Skip to main content

NMR in Infection Research

  • Chapter
  • First Online:
  • 4916 Accesses

Abstract

In comparison to other research areas, antibacterial drug discovery provides many opportunities to employ nuclear magnetic resonance (NMR) spectroscopy in the process of drug discovery. First of all, there are a large number of validated targets that can be cloned and expressed and their biological function is well understood. Most targets can be over-expressed readily and purified at quantities needed for NMR. Meanwhile, structural information is frequently available for at least one representative of a given target. Furthermore, enzyme substrates and corresponding inhibitors are often available and characterized. In combination, these factors make NMR studies for bacterial targets both feasible and economical in industrial research.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Betz M, Saxena K, Schwalbe H (2006) Biomolecular NMR: a chaperone to drug discovery. Curr Opin Chem Biol 10:219–225

    Article  PubMed  CAS  Google Scholar 

  2. Cai M, Huang Y, Sakaguchi K et al (1998) An efficient and cost-effective isotope labeling protocol for proteins expressed in Escherichia coli. J Biomol NMR 11:97–102

    Article  PubMed  CAS  Google Scholar 

  3. Cavanagh J, Fairbrother WJ, Palmer AG III et al (2006) Protein NMR spectroscopy: principles and practice. Elsevier Science, Technology, Oxford

    Google Scholar 

  4. Clore GM, Gronenborn AM (1982) Theory and applications of the transferred nuclear overhauser effect to the study of the conformations of small ligands bound to proteins. J Magn Reson 48:402–417

    Article  CAS  Google Scholar 

  5. Dalvit C, Pevarello P, Tato M et al (2000) Identification of compounds with binding affinity to proteins via magnetization transfer from bulk water. J Biomol NMR 18:65–68

    Article  PubMed  CAS  Google Scholar 

  6. Dalvit C, Fogliatto G, Stewart A et al (2001) WaterLOGSY as a method for primary NMR screening: practical aspects and range of applicability. J Biomol NMR 21:349–359

    Article  PubMed  CAS  Google Scholar 

  7. Emanuele JJJ, Jin H, Yanchunas J et al (1997) Evaluation of the kinetic mechanism of Escherichia coli uridine diphosphate-N-acetylmuramate: L-alanine ligase. Biochemistry 36:7264–7271

    Article  PubMed  CAS  Google Scholar 

  8. Ernst RR, Bodenhausen G, Wokaun A (1990) Principles of nuclear magnetic resonance in one and two dimensions. Clarendon Press, 2004 ISBN 0198556470, 9780198556473

    Google Scholar 

  9. Fejzo J, Lepre CA, Peng JW et al (1999) The SHAPES strategy: an NMR-based approach for lead generation in drug discovery. Chem Biol 6:755–769

    Article  PubMed  CAS  Google Scholar 

  10. Gharbi-Benarous J, Evrard-Todeschi N, Ladam P et al (1999) Conformational analysis of josamycin, a 16-membered macrolide free in solution and bound to bacterial ribosomes. J Chem Soc Perkin Trans 2:529–544

    Google Scholar 

  11. Gossert AD, Henry C, Blommers MJJ et al (2009) Time efficient detection of protein-ligand interactions with the polarization optimized PO-WaterLOGSY NMR experiment. J Biomol NMR 43:211–217

    Article  PubMed  CAS  Google Scholar 

  12. Hajduk PJ, Olejniczak ET, Fesik SW (1997) One-dimensional relaxation- and diffusion-edited NMR methods for screening compounds that bind to macromolecules. J Am Chem Soc 119:12257–12261

    Article  CAS  Google Scholar 

  13. Hajduk PJ, Mack JC, Olejniczak ET et al (2004) SOS-NMR: a saturation transfer NMR-based method for determining the structures of protein-ligand complexes. J Am Chem Soc 126:2390–2398

    Article  PubMed  CAS  Google Scholar 

  14. Huang X, Lee MS (2004) NMR in drug discovery. Front Biotechnol Pharm 4:338–349

    CAS  Google Scholar 

  15. Jahnke W (2003) NMR in drug discovery. Chimia 57:59

    CAS  Google Scholar 

  16. Johnson EC, Feher VA, Peng JW et al (2003) Application of NMR SHAPES screening to an RNA target. J Am Chem Soc 125:15724–15725

    Article  PubMed  CAS  Google Scholar 

  17. Lahiri S, Mills S (2006) Crystal structure of haemophilus influenzae NAD-dependent DNA ligase A and its uses for molecular modeling of substrate modulators. PCT Int Appl 2005-GB3125; 2004-600667, 90

    Google Scholar 

  18. Lepre CA, Moore JM, Peng JW (2004) Theory and applications of NMR-based screening in pharmaceutical research. Chem Rev 104:3641–3675 (Washington, DC, US)

    Article  PubMed  CAS  Google Scholar 

  19. Levitt MH (2008) Spin dynamics: basics of nuclear magnetic resonance. Wiley, Chichester

    Google Scholar 

  20. Lundqvist T et al (2007) Exploitation of structural and regulatory diversity in glutamate racemases. Nature 447:817–822

    Article  PubMed  CAS  Google Scholar 

  21. Mayer M, Meyer B (1999) Characterization of ligand binding by saturation transfer difference NMR spectroscopy. Angew Chem Int Ed 38:1784–1788

    Article  CAS  Google Scholar 

  22. Mayer M, Meyer B (2001) Group epitope mapping by saturation transfer difference NMR to identify segments of a ligand in direct contact with a protein receptor. J Am Chem Soc 123:6108–6117

    Article  PubMed  CAS  Google Scholar 

  23. Palmer AGIII, Kroenke CD, Loria JP (2001) Nuclear magnetic resonance methods for quantifying microsecond-to-millisecond motions in biological macromolecules. Methods Enzymol 339:204–238

    Article  PubMed  CAS  Google Scholar 

  24. Pervushin K, Riek R, Wider G et al (1997) Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc Natl Acad Sci USA 94:12366–12371

    Article  PubMed  CAS  Google Scholar 

  25. Plesniak LA, Botsch K, Leibrand M et al (2008) Transferred NOE and saturation transfer difference NMR studies of novobiocin binding to EnvZ suggest binding mode similar to DNA gyrase. Chem Biol Drug Des 71:28–35

    PubMed  CAS  Google Scholar 

  26. Pochapsky SS, Pochapsky TC (2001) Nuclear magnetic resonance as a tool in drug discovery, metabolism and disposition. Curr Top Med Chem 1:427–441 (Hilversum, Neth)

    Article  PubMed  CAS  Google Scholar 

  27. Powers R (2009) Advances in nuclear magnetic resonance for drug discovery. Expert Opin Drug Discov 4:1077–1098

    Article  PubMed  CAS  Google Scholar 

  28. Sanders CR, Sonnichsen F (2006) Solution NMR of membrane proteins: practice and challenges. Magn Reson Chem 44:S24–S40

    Article  PubMed  CAS  Google Scholar 

  29. Sprangers R, Kay LE (2007) Quantitative dynamics and binding studies of the 20 S proteasome by NMR. Nature 445:618–622 (London, UK)

    Article  PubMed  CAS  Google Scholar 

  30. Stockman BJ, Dalvit C (2002) NMR screening techniques in drug discovery and drug design. Prog Nucl Magn Reson Spectrosc 41:187–231

    Article  CAS  Google Scholar 

  31. Tugarinov V, Kay LE (2003) Ile, leu, and val methyl assignments of the 723-residue malate synthase g using a new labeling strategy and novel NMR methods. J Am Chem Soc 125:13868–13878

    Article  PubMed  CAS  Google Scholar 

  32. Tugarinov V, Kay LE (2004) An isotope labeling strategy for methyl TROSY spectroscopy. J Biomol NMR 28:165–172

    Article  PubMed  CAS  Google Scholar 

  33. Wishart D (2005) NMR spectroscopy and protein structure determination: applications to drug discovery and development. Curr Pharm Biotechnol 6:105–120

    Article  PubMed  CAS  Google Scholar 

  34. Zartler ER, Shapiro MJ (2006) Protein NMR-based screening in drug discovery. Curr Pharm Des 12:3963–3972

    Article  PubMed  CAS  Google Scholar 

  35. Zawadzke LE, Norcia M, Desbonnet CR et al (2008) Identification of an inhibitor of the MurC enzyme, which catalyzes an essential step in the peptidoglycan precursor synthesis pathway. Assay Drug Dev Technol 6:95–103

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gunther Kern .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hu, J., Kern, G. (2012). NMR in Infection Research. In: Dougherty, T., Pucci, M. (eds) Antibiotic Discovery and Development. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1400-1_32

Download citation

Publish with us

Policies and ethics