Skip to main content

Parallel Earthquake Simulations on Large-Scale Multicore Supercomputers

  • Chapter
  • First Online:
Handbook of Data Intensive Computing

Abstract

Earthquakes are one of the most destructive natural hazards on our planet Earth. Hugh earthquakes striking offshore may cause devastating tsunamis, as evidenced by the 11 March 2011 Japan (moment magnitude Mw9.0) and the 26 December 2004 Sumatra (Mw9.1) earthquakes. Earthquake prediction (in terms of the precise time, place, and magnitude of a coming earthquake) is arguably unfeasible in the foreseeable future. To mitigate seismic hazards from future earthquakes in earthquake-prone areas, such as California and Japan, scientists have been using numerical simulations to study earthquake rupture propagation along faults and seismic wave propagation in the surrounding media on ever-advancing modern computers over past several decades. In particular, ground motion simulations for past and future (possible) significant earthquakes have been performed to understand factors that affect ground shaking in populated areas, and to provide ground shaking characteristics and synthetic seismograms for emergency preparation and design of earthquake-resistant structures. These simulation results can guide the development of more rational seismic provisions for leading to safer, more efficient, and economical50pt]Please provide V. Taylor author e-mail ID. structures in earthquake-prone regions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P. Moczo, J. Kristek, M. Galis, et al., The finite-difference and finite-element modeling of seismic wave propagation and earthquake motion, Acta Phys. Slovaca, 57(2), 177–406, 2007.

    Article  Google Scholar 

  2. S. M. Day and C. R. Bradley, Memory-efficient simulation of anelastic wave propagation, Bulletin of the Seismological Society of America, 91, 520–531, 2001.

    Article  Google Scholar 

  3. C. Marcinkovich, and K. Olsen, On the implementation of perfectly matched layers in a three-dimensional fourth-order velocity-stress finite difference scheme, Journal of Geophysical Research, 108(B5), 2276, 2003.

    Google Scholar 

  4. K. B. Olsen, S. M. Day, J. B. Minster, et al., Strong shaking in Los Angeles expected from southern San Andreas earthquake, Geophysical Research Letters, 33, 1–4, 2006.

    Google Scholar 

  5. H. Magistrale, S. M. Day, R. W. Clayton, and R. W. Graves, The SCEC southern California reference three-dimensional seismic velocity model version 2, Bulletin of the Seismological Society of America, 90, S65–S76, 2000.

    Article  Google Scholar 

  6. M. Kohler, H. Magistrale, and R. Clayton, Mantle heterogeneities and the SCEC three-dimensional seismic velocity model version 3, Bulletin of the Seismological Society of America, 93, 757–774, 2003.

    Article  Google Scholar 

  7. K. B. Olsen, S. M. Day, J. B. Minster, et al., TeraShake2: Simulation of Mw7.7 earthquakes on the southern San Andreas fault with spontaneous rupture description, Bulletin of the Seismological Society of America, 98, 1162–1185, 2008.

    Google Scholar 

  8. Y. Cui, R. Moore, K. Olsen, et al., Toward Petascale Earthquake Simulations, Acta Geotechnica, DOI 10.1007/s11440-008-0055-2, 2008.

    Google Scholar 

  9. L. Jones, et al., The ShakeOut scenario, U.S. Geol. Survey Open File Rep., 2008–1150, 2008.

    Google Scholar 

  10. R. W. Graves, B. Aagaard, K. Hudnut, L. Star, J. Stewart, and T. H. Jordan, Broadband simulations for Mw 7.8 southern San Andreas earthquakes: Ground motion sensitivity to rupture speed, Geophysical Research Letters, 35, L22302, 2008.

    Google Scholar 

  11. K. W. Hudnut, B. Aagaard, R. Graves, L. Jones, T. Jordan, L. Star, and J. Stewart, ShakeOut earthquake source description, surface faulting and ground motions, U.S. Geol. Surv. Open File Rep., 2008–1150, 2008.

    Google Scholar 

  12. K. B. Olsen, S. M. Day, L. A. Dalguer, et al., ShakeOut-D: Ground motion estimates using an ensemble of large earthquakes on the southern San Andreas fault with spontaneous rupture propagation, Geophysical Research Letters, 36, L04303, 2009.

    Article  Google Scholar 

  13. J. Bielak, R. Graves, K.B. Olsen, et al., The ShakeOut Earthquake Scenario: Verification of Three Simulation Sets, Geophysical Journal International, 180 (1), 375–404, 2010.

    Article  Google Scholar 

  14. T. Tu, H. Yu, L. Ramırez-Guzman, et al., From mesh generation to scientific visualization: an end-to-end approach to parallel supercomputing, in Proceedings of 2006 ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis (SC06), IEEE Computer Society, Tampa, Florida, 2006.

    Google Scholar 

  15. Y. Cui, K. B. Olsen, T. H. Jordan, et al., Scalable earthquake simulation on petascale supercomputers, SC10, 2010.

    Google Scholar 

  16. Y. Ida, Cohesive force across the top of a longitudinal shear crack and Griffith’s specific surface energy, Journal of Geophysical Research, 77, 3796–3805, 1972.

    Article  Google Scholar 

  17. D. J. Andrews, Rupture velocity of plane strain shear cracks, Journal of Geophysical Research, 81, 5679–5687, 1976.

    Article  Google Scholar 

  18. S. M. Day, Three-dimensional simulation of spontaneous rupture: The effect of nonuniform prestress, Bulletin of the Seismological Society of America, 72, 1881–1902, 1982.

    Google Scholar 

  19. J. H. Dieterich, Modeling of rock friction, 1. Experimental results and constitutive equations, Journal of Geophysical Research, 84, 2169–2175, 1979.

    Google Scholar 

  20. A. Ruina, Slip instability and state variable friction laws, Journal of Geophysical Research, 88, 10,359–10,370, 1983.

    Google Scholar 

  21. D. D. Oglesby, R. J. Archuleta, and S. B. Nielsen, Earthquakes on dipping faults: the effects of broken symmetry, Science, 280, 1055–1059, 1998.

    Article  Google Scholar 

  22. D. D. Oglesby, R. J. Archuleta, and S. B. Nielsen, The three-dimensional dynamics of dipping faults, Bulletin of the Seismological Society of America, 90, 616–628, 2000.

    Article  Google Scholar 

  23. D. D. Oglesby, R. J. Archuleta, and S. B. Nielsen, The dynamics of dip-slip faults: Explorations in two dimensions, Journal of Geophysical Research, 105,13643–13653, 2000.

    Article  Google Scholar 

  24. H. Aochi, and E. Fukuyama, Three-dimensional non-planar simulation of the 1992 Landers earthquake, Journal of Geophysical Research, 107(B2), 2035, doi:10.1029/2000JB000061, 2002.

    Google Scholar 

  25. N. Kame, J. R. Rice, and R. Dmowska, Effects of prestress state and rupture velocity on dynamic fault branching, Journal of Geophysical Research, 108(B5), 2265, 2003.

    Google Scholar 

  26. R. A. Harris, M. Barall, et al., The SCEC/USGS Dynamic Earthquake-rupture Code Verification Exercise, Seismological Research Letters, Vol. 80, No. 1, 2009.

    Google Scholar 

  27. R. A. Harris, M. Barall, D. J. Andrews, et al., Verifying a computational method for predicting extreme ground motion, Seismological Research Letters, Vol. 82, No. 5, 2011.

    Google Scholar 

  28. S. M. Day, L. A. Dalguer, N. Lapusta, and Y. Liu, Comparison of finite difference and boundary integral solutions to three-dimensional spontaneous rupture, Journal of Geophysical Research, 110, B12307, doi:10.1029/2005JB003813, 2005.

    Google Scholar 

  29. B. Duan and D. D. Oglesby, Heterogeneous Fault Stresses From Previous Earthquakes and the Effect on Dynamics of Parallel Strike-slip Faults, Journal of Geophysical Research, 111, B05309, 2006.

    Article  Google Scholar 

  30. B. Duan and D. D. Oglesby, Nonuniform Prestress From Prior Earthquakes and the effect on Dynamics of Branched Fault Systems, Journal of Geophysical Research, 112, B05308, 2007.

    Article  Google Scholar 

  31. B. Duan and S. M. Day, Inelastic Strain Distribution and Seismic Radiation From Rupture of a Fault Kink, Journal of Geophysical Research, 113, B12311, 2008.

    Article  Google Scholar 

  32. B. Duan and S. M. Day, Sensitivity study of physical limits of ground motion at Yucca Mountain, Bulletin of the Seismological Society of America, 100 (6), 2996–3019, 2010.

    Article  Google Scholar 

  33. X. Wu, B. Duan and V. Taylor, An OpenMP Approach to Modeling Dynamic Earthquake Rupture Along Geometrically Complex Faults on CMP Systems, ICPP2009 SMECS Workshop, September 22–25, 2009, Vienna, Austria

    Google Scholar 

  34. B. Duan, Role of initial stress rotations in rupture dynamics and ground motion: A case study with Implications for the Wenchuan earthquake, Journal of Geophysical Research, 115, B05301, 2010.

    Article  Google Scholar 

  35. X. Wu, B. Duan and V. Taylor, Parallel simulations of dynamic earthquake rupture along geometrically complex faults on CMP systems, Journal of Algorithm and Computational Technology, 5 (2), 313–340, 2011.

    Article  Google Scholar 

  36. NCCS Jaguar and JaguarPF, Oak Ridge National Laboratory, http://www.nccs.gov/computing-resources/jaguar/

  37. T. Tu, D. R. O’Hallaron, and O. Ghattas, Scalable Parallel Octree Meshing for Terascale Applications, Proceedings of 2005 ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis (SC05), November 12–18, 2005, Seattle, Washington, USA.

    Google Scholar 

  38. K. Ma, A. Stompel, et al., Visualizing Very Large-Scale Earthquake Simulations, SC’03, November 15–21, 2003, Phoenix, Arizona, USA.

    Google Scholar 

  39. W. Gropp, E. Lusk, R. Thakur, Using MPI-2: Advanced Features of the Message-Passing Interface, MIT Press, Cambridge, MA, 1999.

    Google Scholar 

  40. M. Cannataro, D. Talia, and P. K. Srimani, Parallel Data Intensive Computing in Scientific and Commercial Applications, Parallel Computing 28, 2002.

    Google Scholar 

  41. H. Ding and R. Ferraro, An Element-based Concurrent Partitioned for Unstructured Finite Element Meshes, IPPS’96, 1996.

    Google Scholar 

  42. G. Mahinthakumar and F. Saied, A Hybrid MPI-OpenMP Implementation of An Implicit Finite-Element Code on Parallel Architectures, the International Journal of High Performance Computing Applications, Vol. 16, No. 4, 2002.

    Google Scholar 

  43. K. Nakajima, OpenMP/MPI Hybrid vs. Flat MPI On the Earth Simulator: Parallel Iterative Solvers for Finite Element Method, ISHPC2003, LNCS 2858, 2003.

    Google Scholar 

  44. X. Wu, B. Duan and V. Taylor, Parallel Finite Element Earthquake Rupture Simulations on Quad- and Hex-core Cray XT Systems, the 53rd Cray User Group Conference (CUG2011), May 23–26, 2011, Fairbanks, Alaska.

    Google Scholar 

  45. The SCEC/USGS Spontanous Rupture Code Verification Project, http://scecdata.usc.edu/cvws.

  46. X. Wu and V. Taylor, Performance Characteristics of Hybrid MPI/OpenMP Implementations of NAS Parallel Benchmarks SP and BT on Large-Scale Multicore Supercomputers, ACM SIGMETRICS Performance Evaluation Review, Vol. 38, Issue 4, March 2011

    Google Scholar 

  47. V. Taylor, E. Schwabe, B. Holmer, and M. Hribar, Balancing Load versus Decreasing Communication: Parameterizing the Tradeoff, Journal of Parallel and Distributed Computing, Vol. 61, 567–580, 2001.

    Article  MATH  Google Scholar 

  48. X. Wu, V. Taylor, C. Lively, and S. Sharkawi, Performance Analysis and Optimization of Parallel Scientific Applications on CMP Clusters, Scalable Computing: Practice and Experience, Vol. 10, No. 1, 2009.

    Google Scholar 

Download references

Acknowledgments

This work is supported by NSF grants CNS-0911023, EAR-1015597, and the Award No. KUS-I1-010-01 made by King Abdullah University of Science and Technology (KAUST). The authors would like to acknowledge National Center for Computational Science at Oak Ridge National Laboratory for the use of Jaguar and JaguarPF under DOE INCITE project “Performance Evaluation and Analysis Consortium End Station.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingfu Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Wu, X., Duan, B., Taylor, V. (2011). Parallel Earthquake Simulations on Large-Scale Multicore Supercomputers. In: Furht, B., Escalante, A. (eds) Handbook of Data Intensive Computing. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1415-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-1415-5_21

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-1414-8

  • Online ISBN: 978-1-4614-1415-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics