Skip to main content

Resistance Trends and Susceptibility Profiles in the US Among Prevalent Clinical Pathogens: Lessons from Surveillance

  • Chapter
  • First Online:

Abstract

Since the advent of their discovery in the 1930s, antibiotics have served with great success on the front lines in the war against bacterial infection. A consequence of this success and widespread use was the inevitable evolution and emergence of resistance among bacteria from the resulting selective pressure. In the Golden Age of antibiotics (1940s–1960s), discovery of various new classes of antimicrobial agents outpaced the development of resistance by delivering new agents with different mechanisms of action that were effective against the resistant organisms of the day. In contrast, during the following period, there was a lack of development of novel classes of agents in favor of the chemical and structural modification of agents within established classes. While the development of novel classes or agents with activity against resistant organisms has slowed, the emergence and spread of resistance among bacteria has continued.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Livermore DM (2007) Introduction: the challenge of multiresistance. Int J Antimicrob Agents 29(Suppl 3):S1–S7

    Article  PubMed  CAS  Google Scholar 

  2. Boucher HW, Talbot GH, Bradley JS et al (2009) Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin Infect Dis 48:1–12

    Article  PubMed  Google Scholar 

  3. Jones ME, Karlowsky JA, Draghi DC et al (2003) Epidemiology and antibiotic susceptibility of bacteria causing skin and soft tissue infections in the USA and Europe: a guide to appropriate antimicrobial therapy. Int J Antimicrob Agents 22:406–419

    Article  PubMed  CAS  Google Scholar 

  4. Jones RN (2001) Resistance patterns among nosocomial pathogens: trends over the past few years. Chest 119:397S–404S

    Article  PubMed  CAS  Google Scholar 

  5. Paterson DL (2006) Resistance in gram-negative bacteria: enterobacteriaceae. Am J Med 119:S20–S28, discussion S62–S70

    Article  PubMed  CAS  Google Scholar 

  6. Rice LB (2006) Antimicrobial resistance in gram-positive bacteria. Am J Med 119:S11–S19, discussion S62–S70

    Article  PubMed  CAS  Google Scholar 

  7. Spellberg B, Guidos R, Gilbert D et al (2008) The epidemic of antibiotic-resistant infections: a call to action for the medical community from the Infectious Diseases Society of America. Clin Infect Dis 46:155–164

    Article  PubMed  Google Scholar 

  8. Asbell PA, Sahm DF, Shaw M et al (2008) Increasing prevalence of methicillin resistance in serious ocular infections caused by Staphylococcus aureus in the United States: 2000 to 2005. J Cataract Refract Surg 34:814–818

    Article  PubMed  Google Scholar 

  9. Jones ME, Draghi DC, Karlowsky JA et al (2004) Prevalence of antimicrobial resistance in bacteria isolated from central nervous system specimens as reported by U.S. hospital laboratories from 2000 to 2002. Ann Clin Microbiol Antimicrob 3:3

    Article  PubMed  Google Scholar 

  10. Jones ME, Karlowsky JA, Draghi DC et al (2004) Rates of antimicrobial resistance among common bacterial pathogens causing respiratory, blood, urine, and skin and soft tissue infections in pediatric patients. Eur J Clin Microbiol Infect Dis 23:445–455

    Article  PubMed  CAS  Google Scholar 

  11. Jones ME, Karlowsky JA, Draghi DC et al (2004) Antibiotic susceptibility of bacteria most commonly isolated from bone related infections: the role of cephalosporins in antimicrobial therapy. Int J Antimicrob Agents 23:240–246

    Article  PubMed  CAS  Google Scholar 

  12. Karlowsky JA, Jones ME, Draghi DC et al (2004) Prevalence and antimicrobial susceptibilities of bacteria isolated from blood cultures of hospitalized patients in the United States in 2002. Ann Clin Microbiol Antimicrob 3:7

    Article  PubMed  Google Scholar 

  13. Karlowsky JA, Kelly LJ, Thornsberry C et al (2002) Trends in antimicrobial resistance among urinary tract infection isolates of Escherichia coli from female outpatients in the United States. Antimicrob Agents Chemother 46:2540–2545

    Article  PubMed  CAS  Google Scholar 

  14. Sahm DF, Brown NP, Yee YC et al (2008) Stratified analysis of multidrug-resistant Escherichia coli in US health care institutions. Postgrad Med 120:53–59

    Article  PubMed  Google Scholar 

  15. Styers D, Sheehan DJ, Hogan P et al (2006) Laboratory-based surveillance of current antimicrobial resistance patterns and trends among Staphylococcus aureus: 2005 status in the United States. Ann Clin Microbiol Antimicrob 5:2

    Article  PubMed  CAS  Google Scholar 

  16. Tillotson GS, Draghi DC, Sahm DF et al (2008) Susceptibility of Staphylococcus aureus isolated from skin and wound infections in the United States 2005–07: laboratory-based surveillance study. J Antimicrob Chemother 62:109–115

    Article  PubMed  CAS  Google Scholar 

  17. Karlowsky JA, Jones ME, Thornsberry C et al (2005) Stable antimicrobial susceptibility rates for clinical isolates of Pseudomonas aeruginosa from the 2001–2003 tracking resistance in the United States today surveillance studies. Clin Infect Dis 40(Suppl 2):S89–S98

    Article  PubMed  Google Scholar 

  18. Karlowsky JA, Kelly LJ, Thornsberry C et al (2002) Susceptibility to fluoroquinolones among commonly isolated gram-negative bacilli in 2000: TRUST and TSN data for the United States. Tracking resistance in the United States Today. The surveillance network. Int J Antimicrob Agents 19:21–31

    Article  PubMed  CAS  Google Scholar 

  19. Karlowsky JA, Thornsberry C, Critchley IA et al (2003) Susceptibilities to levofloxacin in Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis clinical isolates from children: results from 2000–2001 and 2001–2002 TRUST studies in the United States. Antimicrob Agents Chemother 47:1790–1797

    Article  PubMed  CAS  Google Scholar 

  20. Karlowsky JA, Thornsberry C, Jones ME et al (2003) Factors associated with relative rates of antimicrobial resistance among Streptococcus pneumoniae in the United States: results from the TRUST Surveillance Program (1998–2002). Clin Infect Dis 36:963–970

    Article  PubMed  Google Scholar 

  21. Sahm DF, Brown NP, Draghi DC et al (2008) Tracking resistance among bacterial respiratory tract pathogens: summary of findings of the TRUST Surveillance Initiative, 2001–2005. Postgrad Med 120:8–15

    Article  PubMed  Google Scholar 

  22. Thornsberry C, Sahm DF, Kelly LJ et al (2002) Regional trends in antimicrobial resistance among clinical isolates of Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis in the United States: results from the TRUST Surveillance Program, 1999–2000. Clin Infect Dis 34(Suppl 1):S4–S16

    Article  PubMed  Google Scholar 

  23. Arhin FF, Draghi DC, Pillar CM et al (2009) Comparative in vitro activity profile of oritavancin against recent gram-positive clinical isolates. Antimicrob Agents Chemother 53: 4762–4771

    Article  PubMed  CAS  Google Scholar 

  24. CLSI (2008) Performance standards for antimicrobial susceptibility testing: seventeenth informational supplement, CLSI document M100-S18. Clinical and Laboratory Standards Institute, Wayne

    Google Scholar 

  25. CLSI (2006) Methods for dilution antimicrobial susceptibility test for bacteria that grow aerobically: approved standard, 7th edn, CLSI document M7-A7. Clinical and Laboratory Standards Institute, Wayne

    Google Scholar 

  26. Chastre J, Fagon JY (2002) Ventilator-associated pneumonia. Am J Respir Crit Care Med 165:867–903

    PubMed  Google Scholar 

  27. DiNubile MJ, Lipsky BA (2004) Complicated infections of skin and skin structures: when the infection is more than skin deep. J Antimicrob Chemother 53(Suppl 2):ii37–ii50

    Article  PubMed  CAS  Google Scholar 

  28. Jacobs MR, Jones RN, Giordano PA (2007) Oral beta-lactams applied to uncomplicated infections of skin and skin structures. Diagn Microbiol Infect Dis 57:55S–65S

    Article  PubMed  CAS  Google Scholar 

  29. Manian FA, Meyer PL, Setzer J et al (2003) Surgical site infections associated with methicillin-resistant Staphylococcus aureus: do postoperative factors play a role? Clin Infect Dis 36:863–868

    Article  PubMed  Google Scholar 

  30. Sharma M, Berriel-Cass D, Baran J Jr (2004) Sternal surgical-site infection following coronary artery bypass graft: prevalence, microbiology, and complications during a 42-month period. Infect Control Hosp Epidemiol 25:468–471

    Article  PubMed  Google Scholar 

  31. Wagenlehner FM, Naber KG (2006) Current challenges in the treatment of complicated urinary tract infections and prostatitis. Clin Microbiol Infect 12(Suppl 3):67–80

    Article  PubMed  CAS  Google Scholar 

  32. American Thoracic Society, Infectious Diseases Society of America (2005) Guidelines for the management of adults with hospital-acquired ventilator-associated, and healthcare-associated pneumonia. Am J Respir Crit Care Med 171:388–416

    Article  Google Scholar 

  33. Mandell LA, Wunderink RG, Anzueto A et al (2007) Infectious Diseases Society of America/American Thoracic Society consensus guidelines on the management of community-acquired pneumonia in adults. Clin Infect Dis 44(Suppl 2):S27–S72

    Article  PubMed  CAS  Google Scholar 

  34. Solomkin JS, Mazuski JE, Baron EJ et al (2003) Guidelines for the selection of anti-infective agents for complicated intra-abdominal infections. Clin Infect Dis 37:997–1005

    Article  PubMed  Google Scholar 

  35. Warren JW, Abrutyn E, Hebel JR et al (1999) Guidelines for antimicrobial treatment of uncomplicated acute bacterial cystitis and acute pyelonephritis in women Infectious Diseases Society of America (IDSA). Clin Infect Dis 29:745–758

    Article  PubMed  CAS  Google Scholar 

  36. Emori TG, Culver DH, Horan TC et al (1991) National nosocomial infections surveillance system (NNIS): description of surveillance methods. Am J Infect Control 19:19–35

    Article  PubMed  CAS  Google Scholar 

  37. Amsler KM, Davies TA, Shang W et al (2008) In vitro activity of ceftobiprole against pathogens from two phase 3 clinical trials of complicated skin and skin structure infections. Antimicrob Agents Chemother 52:3418–3423

    Article  PubMed  CAS  Google Scholar 

  38. Breedt J, Teras J, Gardovskis J et al (2005) Safety and efficacy of tigecycline in treatment of skin and skin structure infections: results of a double-blind phase 3 comparison study with vancomycin-aztreonam. Antimicrob Agents Chemother 49:4658–4666

    Article  PubMed  CAS  Google Scholar 

  39. Fagon J, Patrick H, Haas DW et al (2000) Treatment of gram-positive nosocomial pneumonia. Prospective randomized comparison of quinupristin/dalfopristin versus vancomycin. Nosocomial Pneumonia Group. Am J Respir Crit Care Med 161:753–762

    PubMed  CAS  Google Scholar 

  40. Oliva ME, Rekha A, Yellin A et al (2005) A multicenter trial of the efficacy and safety of tigecycline versus imipenem/cilastatin in patients with complicated intra-abdominal infections [Study ID Numbers: 3074A1-301-WW; ClinicalTrials.gov Identifier: NCT00081744]. BMC Infect Dis 5:88

    Article  PubMed  CAS  Google Scholar 

  41. Talbot GH, Thye D, Das A et al (2007) Phase 2 study of ceftaroline versus standard therapy in treatment of complicated skin and skin structure infections. Antimicrob Agents Chemother 51:3612–3616

    Article  PubMed  CAS  Google Scholar 

  42. Denton M (2007) Enterobacteriaceae. Int J Antimicrob Agents 29(Suppl 3):S9–S22

    Article  PubMed  CAS  Google Scholar 

  43. Livermore DM, Canton R, Gniadkowski M et al (2007) CTX-M: changing the face of ESBLs in Europe. J Antimicrob Chemother 59:165–174

    Article  PubMed  CAS  Google Scholar 

  44. Fritsche TR, Sader HS, Toleman MA et al (2005) Emerging metallo-beta-lactamase-mediated resistances: a summary report from the worldwide SENTRY antimicrobial surveillance program. Clin Infect Dis 41(Suppl 4):S276–S278

    Article  PubMed  CAS  Google Scholar 

  45. Jones RN, Biedenbach DJ, Sader HS et al (2005) Emerging epidemic of metallo-beta-lactamase-mediated resistances. Diagn Microbiol Infect Dis 51:77–84

    Article  PubMed  CAS  Google Scholar 

  46. Diekema DJ, Pfaller MA, Schmitz FJ et al (2001) Survey of infections due to Staphylococcus species: frequency of occurrence and antimicrobial susceptibility of isolates collected in the United States, Canada, Latin America, Europe, and the Western Pacific region for the SENTRY Antimicrobial Surveillance Program, 1997–1999. Clin Infect Dis 32(Suppl 2): S114–S132

    Article  PubMed  CAS  Google Scholar 

  47. Hoban DJ, Biedenbach DJ, Mutnick AH et al (2003) Pathogen of occurrence and susceptibility patterns associated with pneumonia in hospitalized patients in North America: results of the SENTRY Antimicrobial Surveillance Study (2000). Diagn Microbiol Infect Dis 45:279–285

    Article  PubMed  CAS  Google Scholar 

  48. Defres S, Marwick C, Nathwani D (2009) MRSA as a cause of lung infection including airway infection, community-acquired pneumonia and hospital-acquired pneumonia. Eur Respir J 34:1470–1476

    Article  PubMed  CAS  Google Scholar 

  49. Hidron AI, Low CE, Honig EG et al (2009) Emergence of community-acquired meticillin-resistant Staphylococcus aureus strain USA300 as a cause of necrotising community-onset pneumonia. Lancet Infect Dis 9:384–392

    Article  PubMed  Google Scholar 

  50. King MD, Humphrey BJ, Wang YF et al (2006) Emergence of community-acquired methicillin-resistant Staphylococcus aureus USA 300 clone as the predominant cause of skin and soft-tissue infections. Ann Intern Med 144:309–317

    PubMed  Google Scholar 

  51. McDougal LK, Steward CD, Killgore GE et al (2003) Pulsed-field gel electrophoresis typing of oxacillin-resistant Staphylococcus aureus isolates from the United States: establishing a national database. J Clin Microbiol 41:5113–5120

    Article  PubMed  CAS  Google Scholar 

  52. Enserink M (2003) Infectious diseases. Resistant staph finds new niches. Science 299: 1639–1641

    Article  PubMed  CAS  Google Scholar 

  53. Yoshida K, Shoji H, Hanaki H et al (2009) Linezolid-resistant methicillin-resistant Staphylococcus aureus isolated after long-term, repeated use of linezolid. J Infect Chemother 15:417–419

    Article  PubMed  Google Scholar 

  54. Tsiodras S, Gold HS, Sakoulas G et al (2001) Linezolid resistance in a clinical isolate of Staphylococcus aureus. Lancet 358:207–208

    Article  PubMed  CAS  Google Scholar 

  55. Tenover FC, Sinner SW, Segal RE et al (2009) Characterisation of a Staphylococcus aureus strain with progressive loss of susceptibility to vancomycin and daptomycin during therapy. Int J Antimicrob Agents 33:564–568

    Article  PubMed  CAS  Google Scholar 

  56. Sakoulas G, Moellering RC Jr (2008) Increasing antibiotic resistance among methicillin-resistant Staphylococcus aureus strains. Clin Infect Dis 46(Suppl 5):S360–S367

    Article  PubMed  CAS  Google Scholar 

  57. Morales G, Picazo JJ, Baos E et al (2010) Resistance to linezolid is mediated by the cfr gene in the first report of an outbreak of linezolid-resistant Staphylococcus aureus. Clin Infect Dis 50:821–825

    Article  PubMed  CAS  Google Scholar 

  58. Appelbaum PC (2006) The emergence of vancomycin-intermediate and vancomycin-resistant Staphylococcus aureus. Clin Microbiol Infect 12(Suppl 1):16–23

    Article  PubMed  CAS  Google Scholar 

  59. Rybak MJ, Leonard SN, Rossi KL et al (2008) Characterization of vancomycin-heteroresistant Staphylococcus aureus from the metropolitan area of Detroit, Michigan, over a 22-year period (1986 to 2007). J Clin Microbiol 46:2950–2954

    Article  PubMed  Google Scholar 

  60. Steinkraus G, White R, Friedrich L (2007) Vancomycin MIC creep in non-vancomycin-intermediate Staphylococcus aureus (VISA), vancomycin-susceptible clinical methicillin-resistant S. aureus (MRSA) blood isolates from 2001–05. J Antimicrob Chemother 60:788–794

    Article  PubMed  CAS  Google Scholar 

  61. Wang G, Hindler JF, Ward KW et al (2006) Increased vancomycin MICs for Staphylococcus aureus clinical isolates from a university hospital during a 5-year period. J Clin Microbiol 44:3883–3886

    Article  PubMed  CAS  Google Scholar 

  62. Lodise TP, Graves J, Evans A et al (2008) Relationship between vancomycin MIC and failure among patients with methicillin-resistant Staphylococcus aureus bacteremia treated with vancomycin. Antimicrob Agents Chemother 52:3315–3320

    Article  PubMed  CAS  Google Scholar 

  63. Neoh HM, Hori S, Komatsu M et al (2007) Impact of reduced vancomycin ssceptibility on the therapeutic outcome of MRSA bloodstream infections. Ann Clin Microbiol Antimicrob 6:13

    Article  PubMed  CAS  Google Scholar 

  64. Jones RN (2006) Microbiological features of vancomycin in the 21st century: minimum inhibitory concentration creep, bactericidal/static activity, and applied breakpoints to predict clinical outcomes or detect resistant strains. Clin Infect Dis 42(Suppl 1):S13–S24

    Article  PubMed  CAS  Google Scholar 

  65. Sader HS, Fey PD, Fish DN et al (2009) Evaluation of vancomycin and daptomycin potency trends (MIC creep) against methicillin-resistant Staphylococcus aureus isolates collected in nine U.S. medical centers from 2002 to 2006. Antimicrob Agents Chemother 53:4127–4132

    Article  PubMed  CAS  Google Scholar 

  66. Popovich K, Hota B, Rice T et al (2007) Phenotypic prediction rule for community-associated methicillin-resistant Staphylococcus aureus. J Clin Microbiol 45:2293–2295

    Article  PubMed  Google Scholar 

  67. Archer G, Climo M (2005) Staphylococcus epidermidis and other coagulase-negative staphylococci. In: Mandell GL, Bennett JE, Dolin R (eds) Principles and practices of infectious diseases. Elsevier, Philadelphia, pp 2352–2360

    Google Scholar 

  68. Amyes SG (2007) Enterococci and streptococci. Int J Antimicrob Agents 29(Suppl 3):S43–S52

    Article  PubMed  CAS  Google Scholar 

  69. Malani P, Kauffman CA, Zervos MJ (2002) Enterococcal disease, epidemiology, and treatment (2002). In: Gilmore M, Clewell D, Courvalin P et al (eds) The enterococci: pathogenesis, molecular biology, and antibiotic resistance. ASM Press, Washington, DC, pp 385–408

    Google Scholar 

  70. Menichetti F (2005) Current and emerging serious gram-positive infections. Clin Microbiol Infect 11(Suppl 3):22–28

    Article  PubMed  Google Scholar 

  71. Edwards M, Baker C (2005) Streptococcus agalactiae (Group B Streptococcus). In: Mandell GL, Bennett JE, Dolin R (eds) Principles and practices of infectious diseases. Elsevier, Philadelphia, pp 2423–2434

    Google Scholar 

  72. Musher DM (2005) Streptococcus pyogenes. In: Mandell GL, Bennett JE, Dolin R (eds) Principles and practices of infectious diseases. Elsevier, Philadelphia, pp 2362–2379

    Google Scholar 

  73. Biedenbach DJ, Toleman MA, Walsh TR et al (2006) Characterization of fluoroquinolone-resistant beta-hemolytic Streptococcus spp. isolated in North America and Europe including the first report of fluoroquinolone-resistant Streptococcus dysgalactiae subspecies equisimilis: report from the SENTRY Antimicrobial Surveillance Program (1997–2004). Diagn Microbiol Infect Dis 55:119–127

    Article  PubMed  CAS  Google Scholar 

  74. Musher DM (2005) Streptococcus pneumoniae. In: Mandell GL, Bennett JE, Dolin R (eds) Principles and practices of infectious disease. Elsevier, Philadelphia, pp 2392–2410

    Google Scholar 

  75. Sahm DF, Brown NP, Thornsberry C et al (2008) Antimicrobial susceptibility profiles among common respiratory tract pathogens: a GLOBAL perspective. Postgrad Med 120:16–24

    Article  PubMed  Google Scholar 

  76. Thornsberry C, Brown NP, Draghi DC et al (2008) Antimicrobial activity among multidrug-resistant Streptococcus pneumoniae isolated in the United States, 2001–2005. Postgrad Med 120:32–38

    Article  PubMed  Google Scholar 

  77. Sa-Leao R, Nunes S, Brito-Avo A et al (2009) Changes in pneumococcal serotypes and antibiotypes carried by vaccinated and unvaccinated day-care centre attendees in Portugal, a country with widespread use of the seven-valent pneumococcal conjugate vaccine. Clin Microbiol Infect 15:1002–1007

    Article  PubMed  CAS  Google Scholar 

  78. Dagan R (2009) Impact of pneumococcal conjugate vaccine on infections caused by antibiotic-resistant Streptococcus pneumoniae. Clin Microbiol Infect 15(Suppl 3):16–20

    Article  PubMed  CAS  Google Scholar 

  79. Murphy T (2005) Haemophilus infections. In: Mandell GL, Bennett JE, Dolin R (eds) Principles and practices of infectious diseases. Elsevier, Philadelphia, pp 2661–2668

    Google Scholar 

  80. Donnenberg M (2005) Enterobacteriaceae. In: Mandell GL, Bennett JE, Dolin R (eds) Principles and practices of infectious diseases. Elsevier, Philadelphia, pp 2567–2586

    Google Scholar 

  81. Bush K, Jacoby GA (2010) Updated functional classification of {beta}-lactamases. Antimicrob Agents Chemother 54:969–976

    Article  PubMed  CAS  Google Scholar 

  82. Yigit H, Queenan AM, Anderson GJ et al (2001) Novel carbapenem-hydrolyzing beta-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrob Agents Chemother 45:1151–1161

    Article  PubMed  CAS  Google Scholar 

  83. Queenan AM, Bush K (2007) Carbapenemases: the versatile beta-lactamases. Clin Microbiol Rev 20:440–458, TOC

    Article  PubMed  CAS  Google Scholar 

  84. Bratu S, Landman D, Haag R et al (2005) Rapid spread of carbapenem-resistant Klebsiella pneumoniae in New York City: a new threat to our antibiotic armamentarium. Arch Intern Med 165:1430–1435

    Article  PubMed  CAS  Google Scholar 

  85. Psichogiou M, Tassios PT, Avlamis A et al (2008) Ongoing epidemic of blaVIM-1-positive Klebsiella pneumoniae in Athens, Greece: a prospective survey. J Antimicrob Chemother 61:59–63

    Article  PubMed  CAS  Google Scholar 

  86. Cagnacci S, Gualco L, Roveta S et al (2008) Bloodstream infections caused by multidrug-resistant Klebsiella pneumoniae producing the carbapenem-hydrolysing VIM-1 metallo-beta-lactamase: first Italian outbreak. J Antimicrob Chemother 61:296–300

    Article  PubMed  CAS  Google Scholar 

  87. Lautenbach E, Strom BL, Bilker WB et al (2001) Epidemiological investigation of fluoroquinolone resistance in infections due to extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae. Clin Infect Dis 33:1288–1294

    Article  PubMed  CAS  Google Scholar 

  88. Hyle EP, Lipworth AD, Zaoutis TE et al (2005) Risk factors for increasing multidrug resistance among extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella species. Clin Infect Dis 40:1317–1324

    Article  PubMed  CAS  Google Scholar 

  89. DiPersio JR, Deshpande LM, Biedenbach DJ et al (2005) Evolution and dissemination of extended-spectrum beta-lactamase-producing Klebsiella pneumoniae: epidemiology and molecular report from the SENTRY Antimicrobial Surveillance Program (1997–2003). Diagn Microbiol Infect Dis 51:1–7

    Article  PubMed  CAS  Google Scholar 

  90. Pier G, Ramphal R (2005) Pseudomonas aeruginosa. In: Mandell GL, Bennett JE, Dolin R (eds) Principles and practices of infectious diseases. Elsevier, Philadelphia, pp 2587–2615

    Google Scholar 

  91. McGowan JE Jr (2006) Resistance in nonfermenting gram-negative bacteria: multidrug resistance to the maximum. Am J Med 119:S29–S36, discussion S62–S70

    Article  PubMed  CAS  Google Scholar 

  92. Enoch DA, Birkett CI, Ludlam HA (2007) Non-fermentative gram-negative bacteria. Int J Antimicrob Agents 29(Suppl 3):S33–S41

    Article  PubMed  CAS  Google Scholar 

  93. Walkty A, DeCorby M, Nichol K et al (2009) In vitro activity of colistin (polymyxin E) against 3,480 isolates of gram-negative bacilli obtained from patients in Canadian hospitals in the CANWARD study, 2007–2008. Antimicrob Agents Chemother 53:4924–4926

    Article  PubMed  CAS  Google Scholar 

  94. Tam VH, Chang KT, Abdelraouf K et al (2010) Prevalence, resistance mechanisms, and susceptibility of multidrug-resistant bloodstream isolates of Pseudomonas aeruginosa. Antimicrob Agents Chemother 54:1160–1164

    Article  PubMed  CAS  Google Scholar 

  95. Allen D, Hartman B (2005) Acinetobacter species. In: Mandell GL, Bennett JE, Dolin R (eds) Principles and practices of infectious diseases. Elsevier, Philadelphia, pp 2632–2635

    Google Scholar 

  96. Maragakis LL, Perencevich EN, Cosgrove SE (2008) Clinical and economic burden of antimicrobial resistance. Expert Rev Anti Infect Ther 6:751–763

    Article  PubMed  Google Scholar 

  97. Lode HM (2009) Clinical impact of antibiotic-resistant gram-positive pathogens. Clin Microbiol Infect 15:212–217

    Article  PubMed  CAS  Google Scholar 

  98. Foglia EE, Fraser VJ, Elward AM (2007) Effect of nosocomial infections due to antibiotic-resistant organisms on length of stay and mortality in the pediatric intensive care unit. Infect Control Hosp Epidemiol 28:299–306

    Article  PubMed  Google Scholar 

  99. Cosgrove SE (2006) The relationship between antimicrobial resistance and patient outcomes: mortality, length of hospital stay, and health care costs. Clin Infect Dis 42(Suppl 2):S82–S89

    Article  PubMed  Google Scholar 

  100. Talbot GH, Bradley J, Edwards JE Jr et al (2006) Bad bugs need drugs: an update on the development pipeline from the antimicrobial availability task force of the Infectious Diseases Society of America. Clin Infect Dis 42:657–668

    Article  PubMed  Google Scholar 

  101. Rice LB (2008) Federal funding for the study of antimicrobial resistance in nosocomial pathogens: no ESKAPE. J Infect Dis 197:1079–1081

    Article  PubMed  Google Scholar 

  102. Bureau UC. US interim projections by age, sex, race, and hispanic origin. http://www.census.gov/ipc/www/usinterimproj/

Download references

Acknowledgments

The authors would like to acknowledge Mohana Torres (Eurofins Medinet) for her considerable contributions with respect to data analysis. The authors would also like to gratefully acknowledge Ortho-McNeil Pharmaceuticals and The Medicines Company (formerly Targanta Therapeutics) for allowing data collected from their sponsored surveillance programs to be included.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris Pillar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Pillar, C., Sahm, D. (2012). Resistance Trends and Susceptibility Profiles in the US Among Prevalent Clinical Pathogens: Lessons from Surveillance. In: Dougherty, T., Pucci, M. (eds) Antibiotic Discovery and Development. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1400-1_23

Download citation

Publish with us

Policies and ethics