.

    Article  PubMed  CAS  Google Scholar 

  • Friedman, C., & Pastore, R. E. (1977). Effects of lateralization on selective and divided attention. Journal of the Acoustical Society of America, 62, S1–S2.

    Article  Google Scholar 

  • Garadat, S. N., & Litovsky, R. Y. (2007). Speech intelligibility in free field: Spatial unmasking in preschool children. Journal of the Acoustical Society of America, 121(2), 1047–1055.

    Article  PubMed  Google Scholar 

  • Gilley, P. M., Sharma, A., Dorman, M., & Martin, K. (2005). Developmental changes in refractoriness of the cortical auditory evoked potential. Clinical Neurophysiology, 116(3), 648–657.

    Article  PubMed  Google Scholar 

  • Gomes, H., Dunn, M., Ritter, W., Kurtzberg, D., Brattson, A., Kreuzer, J. A., & Vaughan, H. G. (2001). Spatiotemporal maturation of the central and lateral N1 components to tones. Developmental Brain Research, 129(2), 147–155.

    Article  PubMed  CAS  Google Scholar 

  • Hall, J. W., & Grose, J. H. (1994). Development of temporal resolution in children as measured by the temporal-modulation transfer-function. Journal of the Acoustical Society of America, 96(1), 150–154.

    Article  PubMed  Google Scholar 

  • Hall, J. W., Buss, E., & Grose, J. H. (2005). Informational masking release in children and adults. Journal of the Acoustical Society of America, 118(3), 1605–1613.

    Article  PubMed  Google Scholar 

  • Hazan, V., & Barrett, S. (2000). The development of phonemic categorization in children aged 6–12. Journal of Phonetics, 28(4), 377–396.

    Article  Google Scholar 

  • Hollich, G., Newman, R. S., & Jusczyk, P. W. (2005). Infants’ use of synchronized visual information to separate streams of speech. Child Development, 76(3), 598–613.

    Article  PubMed  Google Scholar 

  • Johnstone, P. M., & Litovsky, R. Y. (2006). Effect of masker type and age on speech intelligibility and spatial release from masking in children and adults. Journal of the Acoustical Society of America, 120(4), 2177–2189.

    Article  PubMed  Google Scholar 

  • Jusczyk, P. W., Pisoni, D. B., Walley, A., & Murray, J. (1980). Discrimination of relative time of two-component tones by infants. Journal of the Acoustical Society of America, 67, 262–270.

    Article  PubMed  CAS  Google Scholar 

  • Keefe, D. H., Bulen, J. C., Arehart, K. H., & Burns, E. M. (1993). Ear-canal impedance and reflection coefficient in human infants and adults. Journal of the Acoustical Society of America, 94, 2617–2638.

    Article  PubMed  CAS  Google Scholar 

  • Keefe, D. H., Burns, E. M., Bulen, J. C., & Campbell, S. L. (1994). Pressure transfer function from the diffuse field to the human infant ear canal. Journal of the Acoustical Society of America, 95, 355–371.

    Article  PubMed  CAS  Google Scholar 

  • Kinney, H. C., Brody, B. A., Kloman, A. S., & Gilles, F. H. (1988). Sequence of central nervous system myelination in human infancy 2. Patterns of myelination in autopsied infants. Journal of Neuropathology and Experimental Neurology, 47(3), 217–234.

    Article  PubMed  CAS  Google Scholar 

  • Kuhl, P. K. (1991). Human adults and human infants show a “perceptual effect” for the prototypes of speech categories, monkeys do not. Perception and Psychophysics, 50, 93–107.

    Article  PubMed  CAS  Google Scholar 

  • Kuhl, P. K., & Meltzoff, A. N. (1982). The bimodal perception of speech in infancy. Science, 218, 1138–1140.

    Article  PubMed  CAS  Google Scholar 

  • Leibold, L. J., & Bonino, A. Y. (2009). Release from informational masking in children: Effect of multiple signal bursts. Journal of the Acoustical Society of America, 125(4), 2200–2208.

    Article  PubMed  Google Scholar 

  • Leibold, L. J., & Neff, D. L. (2007). Effects of masker-spectral variability and masker fringes in children and adults. Journal of the Acoustical Society of America, 121(6), 3666–3676.

    Article  PubMed  Google Scholar 

  • Litovsky, R. Y. (2005). Speech intelligibility and spatial release from masking in young children. Journal of the Acoustical Society of America, 117(5), 3091–3099.

    Article  PubMed  Google Scholar 

  • Marin-Padilla, M., & Marin-Padilla, T. M. (1982). Origin, prenatal development and structural organization of layer I of the human cerebral (motor) cortex—a Golgi study. Anatomy and Embryology, 164(2), 161–206.

    Article  PubMed  CAS  Google Scholar 

  • Maxon, A. B., & Hochberg, I. (1982). Development of psychoacoustic behavior: Sensitivity and discrimination. Ear and Hearing, 3(6), 301–308.

    Article  PubMed  CAS  Google Scholar 

  • Moore, B. C. J. (1973). Frequency difference limens for short-duration tones. Journal of the Acoustical Society of America, 54, 610–619.

    Article  PubMed  CAS  Google Scholar 

  • Moore, J. K., & Guan, Y. L. (2001). Cytoarchitectural and axonal maturation in human auditory cortex. Journal of the Association for Research in Otolaryngology, 2(4), 297–311.

    Article  PubMed  CAS  Google Scholar 

  • Morrongiello, B. A. (1988). Infants’ localization of sounds along the horizontal axis: Estimates of minimum audible angle. Developmental Psychology, 24, 8–13.

    Article  Google Scholar 

  • Neff, D. L., Jesteadt, W., & Callaghan, B. P. (1988). Combined masking under conditions of high uncertainty. Journal of the Acoustical Society of America, 83, S33.

    Article  Google Scholar 

  • Newman, R. S., & Evers, S. (2007). The effect of talker familiarity on stream segregation. Journal of Phonetics, 35(1), 85–103.

    Article  Google Scholar 

  • Ng, M. (2000). Postnatal maturation of the human endolymphatic sac. Laryngoscope, 110(9), 1452–1456.

    Article  PubMed  CAS  Google Scholar 

  • Nittrouer, S. (2004). The role of temporal and dynamic signal components in the perception of syllable-final stop voicing by children and adults. Journal of the Acoustical Society of America, 115(4), 1777–1790.

    Article  PubMed  Google Scholar 

  • Nittrouer, S. (2005). Age-related differences in weighting and masking of two cues to word-final stop voicing in noise. Journal of the Acoustical Society of America, 118(2), 1072–1088.

    Article  PubMed  Google Scholar 

  • Nittrouer, S., & Boothroyd, A. (1990). Context effects in phoneme and word recognition by young children and older adults. Journal of the Acoustical Society of America, 87, 2705–2715.

    Article  PubMed  CAS  Google Scholar 

  • Nozza, R. J. (1987). Infant speech-sound discrimination testing: Effects of stimulus intensity and procedural model on measures of performance. Journal of the Acoustical Society of America, 81(6), 1928–1939.

    Article  PubMed  CAS  Google Scholar 

  • Nozza, R. J., & Wilson, W. R. (1984). Masked and unmasked pure-tone thresholds of infants and adults: Development of auditory frequency selectivity and sensitivity. Journal of Speech and Hearing Research, 27, 613–622.

    PubMed  CAS  Google Scholar 

  • Okabe, K. S., Tanaka, S., Hamada, H., Miura, T., & Funai, H. (1988). Acoustic impedance measured on normal ears of children. Journal of the Acoustical Society of Japan, 9, 287–294.

    Google Scholar 

  • Olsho, L. W. (1985). Infant auditory perception: Tonal masking. Infant Behavior & Development, 8, 371–384.

    Article  Google Scholar 

  • Olsho, L. W., Koch, E. G., & Halpin, C. F. (1987). Level and age effects in infant frequency discrimination. Journal of the Acoustical Society of America, 82, 454–464.

    Article  PubMed  CAS  Google Scholar 

  • Olsho, L. W., Koch, E. G., Carter, E. A., Halpin, C. F., & Spetner, N. B. (1988). Pure-tone sensitivity of human infants. Journal of the Acoustical Society of America, 84(4), 1316–1324.

    Article  PubMed  CAS  Google Scholar 

  • Paetau, R., Ahonen, A., Salonen, O., & Sams, M. (1995). Auditory-evoked magnetic fields to tones and pseudowords in healthy children and adults. Journal of Clinical Neurophysiology, 12(2), 177–185.

    Article  PubMed  CAS  Google Scholar 

  • Pasman, J. W., Rotteveel, J. J., Degraaf, R., Maassen, B., & Notermans, S. L. H. (1991). Detectability of auditory evoked response components in preterm infants. Early Human Development, 26(2), 129–141.

    Article  PubMed  CAS  Google Scholar 

  • Pressnitzer, D., Sayles, M., Micheyl, C., & Winter, I. M. (2008). Perceptual organization of sound begins in the auditory periphery. Current Biology, 18(15), 1124–1128.

    Article  PubMed  CAS  Google Scholar 

  • Pujol, R., & Lavigne-Rebillard, M. (1995). Sensory and neural structures in the developing human cochlea. International Journal of Pediatric Otorhinolaryngology, 32(Supplement), S177–182.

    Google Scholar 

  • Pujol, J., Soriano-Mas, C., Ortiz, H., Sebastian-Galles, N., Losilla, J. M., & Deus, J. (2006). Myelination of language-related areas in the developing brain. Neurology, 66(3), 339–343.

    Article  PubMed  CAS  Google Scholar 

  • Rotteveel, J. J., de Graaf, R., Colon, E. J., Stegeman, D. F., & Visco, Y. M. (1987). The maturation of the central auditory conduction in preterm infants until three months post term. II. The auditory brainstem responses (ABRs). Hearing Research, 26, 21–35.

    Google Scholar 

  • Schneider, B. A., Trehub, S. E., Morrongiello, B. A., & Thorpe, L. A. (1989). Developmental changes in masked thresholds. Journal of the Acoustical Society of America, 86, 1733–1742.

    Article  PubMed  CAS  Google Scholar 

  • Schneider, B. A., Morrongiello, B. A., & Trehub, S. E. (1990). The size of the critical band in infants, children, and adults. Journal of Experimental Psychology [Human Perception and Performance], 16, 642–652.

    Article  CAS  Google Scholar 

  • Seki, S., & Eggermont, J. J. (2002). Changes in cat primary auditory cortex after minor-to-moderate pure-tone induced hearing loss. Hearing Research, 173(1–2), 172–186.

    Article  PubMed  Google Scholar 

  • Sininger, Y. S., Abdala, C., & Cone-Wesson, B. (1997). Auditory threshold sensitivity of the human neonate as measured by the auditory brainstem response. Hearing Research, 104(1–2), 1–22.

    Google Scholar 

  • Sinnott, J. M., Pisoni, D. B., & Aslin, R. M. (1983). A comparison of pure tone auditory thresholds in human infants and adults. Infant Behavior & Development, 6, 3–17.

    Article  Google Scholar 

  • Smith, N. A., & Trainor, L. J. (2011). Auditory stream segregation improves infants’ selective attention to target tones amid distracters. Infancy, 16, doi: 10.1111/j.1532-7078.2011.00067.x.

  • Spetner, N. B., & Olsho, L. W. (1990). Auditory frequency resolution in human infancy. Child Development, 61, 632–652.

    Article  PubMed  CAS  Google Scholar 

  • Sussman, E., Wong, R., Horvath, J., Winkler, I., & Wang, W. (2007). The development of the perceptual organization of sound by frequency separation in 5–11-year-old children. Hearing Research, 225, 117–127.

    Article  PubMed  CAS  Google Scholar 

  • Thai-Van, H., Coma, S., Boutitie, F., Disant, F., Truy, E., & Collet, L. (2007). The pattern of auditory brainstem response wave V maturation in cochlear-implanted children. Clinical Neurophysiology, 118(3), 676–689.

    Article  PubMed  Google Scholar 

  • Tharpe, A. M., & Ashmead, D. H. (2001). A longitudinal investigation of infant auditory sensitivity. American Journal of Audiology, 10(2), 104–112.

    Article  PubMed  CAS  Google Scholar 

  • Trehub, S. E., Schneider, B. A., Morrengiello, B. A., & Thorpe, L. A. (1988). Auditory sensitivity in school-age children. Journal of Experimental Child Psychology, 46, 273–285.

    Article  PubMed  CAS  Google Scholar 

  • Trehub, S. E., Schneider, B. A., & Henderson, J. (1995). Gap detection in infants, children, and adults. Journal of the Acoustical Society of America, 98, 2532–2541.

    Article  PubMed  CAS  Google Scholar 

  • Werker, J. F., & Tees, R. C. (1984). Cross-language speech perception: Evidence for perceptual reorganization during the first year of life. Infant Behavior and Development, 7, 49–63.

    Article  Google Scholar 

  • Werner, L. A., Marean, G. C., Halpin, C. F., Spetner, N. B., & Gillenwater, J. M. (1992). Infant auditory temporal acuity: Gap detection. Child Development, 63, 260–272.

    Article  PubMed  CAS  Google Scholar 

  • Wightman, F. L., & Kistler, D. J. (2005). Informational masking of speech in children: Effects of ipsilateral and contralateral distracters. Journal of the Acoustical Society of America, 118(5), 3164–3176.

    Article  PubMed  Google Scholar 

  • Wightman, F., Allen, P., Dolan, T., Kistler, D., & Jamieson, D. (1989). Temporal resolution in children. Child Development, 60, 611–624.

    Article  PubMed  CAS  Google Scholar 

  • Wightman, F., Callahan, M. R., Lutfi, R. A., Kistler, D. J., & Oh, E. (2003). Children’s detection of pure-tone signals: Informational masking with contralateral maskers. Journal of the Acoustical Society of America, 113(6), 3297–3305.

    Article  PubMed  Google Scholar 

  • Wightman, F., Kistler, D., & Brungart, D. (2006). Informational masking of speech in children: Auditory-visual integration. Journal of the Acoustical Society of America, 119(6), 3940–3949.

    Article  PubMed  Google Scholar 

  • Yakovlev, P. I., & Lecours, A.-R. (1967). The myelogenetic cycles of regional maturation of the brain. In A. Minkowski (Ed.), Regional development of the brain in early life (pp. 3–70). Oxford: Blackwell.

    Google Scholar 

Download references

Acknowledgments

Preparation of this chapter was supported by funding from NIDCD, R01 DC00396.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lynne A. Werner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Werner, L.A. (2012). Overview and Issues in Human Auditory Development. In: Werner, L., Fay, R., Popper, A. (eds) Human Auditory Development. Springer Handbook of Auditory Research, vol 42. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1421-6_1

Download citation

Publish with us

Policies and ethics