Resistance Trends and Susceptibility Profiles in the US Among Prevalent Clinical Pathogens: Lessons from Surveillance



Since the advent of their discovery in the 1930s, antibiotics have served with great success on the front lines in the war against bacterial infection. A consequence of this success and widespread use was the inevitable evolution and emergence of resistance among bacteria from the resulting selective pressure. In the Golden Age of antibiotics (1940s–1960s), discovery of various new classes of antimicrobial agents outpaced the development of resistance by delivering new agents with different mechanisms of action that were effective against the resistant organisms of the day. In contrast, during the following period, there was a lack of development of novel classes of agents in favor of the chemical and structural modification of agents within established classes. While the development of novel classes or agents with activity against resistant organisms has slowed, the emergence and spread of resistance among bacteria has continued.


Surgical Site Infection Community Acquire Pneumonia Resistant Organism Vancomycin Resistance Clinical Laboratory Standard Institute 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to acknowledge Mohana Torres (Eurofins Medinet) for her considerable contributions with respect to data analysis. The authors would also like to gratefully acknowledge Ortho-McNeil Pharmaceuticals and The Medicines Company (formerly Targanta Therapeutics) for allowing data collected from their sponsored surveillance programs to be included.


  1. 1.
    Livermore DM (2007) Introduction: the challenge of multiresistance. Int J Antimicrob Agents 29(Suppl 3):S1–S7PubMedCrossRefGoogle Scholar
  2. 2.
    Boucher HW, Talbot GH, Bradley JS et al (2009) Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin Infect Dis 48:1–12PubMedCrossRefGoogle Scholar
  3. 3.
    Jones ME, Karlowsky JA, Draghi DC et al (2003) Epidemiology and antibiotic susceptibility of bacteria causing skin and soft tissue infections in the USA and Europe: a guide to appropriate antimicrobial therapy. Int J Antimicrob Agents 22:406–419PubMedCrossRefGoogle Scholar
  4. 4.
    Jones RN (2001) Resistance patterns among nosocomial pathogens: trends over the past few years. Chest 119:397S–404SPubMedCrossRefGoogle Scholar
  5. 5.
    Paterson DL (2006) Resistance in gram-negative bacteria: enterobacteriaceae. Am J Med 119:S20–S28, discussion S62–S70PubMedCrossRefGoogle Scholar
  6. 6.
    Rice LB (2006) Antimicrobial resistance in gram-positive bacteria. Am J Med 119:S11–S19, discussion S62–S70PubMedCrossRefGoogle Scholar
  7. 7.
    Spellberg B, Guidos R, Gilbert D et al (2008) The epidemic of antibiotic-resistant infections: a call to action for the medical community from the Infectious Diseases Society of America. Clin Infect Dis 46:155–164PubMedCrossRefGoogle Scholar
  8. 8.
    Asbell PA, Sahm DF, Shaw M et al (2008) Increasing prevalence of methicillin resistance in serious ocular infections caused by Staphylococcus aureus in the United States: 2000 to 2005. J Cataract Refract Surg 34:814–818PubMedCrossRefGoogle Scholar
  9. 9.
    Jones ME, Draghi DC, Karlowsky JA et al (2004) Prevalence of antimicrobial resistance in bacteria isolated from central nervous system specimens as reported by U.S. hospital laboratories from 2000 to 2002. Ann Clin Microbiol Antimicrob 3:3PubMedCrossRefGoogle Scholar
  10. 10.
    Jones ME, Karlowsky JA, Draghi DC et al (2004) Rates of antimicrobial resistance among common bacterial pathogens causing respiratory, blood, urine, and skin and soft tissue infections in pediatric patients. Eur J Clin Microbiol Infect Dis 23:445–455PubMedCrossRefGoogle Scholar
  11. 11.
    Jones ME, Karlowsky JA, Draghi DC et al (2004) Antibiotic susceptibility of bacteria most commonly isolated from bone related infections: the role of cephalosporins in antimicrobial therapy. Int J Antimicrob Agents 23:240–246PubMedCrossRefGoogle Scholar
  12. 12.
    Karlowsky JA, Jones ME, Draghi DC et al (2004) Prevalence and antimicrobial susceptibilities of bacteria isolated from blood cultures of hospitalized patients in the United States in 2002. Ann Clin Microbiol Antimicrob 3:7PubMedCrossRefGoogle Scholar
  13. 13.
    Karlowsky JA, Kelly LJ, Thornsberry C et al (2002) Trends in antimicrobial resistance among urinary tract infection isolates of Escherichia coli from female outpatients in the United States. Antimicrob Agents Chemother 46:2540–2545PubMedCrossRefGoogle Scholar
  14. 14.
    Sahm DF, Brown NP, Yee YC et al (2008) Stratified analysis of multidrug-resistant Escherichia coli in US health care institutions. Postgrad Med 120:53–59PubMedCrossRefGoogle Scholar
  15. 15.
    Styers D, Sheehan DJ, Hogan P et al (2006) Laboratory-based surveillance of current antimicrobial resistance patterns and trends among Staphylococcus aureus: 2005 status in the United States. Ann Clin Microbiol Antimicrob 5:2PubMedCrossRefGoogle Scholar
  16. 16.
    Tillotson GS, Draghi DC, Sahm DF et al (2008) Susceptibility of Staphylococcus aureus isolated from skin and wound infections in the United States 2005–07: laboratory-based surveillance study. J Antimicrob Chemother 62:109–115PubMedCrossRefGoogle Scholar
  17. 17.
    Karlowsky JA, Jones ME, Thornsberry C et al (2005) Stable antimicrobial susceptibility rates for clinical isolates of Pseudomonas aeruginosa from the 2001–2003 tracking resistance in the United States today surveillance studies. Clin Infect Dis 40(Suppl 2):S89–S98PubMedCrossRefGoogle Scholar
  18. 18.
    Karlowsky JA, Kelly LJ, Thornsberry C et al (2002) Susceptibility to fluoroquinolones among commonly isolated gram-negative bacilli in 2000: TRUST and TSN data for the United States. Tracking resistance in the United States Today. The surveillance network. Int J Antimicrob Agents 19:21–31PubMedCrossRefGoogle Scholar
  19. 19.
    Karlowsky JA, Thornsberry C, Critchley IA et al (2003) Susceptibilities to levofloxacin in Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis clinical isolates from children: results from 2000–2001 and 2001–2002 TRUST studies in the United States. Antimicrob Agents Chemother 47:1790–1797PubMedCrossRefGoogle Scholar
  20. 20.
    Karlowsky JA, Thornsberry C, Jones ME et al (2003) Factors associated with relative rates of antimicrobial resistance among Streptococcus pneumoniae in the United States: results from the TRUST Surveillance Program (1998–2002). Clin Infect Dis 36:963–970PubMedCrossRefGoogle Scholar
  21. 21.
    Sahm DF, Brown NP, Draghi DC et al (2008) Tracking resistance among bacterial respiratory tract pathogens: summary of findings of the TRUST Surveillance Initiative, 2001–2005. Postgrad Med 120:8–15PubMedCrossRefGoogle Scholar
  22. 22.
    Thornsberry C, Sahm DF, Kelly LJ et al (2002) Regional trends in antimicrobial resistance among clinical isolates of Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis in the United States: results from the TRUST Surveillance Program, 1999–2000. Clin Infect Dis 34(Suppl 1):S4–S16PubMedCrossRefGoogle Scholar
  23. 23.
    Arhin FF, Draghi DC, Pillar CM et al (2009) Comparative in vitro activity profile of oritavancin against recent gram-positive clinical isolates. Antimicrob Agents Chemother 53: 4762–4771PubMedCrossRefGoogle Scholar
  24. 24.
    CLSI (2008) Performance standards for antimicrobial susceptibility testing: seventeenth informational supplement, CLSI document M100-S18. Clinical and Laboratory Standards Institute, WayneGoogle Scholar
  25. 25.
    CLSI (2006) Methods for dilution antimicrobial susceptibility test for bacteria that grow aerobically: approved standard, 7th edn, CLSI document M7-A7. Clinical and Laboratory Standards Institute, WayneGoogle Scholar
  26. 26.
    Chastre J, Fagon JY (2002) Ventilator-associated pneumonia. Am J Respir Crit Care Med 165:867–903PubMedGoogle Scholar
  27. 27.
    DiNubile MJ, Lipsky BA (2004) Complicated infections of skin and skin structures: when the infection is more than skin deep. J Antimicrob Chemother 53(Suppl 2):ii37–ii50PubMedCrossRefGoogle Scholar
  28. 28.
    Jacobs MR, Jones RN, Giordano PA (2007) Oral beta-lactams applied to uncomplicated infections of skin and skin structures. Diagn Microbiol Infect Dis 57:55S–65SPubMedCrossRefGoogle Scholar
  29. 29.
    Manian FA, Meyer PL, Setzer J et al (2003) Surgical site infections associated with methicillin-resistant Staphylococcus aureus: do postoperative factors play a role? Clin Infect Dis 36:863–868PubMedCrossRefGoogle Scholar
  30. 30.
    Sharma M, Berriel-Cass D, Baran J Jr (2004) Sternal surgical-site infection following coronary artery bypass graft: prevalence, microbiology, and complications during a 42-month period. Infect Control Hosp Epidemiol 25:468–471PubMedCrossRefGoogle Scholar
  31. 31.
    Wagenlehner FM, Naber KG (2006) Current challenges in the treatment of complicated urinary tract infections and prostatitis. Clin Microbiol Infect 12(Suppl 3):67–80PubMedCrossRefGoogle Scholar
  32. 32.
    American Thoracic Society, Infectious Diseases Society of America (2005) Guidelines for the management of adults with hospital-acquired ventilator-associated, and healthcare-associated pneumonia. Am J Respir Crit Care Med 171:388–416CrossRefGoogle Scholar
  33. 33.
    Mandell LA, Wunderink RG, Anzueto A et al (2007) Infectious Diseases Society of America/American Thoracic Society consensus guidelines on the management of community-acquired pneumonia in adults. Clin Infect Dis 44(Suppl 2):S27–S72PubMedCrossRefGoogle Scholar
  34. 34.
    Solomkin JS, Mazuski JE, Baron EJ et al (2003) Guidelines for the selection of anti-infective agents for complicated intra-abdominal infections. Clin Infect Dis 37:997–1005PubMedCrossRefGoogle Scholar
  35. 35.
    Warren JW, Abrutyn E, Hebel JR et al (1999) Guidelines for antimicrobial treatment of uncomplicated acute bacterial cystitis and acute pyelonephritis in women Infectious Diseases Society of America (IDSA). Clin Infect Dis 29:745–758PubMedCrossRefGoogle Scholar
  36. 36.
    Emori TG, Culver DH, Horan TC et al (1991) National nosocomial infections surveillance system (NNIS): description of surveillance methods. Am J Infect Control 19:19–35PubMedCrossRefGoogle Scholar
  37. 37.
    Amsler KM, Davies TA, Shang W et al (2008) In vitro activity of ceftobiprole against pathogens from two phase 3 clinical trials of complicated skin and skin structure infections. Antimicrob Agents Chemother 52:3418–3423PubMedCrossRefGoogle Scholar
  38. 38.
    Breedt J, Teras J, Gardovskis J et al (2005) Safety and efficacy of tigecycline in treatment of skin and skin structure infections: results of a double-blind phase 3 comparison study with vancomycin-aztreonam. Antimicrob Agents Chemother 49:4658–4666PubMedCrossRefGoogle Scholar
  39. 39.
    Fagon J, Patrick H, Haas DW et al (2000) Treatment of gram-positive nosocomial pneumonia. Prospective randomized comparison of quinupristin/dalfopristin versus vancomycin. Nosocomial Pneumonia Group. Am J Respir Crit Care Med 161:753–762PubMedGoogle Scholar
  40. 40.
    Oliva ME, Rekha A, Yellin A et al (2005) A multicenter trial of the efficacy and safety of tigecycline versus imipenem/cilastatin in patients with complicated intra-abdominal infections [Study ID Numbers: 3074A1-301-WW; Identifier: NCT00081744]. BMC Infect Dis 5:88PubMedCrossRefGoogle Scholar
  41. 41.
    Talbot GH, Thye D, Das A et al (2007) Phase 2 study of ceftaroline versus standard therapy in treatment of complicated skin and skin structure infections. Antimicrob Agents Chemother 51:3612–3616PubMedCrossRefGoogle Scholar
  42. 42.
    Denton M (2007) Enterobacteriaceae. Int J Antimicrob Agents 29(Suppl 3):S9–S22PubMedCrossRefGoogle Scholar
  43. 43.
    Livermore DM, Canton R, Gniadkowski M et al (2007) CTX-M: changing the face of ESBLs in Europe. J Antimicrob Chemother 59:165–174PubMedCrossRefGoogle Scholar
  44. 44.
    Fritsche TR, Sader HS, Toleman MA et al (2005) Emerging metallo-beta-lactamase-mediated resistances: a summary report from the worldwide SENTRY antimicrobial surveillance program. Clin Infect Dis 41(Suppl 4):S276–S278PubMedCrossRefGoogle Scholar
  45. 45.
    Jones RN, Biedenbach DJ, Sader HS et al (2005) Emerging epidemic of metallo-beta-lactamase-mediated resistances. Diagn Microbiol Infect Dis 51:77–84PubMedCrossRefGoogle Scholar
  46. 46.
    Diekema DJ, Pfaller MA, Schmitz FJ et al (2001) Survey of infections due to Staphylococcus species: frequency of occurrence and antimicrobial susceptibility of isolates collected in the United States, Canada, Latin America, Europe, and the Western Pacific region for the SENTRY Antimicrobial Surveillance Program, 1997–1999. Clin Infect Dis 32(Suppl 2): S114–S132PubMedCrossRefGoogle Scholar
  47. 47.
    Hoban DJ, Biedenbach DJ, Mutnick AH et al (2003) Pathogen of occurrence and susceptibility patterns associated with pneumonia in hospitalized patients in North America: results of the SENTRY Antimicrobial Surveillance Study (2000). Diagn Microbiol Infect Dis 45:279–285PubMedCrossRefGoogle Scholar
  48. 48.
    Defres S, Marwick C, Nathwani D (2009) MRSA as a cause of lung infection including airway infection, community-acquired pneumonia and hospital-acquired pneumonia. Eur Respir J 34:1470–1476PubMedCrossRefGoogle Scholar
  49. 49.
    Hidron AI, Low CE, Honig EG et al (2009) Emergence of community-acquired meticillin-resistant Staphylococcus aureus strain USA300 as a cause of necrotising community-onset pneumonia. Lancet Infect Dis 9:384–392PubMedCrossRefGoogle Scholar
  50. 50.
    King MD, Humphrey BJ, Wang YF et al (2006) Emergence of community-acquired methicillin-resistant Staphylococcus aureus USA 300 clone as the predominant cause of skin and soft-tissue infections. Ann Intern Med 144:309–317PubMedGoogle Scholar
  51. 51.
    McDougal LK, Steward CD, Killgore GE et al (2003) Pulsed-field gel electrophoresis typing of oxacillin-resistant Staphylococcus aureus isolates from the United States: establishing a national database. J Clin Microbiol 41:5113–5120PubMedCrossRefGoogle Scholar
  52. 52.
    Enserink M (2003) Infectious diseases. Resistant staph finds new niches. Science 299: 1639–1641PubMedCrossRefGoogle Scholar
  53. 53.
    Yoshida K, Shoji H, Hanaki H et al (2009) Linezolid-resistant methicillin-resistant Staphylococcus aureus isolated after long-term, repeated use of linezolid. J Infect Chemother 15:417–419PubMedCrossRefGoogle Scholar
  54. 54.
    Tsiodras S, Gold HS, Sakoulas G et al (2001) Linezolid resistance in a clinical isolate of Staphylococcus aureus. Lancet 358:207–208PubMedCrossRefGoogle Scholar
  55. 55.
    Tenover FC, Sinner SW, Segal RE et al (2009) Characterisation of a Staphylococcus aureus strain with progressive loss of susceptibility to vancomycin and daptomycin during therapy. Int J Antimicrob Agents 33:564–568PubMedCrossRefGoogle Scholar
  56. 56.
    Sakoulas G, Moellering RC Jr (2008) Increasing antibiotic resistance among methicillin-resistant Staphylococcus aureus strains. Clin Infect Dis 46(Suppl 5):S360–S367PubMedCrossRefGoogle Scholar
  57. 57.
    Morales G, Picazo JJ, Baos E et al (2010) Resistance to linezolid is mediated by the cfr gene in the first report of an outbreak of linezolid-resistant Staphylococcus aureus. Clin Infect Dis 50:821–825PubMedCrossRefGoogle Scholar
  58. 58.
    Appelbaum PC (2006) The emergence of vancomycin-intermediate and vancomycin-resistant Staphylococcus aureus. Clin Microbiol Infect 12(Suppl 1):16–23PubMedCrossRefGoogle Scholar
  59. 59.
    Rybak MJ, Leonard SN, Rossi KL et al (2008) Characterization of vancomycin-heteroresistant Staphylococcus aureus from the metropolitan area of Detroit, Michigan, over a 22-year period (1986 to 2007). J Clin Microbiol 46:2950–2954PubMedCrossRefGoogle Scholar
  60. 60.
    Steinkraus G, White R, Friedrich L (2007) Vancomycin MIC creep in non-vancomycin-intermediate Staphylococcus aureus (VISA), vancomycin-susceptible clinical methicillin-resistant S. aureus (MRSA) blood isolates from 2001–05. J Antimicrob Chemother 60:788–794PubMedCrossRefGoogle Scholar
  61. 61.
    Wang G, Hindler JF, Ward KW et al (2006) Increased vancomycin MICs for Staphylococcus aureus clinical isolates from a university hospital during a 5-year period. J Clin Microbiol 44:3883–3886PubMedCrossRefGoogle Scholar
  62. 62.
    Lodise TP, Graves J, Evans A et al (2008) Relationship between vancomycin MIC and failure among patients with methicillin-resistant Staphylococcus aureus bacteremia treated with vancomycin. Antimicrob Agents Chemother 52:3315–3320PubMedCrossRefGoogle Scholar
  63. 63.
    Neoh HM, Hori S, Komatsu M et al (2007) Impact of reduced vancomycin ssceptibility on the therapeutic outcome of MRSA bloodstream infections. Ann Clin Microbiol Antimicrob 6:13PubMedCrossRefGoogle Scholar
  64. 64.
    Jones RN (2006) Microbiological features of vancomycin in the 21st century: minimum inhibitory concentration creep, bactericidal/static activity, and applied breakpoints to predict clinical outcomes or detect resistant strains. Clin Infect Dis 42(Suppl 1):S13–S24PubMedCrossRefGoogle Scholar
  65. 65.
    Sader HS, Fey PD, Fish DN et al (2009) Evaluation of vancomycin and daptomycin potency trends (MIC creep) against methicillin-resistant Staphylococcus aureus isolates collected in nine U.S. medical centers from 2002 to 2006. Antimicrob Agents Chemother 53:4127–4132PubMedCrossRefGoogle Scholar
  66. 66.
    Popovich K, Hota B, Rice T et al (2007) Phenotypic prediction rule for community-associated methicillin-resistant Staphylococcus aureus. J Clin Microbiol 45:2293–2295PubMedCrossRefGoogle Scholar
  67. 67.
    Archer G, Climo M (2005) Staphylococcus epidermidis and other coagulase-negative staphylococci. In: Mandell GL, Bennett JE, Dolin R (eds) Principles and practices of infectious diseases. Elsevier, Philadelphia, pp 2352–2360Google Scholar
  68. 68.
    Amyes SG (2007) Enterococci and streptococci. Int J Antimicrob Agents 29(Suppl 3):S43–S52PubMedCrossRefGoogle Scholar
  69. 69.
    Malani P, Kauffman CA, Zervos MJ (2002) Enterococcal disease, epidemiology, and treatment (2002). In: Gilmore M, Clewell D, Courvalin P et al (eds) The enterococci: pathogenesis, molecular biology, and antibiotic resistance. ASM Press, Washington, DC, pp 385–408Google Scholar
  70. 70.
    Menichetti F (2005) Current and emerging serious gram-positive infections. Clin Microbiol Infect 11(Suppl 3):22–28PubMedCrossRefGoogle Scholar
  71. 71.
    Edwards M, Baker C (2005) Streptococcus agalactiae (Group B Streptococcus). In: Mandell GL, Bennett JE, Dolin R (eds) Principles and practices of infectious diseases. Elsevier, Philadelphia, pp 2423–2434Google Scholar
  72. 72.
    Musher DM (2005) Streptococcus pyogenes. In: Mandell GL, Bennett JE, Dolin R (eds) Principles and practices of infectious diseases. Elsevier, Philadelphia, pp 2362–2379Google Scholar
  73. 73.
    Biedenbach DJ, Toleman MA, Walsh TR et al (2006) Characterization of fluoroquinolone-resistant beta-hemolytic Streptococcus spp. isolated in North America and Europe including the first report of fluoroquinolone-resistant Streptococcus dysgalactiae subspecies equisimilis: report from the SENTRY Antimicrobial Surveillance Program (1997–2004). Diagn Microbiol Infect Dis 55:119–127PubMedCrossRefGoogle Scholar
  74. 74.
    Musher DM (2005) Streptococcus pneumoniae. In: Mandell GL, Bennett JE, Dolin R (eds) Principles and practices of infectious disease. Elsevier, Philadelphia, pp 2392–2410Google Scholar
  75. 75.
    Sahm DF, Brown NP, Thornsberry C et al (2008) Antimicrobial susceptibility profiles among common respiratory tract pathogens: a GLOBAL perspective. Postgrad Med 120:16–24PubMedCrossRefGoogle Scholar
  76. 76.
    Thornsberry C, Brown NP, Draghi DC et al (2008) Antimicrobial activity among multidrug-resistant Streptococcus pneumoniae isolated in the United States, 2001–2005. Postgrad Med 120:32–38PubMedCrossRefGoogle Scholar
  77. 77.
    Sa-Leao R, Nunes S, Brito-Avo A et al (2009) Changes in pneumococcal serotypes and antibiotypes carried by vaccinated and unvaccinated day-care centre attendees in Portugal, a country with widespread use of the seven-valent pneumococcal conjugate vaccine. Clin Microbiol Infect 15:1002–1007PubMedCrossRefGoogle Scholar
  78. 78.
    Dagan R (2009) Impact of pneumococcal conjugate vaccine on infections caused by antibiotic-resistant Streptococcus pneumoniae. Clin Microbiol Infect 15(Suppl 3):16–20PubMedCrossRefGoogle Scholar
  79. 79.
    Murphy T (2005) Haemophilus infections. In: Mandell GL, Bennett JE, Dolin R (eds) Principles and practices of infectious diseases. Elsevier, Philadelphia, pp 2661–2668Google Scholar
  80. 80.
    Donnenberg M (2005) Enterobacteriaceae. In: Mandell GL, Bennett JE, Dolin R (eds) Principles and practices of infectious diseases. Elsevier, Philadelphia, pp 2567–2586Google Scholar
  81. 81.
    Bush K, Jacoby GA (2010) Updated functional classification of {beta}-lactamases. Antimicrob Agents Chemother 54:969–976PubMedCrossRefGoogle Scholar
  82. 82.
    Yigit H, Queenan AM, Anderson GJ et al (2001) Novel carbapenem-hydrolyzing beta-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrob Agents Chemother 45:1151–1161PubMedCrossRefGoogle Scholar
  83. 83.
    Queenan AM, Bush K (2007) Carbapenemases: the versatile beta-lactamases. Clin Microbiol Rev 20:440–458, TOCPubMedCrossRefGoogle Scholar
  84. 84.
    Bratu S, Landman D, Haag R et al (2005) Rapid spread of carbapenem-resistant Klebsiella pneumoniae in New York City: a new threat to our antibiotic armamentarium. Arch Intern Med 165:1430–1435PubMedCrossRefGoogle Scholar
  85. 85.
    Psichogiou M, Tassios PT, Avlamis A et al (2008) Ongoing epidemic of blaVIM-1-positive Klebsiella pneumoniae in Athens, Greece: a prospective survey. J Antimicrob Chemother 61:59–63PubMedCrossRefGoogle Scholar
  86. 86.
    Cagnacci S, Gualco L, Roveta S et al (2008) Bloodstream infections caused by multidrug-resistant Klebsiella pneumoniae producing the carbapenem-hydrolysing VIM-1 metallo-beta-lactamase: first Italian outbreak. J Antimicrob Chemother 61:296–300PubMedCrossRefGoogle Scholar
  87. 87.
    Lautenbach E, Strom BL, Bilker WB et al (2001) Epidemiological investigation of fluoroquinolone resistance in infections due to extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae. Clin Infect Dis 33:1288–1294PubMedCrossRefGoogle Scholar
  88. 88.
    Hyle EP, Lipworth AD, Zaoutis TE et al (2005) Risk factors for increasing multidrug resistance among extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella species. Clin Infect Dis 40:1317–1324PubMedCrossRefGoogle Scholar
  89. 89.
    DiPersio JR, Deshpande LM, Biedenbach DJ et al (2005) Evolution and dissemination of extended-spectrum beta-lactamase-producing Klebsiella pneumoniae: epidemiology and molecular report from the SENTRY Antimicrobial Surveillance Program (1997–2003). Diagn Microbiol Infect Dis 51:1–7PubMedCrossRefGoogle Scholar
  90. 90.
    Pier G, Ramphal R (2005) Pseudomonas aeruginosa. In: Mandell GL, Bennett JE, Dolin R (eds) Principles and practices of infectious diseases. Elsevier, Philadelphia, pp 2587–2615Google Scholar
  91. 91.
    McGowan JE Jr (2006) Resistance in nonfermenting gram-negative bacteria: multidrug resistance to the maximum. Am J Med 119:S29–S36, discussion S62–S70PubMedCrossRefGoogle Scholar
  92. 92.
    Enoch DA, Birkett CI, Ludlam HA (2007) Non-fermentative gram-negative bacteria. Int J Antimicrob Agents 29(Suppl 3):S33–S41PubMedCrossRefGoogle Scholar
  93. 93.
    Walkty A, DeCorby M, Nichol K et al (2009) In vitro activity of colistin (polymyxin E) against 3,480 isolates of gram-negative bacilli obtained from patients in Canadian hospitals in the CANWARD study, 2007–2008. Antimicrob Agents Chemother 53:4924–4926PubMedCrossRefGoogle Scholar
  94. 94.
    Tam VH, Chang KT, Abdelraouf K et al (2010) Prevalence, resistance mechanisms, and susceptibility of multidrug-resistant bloodstream isolates of Pseudomonas aeruginosa. Antimicrob Agents Chemother 54:1160–1164PubMedCrossRefGoogle Scholar
  95. 95.
    Allen D, Hartman B (2005) Acinetobacter species. In: Mandell GL, Bennett JE, Dolin R (eds) Principles and practices of infectious diseases. Elsevier, Philadelphia, pp 2632–2635Google Scholar
  96. 96.
    Maragakis LL, Perencevich EN, Cosgrove SE (2008) Clinical and economic burden of antimicrobial resistance. Expert Rev Anti Infect Ther 6:751–763PubMedCrossRefGoogle Scholar
  97. 97.
    Lode HM (2009) Clinical impact of antibiotic-resistant gram-positive pathogens. Clin Microbiol Infect 15:212–217PubMedCrossRefGoogle Scholar
  98. 98.
    Foglia EE, Fraser VJ, Elward AM (2007) Effect of nosocomial infections due to antibiotic-resistant organisms on length of stay and mortality in the pediatric intensive care unit. Infect Control Hosp Epidemiol 28:299–306PubMedCrossRefGoogle Scholar
  99. 99.
    Cosgrove SE (2006) The relationship between antimicrobial resistance and patient outcomes: mortality, length of hospital stay, and health care costs. Clin Infect Dis 42(Suppl 2):S82–S89PubMedCrossRefGoogle Scholar
  100. 100.
    Talbot GH, Bradley J, Edwards JE Jr et al (2006) Bad bugs need drugs: an update on the development pipeline from the antimicrobial availability task force of the Infectious Diseases Society of America. Clin Infect Dis 42:657–668PubMedCrossRefGoogle Scholar
  101. 101.
    Rice LB (2008) Federal funding for the study of antimicrobial resistance in nosocomial pathogens: no ESKAPE. J Infect Dis 197:1079–1081PubMedCrossRefGoogle Scholar
  102. 102.
    Bureau UC. US interim projections by age, sex, race, and hispanic origin.

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Micromyx, LLCKalamazooUSA
  2. 2.Eurofins MedinetChantillyUSA

Personalised recommendations