Skip to main content

Rational Approaches to Antibacterial Discovery: Pre-Genomic Directed and Phenotypic Screening

  • Chapter
  • First Online:

Abstract

After the discovery of antibacterial chemicals and antibiotics through the 1950s by empirical assays based on growth inhibition, methods gradually evolved to encompass more directed screens. These were initially based upon the phenomena revealed by the action of previously discovered antibiotics and served the dual purpose of exploiting bacterial-selective pathways and aiding in recognition of novelty among natural product samples (dereplication). Later, as microbial genetics began to uncover the range of essential bacterial genes and provide tools for construction of test strains, targeted whole cell screening for antibacterials took on more of the characteristics of a hunt for genetic mutations by exploiting the expected phenotypes of desired inhibitors. Although these methods initially succeeded in expanding the repertoire of useful classes of antibiotics inhibiting cell wall synthesis, no marketed novel non-cell wall targeted antibacterial classes have been found through these methods, nor have they been found via the later genomically based targeted screening that followed. Possible reasons for this low output are speculated upon.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Albers-Schoenberg G, Arison BH et al (1978) Structure and absolute configuration of thienamycin. J Am Chem Soc 100:6491–6499

    Google Scholar 

  2. Allen NE, Hobbs JN et al (1987) Inhibition of peptidoglycan biosynthesis in gram-positive bacteria by LY146032. Antimicrob Agents Chemother 31:1093–1099

    PubMed  CAS  Google Scholar 

  3. Anderson JS, Matsuhashi M et al (1965) Lipid-phosphoacetylmuramyl-pentapeptide and lipid phosphodisaccharide-pentapeptide: presumed membrane transport in intermediates in cell wall synthesis. Proc Natl Acad Sci USA 53:881–889

    PubMed  CAS  Google Scholar 

  4. Aoki H, Kunugita K et al (1977) Screening of new and novel β-lactam antibiotics. Jpn J Antibiot 30(Suppl):207–217

    PubMed  CAS  Google Scholar 

  5. Aoki H, Sakai H et al (1976) Nocardicin A, a new monocyclic β-lactam antibiotic. I. Discovery, isolation and characterization. J Antibiot 29:492–500 (Tokyo)

    PubMed  CAS  Google Scholar 

  6. Arai S, Yoshida K et al (1966) Effect of antibiotics on growth of Mycoplasma pneumoniae Mac. J Antibiot 19:118–120 (Tokyo)

    PubMed  CAS  Google Scholar 

  7. Aronoff SC, Jacobs MR et al (1984) Comparative activities of the β-lactamase inhibitors YTR 830, sodium clavulanate, and sulbactam combined with amoxicillin or ampicillin. Antimicrob Agents Chemother 26:580–582

    PubMed  CAS  Google Scholar 

  8. Arthur M, Molinas C et al (1992) The VanS-VanR two-component regulatory system controls synthesis of depsipeptide peptidoglycan precursors in Enterococcus faecium BM4147. J Bacteriol 174:2582–2591

    PubMed  CAS  Google Scholar 

  9. Badet-Denisot M-A, Rene L et al (1993) Mechanistic investigations on glucosamine-6-phosphate synthase. Bull Soc Chim Fr 130:249–255

    CAS  Google Scholar 

  10. Baltz RH (2005) Antibiotic discovery from actinomycetes: will a renaissance follow the decline and fall. SIM News 55:186–196

    Google Scholar 

  11. Baltz RH (2007) Antimicrobials from actinomycetes: back to the future. Microbe 2: 125–131

    Google Scholar 

  12. Baltz RH (2008) Renaissance in antibacterial discovery from actinomycetes. Curr Opin Pharmacol 8:557–563

    PubMed  CAS  Google Scholar 

  13. Banerjee DK (1989) Amphomycin inhibits mannosylphosphoryldolichol synthesis by forming a complex with dolichylmonophosphate. J Biol Chem 264:2024–2028

    PubMed  CAS  Google Scholar 

  14. Barlow M, Hall BG (2002) Origin and evolution of the AmpC β-lactamases of Citrobacter freundii. Antimicrob Agents Chemother 46:1190–1198

    PubMed  CAS  Google Scholar 

  15. Barlow M, Hall BG (2002) Phylogenetic analysis shows that the OXA β-lactamase genes have been on plasmids for millions of years. J Molec Evol 55:314–321

    PubMed  CAS  Google Scholar 

  16. Bearne SL, Blouin C (2000) Inhibition of Escherichia coli glucosamine-6-phosphate synthase by reactive intermediate analogues. The role of the 2-amino function in catalysis. J Biol Chem 275:135–140

    PubMed  CAS  Google Scholar 

  17. Bertino JB, Stacey KA (1966) A suggested mechanism for the selective procedure for isolating thymine-requiring mutants of Escherichia coli. Biochem J 101:32C–33C

    PubMed  CAS  Google Scholar 

  18. Best GK, Durham NN (1965) Adsorption of the ristocetins to Bacillus subtilis cell walls. Antimicrob Agents Chemother 5:334–338 (Bethesda)

    PubMed  CAS  Google Scholar 

  19. Best GK, Durham NN (1965) Vancomycin adsorption to Bacillus subtilis cell walls. Arch Biochem Biophys 111:685–691

    PubMed  CAS  Google Scholar 

  20. Boggs A, Trias J et al. (1999) Potentiators of antibacterial agents. US Patent 5,883,074

    Google Scholar 

  21. Bonner DP, O’Sullivan J et al (1988) Lysobactin, a novel antibacterial agent produced by Lysobacter sp. II. Biological properties. J Antibiot 41:1745–1751 (Tokyo)

    PubMed  CAS  Google Scholar 

  22. Borrmann S, Lundgren I et al (2006) Fosmidomycin plus clindamycin for treatment of pediatric patients aged 1 to 14 years with Plasmodium falciparum malaria. Antimicrob Agents Chemother 50:2713–2718

    PubMed  CAS  Google Scholar 

  23. Brown A (1987) Discovery and development of new β-lactam antibiotics. Pure Appl Chem 59:475–484

    CAS  Google Scholar 

  24. Brown A, Corbett D, et al (1977) Structures of olivanic acid derivatives MM 4559 and MM 13902. J Chem Soc Chem Commun 1977:523–525

    Google Scholar 

  25. Brown AG, Butterworth D et al (1976) Naturally-occurring β-lactamase inhibitors with antibacterial activity. J Antibiot 29:668–669 (Tokyo)

    PubMed  CAS  Google Scholar 

  26. Bush K, Bonner DP et al (1980) Izumenolide-a novel beta-lactamase inhibitor produced by Micromonospora. II. Biological properties. J Antibiot 33:1262–1269 (Tokyo)

    PubMed  CAS  Google Scholar 

  27. Bushby SR, Hitchings GH (1968) Trimethoprim, a sulphonamide potentiator. Br J Pharmacol Chemother 33:72–90

    PubMed  CAS  Google Scholar 

  28. Butterworth D, Cole M et al (1979) Olivanic acids, a family of β-lactam antibiotics with β-lactamase inhibitory properties produced by Streptomyces species. I. Detection, properties and fermentation studies. J Antibiot 32:287–294 (Tokyo)

    PubMed  CAS  Google Scholar 

  29. Castiglione F, Cavaletti L et al (2007) A novel lantibiotic acting on bacterial cell wall synthesis produced by the uncommon actinomycete Planomonospora sp. Biochemistry 46:5884–5895

    PubMed  CAS  Google Scholar 

  30. Cavalleri B, Pagani H et al (1984) A-16686, a new antibiotic from Actinoplanes. I. Fermentation, isolation and preliminary physico-chemical characteristics. J Antibiot 37:309–317 (Tokyo)

    PubMed  CAS  Google Scholar 

  31. Chopra I, Hacker K et al (1990) Sensitive biological detection method for tetracyclines using a tetA-lacZ fusion system. Antimicrob Agents Chemother 34:111–116

    PubMed  CAS  Google Scholar 

  32. Christensen SB, Allaudeen HS et al (1987) Parvodicin, a novel glycopeptide from a new species, Actinomadura parvosata: discovery, taxonomy, activity and structure elucidation. J Antibiot 40:970–990 (Tokyo)

    PubMed  CAS  Google Scholar 

  33. Colebrook L, Buttle G et al (1936) The mode of action of p-aminobenzenesulphonamide and prontosil in haemolytic streptococcal infections. Lancet 2:1323–1326

    Google Scholar 

  34. Cooper RD, Snyder NJ et al (1996) Reductive alkylation of glycopeptide antibiotics: synthesis and antibacterial activity. J Antibiot 49:575–581 (Tokyo)

    PubMed  CAS  Google Scholar 

  35. Corti A, Cassani G (1985) Synthesis and characterization of D-alanyl-D-alanine-agarose. Appl Biochem Biotechnol 11:101–109

    CAS  Google Scholar 

  36. DeCenzo M, Kuranda M et al (2002) Identification of compounds that inhibit late steps of peptidoglycan synthesis in bacteria. J Antibiot 55:288–295 (Tokyo)

    PubMed  CAS  Google Scholar 

  37. Demain A (1995) Why do microorganisms produce antimicrobials? In: Huntley P, Darby G, Russell N (eds) Fifty years of antimicrobials: past perspectives and future trends. Cambridge University Press, Cambridge, pp 205–228

    Google Scholar 

  38. Dienes L (1948) The isolation of L type cultures from bacteroides with the aid of penicillin and their reversion into the usual bacilli. J Bacteriol 56:445–456

    Google Scholar 

  39. DiNardo S, Voelkel KA et al (1982) Escherichia coli DNA topoisomerase I mutants have compensatory mutations in DNA gyrase genes. Cell 31:43–51

    PubMed  CAS  Google Scholar 

  40. Dingerdissen JJ, Sitrin RD et al (1987) Actinoidin A2, a novel glycopeptide: production, preparative HPLC separation and characterization. J Antibiot 40:165–172 (Tokyo)

    PubMed  CAS  Google Scholar 

  41. Domagk G (1935) Chemotherapie der bakteriellen Infektionen. Angewandte Chemie 48: 657–667

    CAS  Google Scholar 

  42. Dulaney EL (1970) 1-Aminoethylphosphonic acid, an inhibitor of bacterial cell wall synthesis. J Antibiot 23:567–568 (Tokyo)

    PubMed  CAS  Google Scholar 

  43. Dulaney EL, Jacobsen CA (1988) Synergy between fosfomycin and arenaemycin. J Antibiot 41:982–983 (Tokyo)

    PubMed  CAS  Google Scholar 

  44. Dykhuizen RS, Harvey G et al (1995) Protein binding and serum bactericidal activities of vancomycin and teicoplanin. Antimicrob Agents Chemother 39:1842–1847

    PubMed  CAS  Google Scholar 

  45. Eid CN, Halligan NG et al (1997) Tripeptide LY301621 and its diastereomers as methicillin potentiators against methicillin resistant Staphylococcus aureus. J Antibiot 50:283–285 (Tokyo)

    Google Scholar 

  46. Elespuru RK, White RJ (1983) Biochemical prophage induction assay: a rapid test for antitumor agents that interact with DNA. Cancer Res 43:2819–2830

    PubMed  CAS  Google Scholar 

  47. Elespuru RK, Yarmolinsky MB (1979) A colorimetric assay of lysogenic induction designed for screening potential carcinogenic and carcinostatic agents. Environ Mutagen 1:65–78

    PubMed  CAS  Google Scholar 

  48. Elion GB, Singer S et al (1954) Antagonists of nucleic acid derivatives VII. Synergism in combinations of biochemically related antimetabolites. J Biol Chem 208:477–488

    PubMed  CAS  Google Scholar 

  49. English AR, Retsema JA et al (1978) CP-45,899, a β-lactamase inhibitor that extends the antibacterial spectrum of β-lactams: initial bacteriological characterization. Antimicrob Agents Chemother 14:414–419

    PubMed  CAS  Google Scholar 

  50. Evers S, Courvalin P (1996) Regulation of VanB-type vancomycin resistance gene expression by the VanS(B)-VanR (B) two-component regulatory system in Enterococcus faecalis V583. J Bacteriol 178:1302–1309

    PubMed  CAS  Google Scholar 

  51. Fang X, Tiyanont K et al (2006) The mechanism of action of ramoplanin and enduracidin. Mol Biosyst 2:69–76

    PubMed  CAS  Google Scholar 

  52. Fildes P (1940) A rational approach to chemotherapy. Lancet 1:955–957

    Google Scholar 

  53. Francisco GD, Li Z et al (2004) Phenyl thiazolyl urea and carbamate derivatives as new inhibitors of bacterial cell-wall biosynthesis. Bioorg Med Chem Lett 14:235–238

    PubMed  CAS  Google Scholar 

  54. Franco CMM, Coutinho LEL (1991) Detection of novel secondary metabolites. Crit Rev Biotechnol 11:193–276

    PubMed  CAS  Google Scholar 

  55. Frohlich KU, Wiedmann M et al (1989) Substitution of a pentalenolactone-sensitive glyceraldehyde-3-phosphate dehydrogenase by a genetically distinct resistant isoform accompanies pentalenolactone production in Streptomyces arenae. J Bacteriol 171:6696–6702

    PubMed  CAS  Google Scholar 

  56. Gadebusch HH, Stapley EO et al (1992) The discovery of cell wall active antibacterial antibiotics. Crit Rev Biotechnol 12:225–243

    PubMed  CAS  Google Scholar 

  57. Gauze GF, Brazhnikova MG et al (1989) Eremomycin–a new antibiotic of the polycyclic glycopeptide group. Antibiot Khimioter 34:348–352

    PubMed  CAS  Google Scholar 

  58. Gellert M, Mizuuchi K et al (1977) Nalidixic acid resistance: a second genetic character involved in DNA gyrase activity. Proc Natl Acad Sci USA 74:4772–4776

    PubMed  CAS  Google Scholar 

  59. Gilpin RW, Young FE et al (1973) Characterization of a stable L-form of Bacillus subtilis 168. J Bacteriol 113:486–499

    PubMed  CAS  Google Scholar 

  60. Goldstein B, Rosina R et al (1994) Teicoplanin. In: Nagarajan R (ed) Glycopeptide antibiotics. Marcel Dekker, New York, pp 273–308

    Google Scholar 

  61. Goldstein BP, Selva E et al (1987) A40926, a new glycopeptide antibiotic with anti-neisseria activity. Antimicrob Agents Chemother 31:1961–1966

    PubMed  CAS  Google Scholar 

  62. Graham DW, Ashton WT et al (1987) Inhibition of the mammalian beta-lactamase renal dipeptidase (dehydropeptidase-I) by (Z)-2-(acylamino)-3-substituted-propenoic acids. J Med Chem 30:1074–1090

    PubMed  CAS  Google Scholar 

  63. Grundy W, Sinclair A, et al (1957) Ristocetin, microbiologic properties. Antibio. Annu 1956–1957: 687–692

    Google Scholar 

  64. Hamill R, Baker P, et al (1988) A82846, a new glycopeptide complex, produced by Amycolatopsis orientalis. 2. Isolation and characterization. In: 28th Interscience conference on antimicrobial agents chemotherapy, Los Angeles

    Google Scholar 

  65. Hammond GG, Cassidy PJ et al (1991) Novobiocin-dependent topA deletion mutants of Escherichia coli. J Bacteriol 173:5564–5567

    PubMed  CAS  Google Scholar 

  66. Handwerger S, Kolokathis A (1990) Induction of vancomycin resistance in Enterococcus faecium by inhibition of transglycosylation. FEMS Microbiol Lett 70:167–170

    CAS  Google Scholar 

  67. Harada S, Tsubotani S et al (1988) Chemistry of a new antibiotic: lactivicin. Tetrahedron Lett 44:6589–6606

    CAS  Google Scholar 

  68. Harris CM, Harris TM (1982) Structure of ristocetin A: configurational studies of the peptide. J Am Chem Soc 104:363–365

    CAS  Google Scholar 

  69. Harris CM, Harris TM (1982) Structure of the glycopeptide antibiotic vancomycin. Evidence for an asparagine residue in the peptide. J Am Chem Soc 104:4293–4295

    CAS  Google Scholar 

  70. Hashimoto M, Komori T et al (1976) Nocardicin A and B, monocyclic β-lactam antibiotics from a Nocardia species. J Am Chem Soc 98:3023–3025

    PubMed  CAS  Google Scholar 

  71. Hendlin D, Stapley EO et al (1969) Phosphonomycin, a new antibiotic produced by strains of Streptomyces. Science 166:122–123

    PubMed  CAS  Google Scholar 

  72. Hitchings GH, Elion GB et al (1948) Pyrimidine derivatives as antagonists of pteroylglutamic acid. J Biol Chem 174:765–766

    PubMed  CAS  Google Scholar 

  73. Hitchings GH, Falco EA et al (1952) 2, 4-Diaminopyrimidines as antagonists of folic acid and folinic acid. Arch Biochem Biophys 40:479–481

    PubMed  CAS  Google Scholar 

  74. Hitchings GH, Falco EA et al (1952) Antagonists of nucleic acid derivatives VII. 2, 4-diaminopyrimidines. J Biol Chem 199:43–56

    PubMed  CAS  Google Scholar 

  75. Hood J (1982) Inhibitors of antibiotic-inactivating enzymes. In: Bu’lock J, Nisbet L, Winstanley D (eds) Bioactive microbial products: search and discovery. Academic, London, pp 131–145

    Google Scholar 

  76. Hussain M, Ichihara S et al (1980) Accumulation of glyceride-containing precursor of the outer membrane lipoprotein in the cytoplasmic membrane of Escherichia coli treated with globomycin. J Biol Chem 255:3707–3712

    PubMed  CAS  Google Scholar 

  77. Imada A, Kitano K et al (1981) Sulfazecin and isosulfazecin, novel β-lactam antibiotics of bacterial origin. Nature 289:590–591

    PubMed  CAS  Google Scholar 

  78. Imada A, Nozaki Y et al (1980) C-19393 S2 and H2, new carbapenem antibiotics. I. Taxonomy of the producing strain, fermentation and antibacterial properties. J Antibiot 33:1417–1424 (Tokyo)

    PubMed  CAS  Google Scholar 

  79. Inukai M, Nakajima M et al (1978) Globomycin, a new peptide antibiotic with spheroplast-forming activity. II. Isolation and physico-chemical and biological characterization. J Antibiot 31:421–425 (Tokyo)

    PubMed  CAS  Google Scholar 

  80. Inukai M, Takeuchi M et al (1984) Effects of globomycin on the morphology of bacteria and the isolation of resistant mutants. Agric Biol Chem 48:513–518

    CAS  Google Scholar 

  81. Inukai M, Takeuchi M et al (1978) Mechanism of action of globomycin. J Antibiot 31:1203–1205 (Tokyo)

    PubMed  CAS  Google Scholar 

  82. Isono F, Inukai M (1991) Mureidomycin A, a new inhibitor of bacterial peptidoglycan synthesis. Antimicrob Agents Chemother 35:234–236

    PubMed  CAS  Google Scholar 

  83. Isono F, Katayama T et al (1989) Mureidomycins A-D, novel peptidylnucleoside antibiotics with spheroplast forming activity. III. Biological properties. J Antibiot 42:674–679 (Tokyo)

    PubMed  CAS  Google Scholar 

  84. Jomaa H, Wiesner J et al (1999) Inhibitors of the nonmevalonate pathway of isoprenoid biosynthesis as antimalarial drugs. Science 285:1573–1576

    PubMed  CAS  Google Scholar 

  85. Joseleau-Petit D, Liebart J-C et al (2007) Unstable Escherichia coli L forms revisited: growth requires peptidoglycan synthesis. J Bacteriol 189:6512–6520

    PubMed  CAS  Google Scholar 

  86. Kaeberlein T, Lewis K et al (2002) Isolating “Uncultivable” microorganisms in pure culture in a simulated Natural environment. Science 296:1127–1129

    PubMed  CAS  Google Scholar 

  87. Kagan BM, Zolla S et al (1964) Sensitivity of coccal and L forms of Staphylococcus aureus to five antibiotics. J Bacteriol 88:630–632

    PubMed  CAS  Google Scholar 

  88. Kahan FM, Kahan JS et al (1974) The mechanism of action of fosfomycin (phosphonomycin). Ann N Y Acad Sci 235:364–386

    PubMed  CAS  Google Scholar 

  89. Kahan FM, Kropp H et al (1983) Thienamycin: development of imipenem-cilastatin. J Antimicrob Chemother 12:1–35

    PubMed  CAS  Google Scholar 

  90. Kahan J, Kahan F, et al (1976) Antibiotics. US Patent 3,950,357

    Google Scholar 

  91. Kahan JS, Kahan FM et al (1979) Thienamycin, a new β-lactam antibiotic. I. Discovery, taxonomy, isolation and physical properties. J Antibiot 32:1–12 (Tokyo)

    PubMed  CAS  Google Scholar 

  92. Kamogashira T (1988) Some characteristics of a hypersensitive mutant to β-lactam antibiotics derived from a strain of Staphylococcus aureus. Agric Biol Chem 52:1841–1843

    CAS  Google Scholar 

  93. Kamogashira T, Takegata S (1988) A screening method for cell wall inhibitors using a D-cycloserine hypersensitive mutant. J Antibiot 41:803–806 (Tokyo)

    PubMed  CAS  Google Scholar 

  94. Karady S, Pines SH et al (1972) Semisynthetic cephalosporins via a novel acyl exchange reaction. J Am Chem Soc 94:1410–1411

    PubMed  CAS  Google Scholar 

  95. Khodursky A, Zechiedrich E, Cozzarelli N (1994) Inhibition of E. coli topoisomerase IV by quinolones in vivo. Abstr. P23 In: Program and abstracts of the 5th conference on DNA topoisomerases in therapy. New York City. Published by New York University Medical Center.

    Google Scholar 

  96. Khodursky AB, Zechiedrich EL et al (1995) Topoisomerase IV is a target of quinolones in Escherichia coli. Proc Nat Acad Sci USA 92:11801–11805

    PubMed  CAS  Google Scholar 

  97. Kirsch DR, Lai MH et al (1991) The use of β-galactosidase gene fusions to screen for antibacterial antibiotics. J Antibiot 44:210–217 (Tokyo)

    PubMed  CAS  Google Scholar 

  98. Kitame F, Utsushikawa K et al (1974) Laidlomycin, a new antimycoplasmal polyether antibiotic. J Antibiot 27:884–888 (Tokyo)

    PubMed  CAS  Google Scholar 

  99. Kitano K, Nara K et al (1977) Screening for β-lactam antibiotics using a mutant of Pseudomonas aeruginosa. Jpn J Antibiot 30(Suppl):239–245

    PubMed  CAS  Google Scholar 

  100. Koch AE, Burchall JJ (1971) Reversal of the antimicrobial activity of trimethoprim by thymidine in commercially prepared media. Appl Environ Microbiol 22:812–817

    CAS  Google Scholar 

  101. Komatsuzawa H, Suzuki J et al (1994) The effect of Triton X-100 on the in-vitro susceptibility of methicillin-resistant Staphylococcus aureus to oxacillin. J Antimicrob Chemother 34:885–897

    PubMed  CAS  Google Scholar 

  102. Kuroda Y, Okuhara M et al (1980) FR-900130, a novel amino acid antibiotic. I. Discovery, taxonomy, isolation, and properties. J Antibiot 33:125–131 (Tokyo)

    PubMed  CAS  Google Scholar 

  103. Kuroda Y, Okuhara M et al (1980) Studies on new phosphonic acid antibiotics. IV. Structure determination of FR-33289, FR-31564 and FR-32863. J Antibiot 33:29–35 (Tokyo)

    PubMed  CAS  Google Scholar 

  104. Kuzuyama T, Shimizu T et al (1998) Fosmidomycin, a specific inhibitor of 1-deoxy-d-xylulose 5-phosphate reductoisomerase in the nonmevalonate pathway for terpenoid biosynthesis. Tetrahedron Lett 39:7913–7916

    CAS  Google Scholar 

  105. Lai MH, Kirsch DR (1996) Induction signals for vancomycin resistance encoded by the vanA gene cluster in Enterococcus faecium. Antimicrob Agents Chemother 40:1645–1648

    PubMed  CAS  Google Scholar 

  106. Lederberg J (1956) Bacterial protoplasts induced by penicillin. Proc Natl Acad Sci USA 42:574–577

    PubMed  CAS  Google Scholar 

  107. Lell B, Ruangweerayut R et al (2003) Fosmidomycin, a novel chemotherapeutic agent for malaria. Antimicrob Agents Chemother 47:735–738

    PubMed  CAS  Google Scholar 

  108. Li Z, Francisco GD et al (2003) 2-Phenyl-5,6-dihydro-2 H-thieno[3,2-c]pyrazol-3-ol derivatives as new inhibitors of bacterial cell wall biosynthesis. Bioorg Med Chem Lett 13:2591–2594

    PubMed  CAS  Google Scholar 

  109. Linares JF, Gustafsson I et al (2006) Antibiotics as intermicrobial signaling agents instead of weapons. Proc Natl Acad Sci USA 103:19484–19489

    PubMed  CAS  Google Scholar 

  110. Liu WC, Astle G et al (1980) Izumenolide-a novel beta-lactamase inhibitor produced by Micromonospora. I. Detection, isolation and characterization. J Antibiot 33:1256–1261 (Tokyo)

    PubMed  CAS  Google Scholar 

  111. Lo M-C, Men H et al (2000) A new mechanism of action proposed for ramoplanin. J Am Chem Soc 122:3540–3541

    CAS  Google Scholar 

  112. Maeda K, Takahashi S et al (1977) Isolation and structure of a β-lactamase inhibitor from Streptomyces. J Antibiot 30:770–772 (Tokyo)

    PubMed  CAS  Google Scholar 

  113. Mahoney DF, Baisden DK et al (1989) A peptide binding chromogenic assay for detecting glycopeptide antibiotics. J Ind Microbiol Biotechnol 4:43–47

    CAS  Google Scholar 

  114. Maki H, Miura K et al (2001) Katanosin B and plusbacin A3, inhibitors of peptidoglycan synthesis in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 45:1823–1827

    PubMed  CAS  Google Scholar 

  115. Maniloff J, Morowitz HJ (1972) Cell biology of the mycoplasmas. Microbiol Mol Biol Rev 36:263–290

    CAS  Google Scholar 

  116. Mason DJ, Lummis WL et al (1964) U-22956, a new antibiotic. I. Discovery and biological activity. Antimicrob Agents Chemother 10:110–113 (Bethesda)

    PubMed  CAS  Google Scholar 

  117. McCafferty DG, Cudic P et al (2002) Chemistry and biology of the ramoplanin family of peptide antibiotics. Biopolymers 66:261–284

    PubMed  CAS  Google Scholar 

  118. McCormick M, McGuire J et al (1955) Vancomycin, a new antibiotic. I. Chemical and biological properties. Antibiot Annu 3:606–611

    PubMed  Google Scholar 

  119. McDonald LA, Barbieri LR et al (2002) Structures of the muraymycins, novel peptidoglycan biosynthesis inhibitors. J Am Chem Soc 124:10260–10261

    PubMed  CAS  Google Scholar 

  120. Melillo D, Shinkai I et al (1980) A practical synthesis of (±)-thienamycin. Tetrahedron Lett 21:2783–2786

    CAS  Google Scholar 

  121. Miller J (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  122. Murata M, Miyasaka T et al (1985) Diazaquinomycin A, a new antifolate antibiotic, inhibits thymidylate synthase. J Antibiot 38:1025–1033 (Tokyo)

    PubMed  CAS  Google Scholar 

  123. Murphy S, Pinney RJ (1995) Teicoplanin or vancomycin in the treatment of gram-positive infections? J Clin Pharm Ther 20:5–11

    PubMed  CAS  Google Scholar 

  124. Nagarajan R, Boeck LD et al (1971) β-Lactam antibiotics from Streptomyces. J Am Chem Soc 93:2308–2310

    PubMed  CAS  Google Scholar 

  125. Neu HC (1992) The crisis in antibiotic resistance. Science 257:1064–1073

    PubMed  CAS  Google Scholar 

  126. Neu HC, Kamimura T (1982) Synergy of fosmidomycin (FR-31564) and other antimicrobial agents. Antimicrob Agents Chemother 22:560–563

    PubMed  CAS  Google Scholar 

  127. Nieto M, Perkins HR et al (1972) Reversal by a specific peptide (diacetyl-alpha gamma-L-diaminobutyryl-D-alanyl-D-alanine) of vancomycin inhibition in intact bacteria and cell-free preparations. Biochem J 126:139–149

    PubMed  CAS  Google Scholar 

  128. Nozaki Y, Katayama N et al (1989) Lactivicin, a naturally occurring non-β-lactam antibiotic having β-lactam-like action: biological activities and mode of action. J Antibiot 42:84–93 (Tokyo)

    PubMed  CAS  Google Scholar 

  129. Nozaki Y, Katayama N et al (1987) Binding of a non-β-lactam antibiotic to penicillin-binding proteins. Nature 325:179–180

    PubMed  CAS  Google Scholar 

  130. Numata K, Yamamoto H et al (1986) Isolation of an aminoglycoside hypersensitive mutant and its application in screening. J Antibiot 39:994–1000 (Tokyo)

    PubMed  CAS  Google Scholar 

  131. O’Shea R, Moser HE (2008) Physicochemical properties of antibacterial compounds: implications for drug discovery. J Med Chem 51:2871–2878

    PubMed  Google Scholar 

  132. O’Sullivan J, McCullough J et al (1990) Janthinocins A, B and C, novel peptide lactone antibiotics produced by Janthinobacterium lividum. I. Taxonomy, fermentation, isolation, physico-chemical and biological characterization. J Antibiot 43:913–919 (Tokyo)

    PubMed  Google Scholar 

  133. O’Sullivan J, McCullough JE et al (1988) Lysobactin, a novel antibacterial agent produced by Lysobacter sp. I. Taxonomy, isolation and partial characterization. J Antibiot 41:1740–1744 (Tokyo)

    PubMed  Google Scholar 

  134. Oiwa R (1992) Antibacterial agents. In: Omura S (ed) The search for bioactive compounds from microorganisms. Springer, New York, pp 1–29

    Google Scholar 

  135. Okuhara M, Kuroda Y et al (1980) Studies on new phosphonic acid antibiotics. III. Isolation and characterization of FR-31564, FR-32863 and FR-33289. J Antibiot 33:24–28 (Tokyo)

    PubMed  CAS  Google Scholar 

  136. Omura S, Murata M et al (1985) Screening for new antifolates of microbial origin and a new antifolate AM-8402. J Antibiot 38:1016–1024 (Tokyo)

    PubMed  CAS  Google Scholar 

  137. Omura S, Tanaka H et al (1979) Studies on bacterial cell wall inhibitors. VI. Screening method for the specific inhibitors of peptidoglycan synthesis. J Antibiot 32:978–984 (Tokyo)

    PubMed  CAS  Google Scholar 

  138. Osburne MS, Maiese WM et al (1993) An assay for the detection of bacterial DNA gyrase inhibitors. J Antibiot 46:1764–1766 (Tokyo)

    PubMed  CAS  Google Scholar 

  139. Parenti F, Beretta G et al (1978) Teichomycins, new antibiotics from Actinoplanes teichomyceticus Nov. Sp. I Description of the producer strain, fermentation studies and biological properties. J Antibiot 31:276–283 (Tokyo)

    PubMed  CAS  Google Scholar 

  140. Parenti F, Ciabatti R et al (1990) Ramoplanin: a review of its discovery and its chemistry. Drugs Exp Clin Res 16:451–455

    PubMed  CAS  Google Scholar 

  141. Park JT (1952) Uridine-5’-pyrophosphate derivatives. I. Isolation fron Staphylococcus aureus. J Biol Chem 194:877–884

    PubMed  CAS  Google Scholar 

  142. Payne DJ, Gwynn MN et al (2007) Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat Rev Drug Discov 6:29–40

    PubMed  CAS  Google Scholar 

  143. Perkins HR (1969) Specificity of combination between mucopeptide precursors and vancomycin or ristocetin. Biochem J 111:195–205

    PubMed  CAS  Google Scholar 

  144. Piddock L, Wise R (1987) Induction of the SOS response in Escherichia coli by 4-quinolone antimicrobial agents. FEMS Microbiol Lett 41:289–294

    CAS  Google Scholar 

  145. Quillardet P, Huisman O et al (1982) SOS chromotest, a direct assay of induction of an SOS function in Escherichia coli K-12 to measure genotoxicity. Proc Natl Acad Sci USA 79:5971–5975

    PubMed  CAS  Google Scholar 

  146. Rake JB, Gerber R et al (1986) Glycopeptide antibiotics: a mechanism-based screen employing a bacterial cell wall receptor mimetic. J Antibiot 39:58–67 (Tokyo)

    PubMed  CAS  Google Scholar 

  147. Reading C, Cole M (1977) Clavulanic acid: a β-lactamase-inhibiting β-lactam from Streptomyces clavuligerus. Antimicrob Agents Chemother 11:852–857

    PubMed  CAS  Google Scholar 

  148. Reynolds PE (1961) Studies on the mode of action of vancomycin. Biochim Biophys Acta 52:403–405

    PubMed  CAS  Google Scholar 

  149. Riva E, Gastaldo L et al (1989) A42867, a novel glycopeptide antibiotic. J Antibiot 42:497–505 (Tokyo)

    PubMed  CAS  Google Scholar 

  150. Salzmann TN, Ratcliffe RW et al (1980) A stereocontrolled synthesis of (+)-thienamycin. J Am Chem Soc 102:6161–6163

    CAS  Google Scholar 

  151. Schuster H, Beyersmann D et al (1973) Prophage induction by high temperature in thermosensitive dna mutants lysogenic for bacteriophage lambda. J Virol 11:879–885

    PubMed  CAS  Google Scholar 

  152. Shearer MC, Giovenella AJ et al (1986) Kibdelins, novel glycopeptide antibiotics. I. Discovery, production, and biological evaluation. J Antibiot 39:1386–1394 (Tokyo)

    PubMed  CAS  Google Scholar 

  153. Shigi Y (1989) Inhibition of bacterial isoprenoid synthesis by fosmidomycin, a phosphonic acid-containing antibiotic. J Antimicrob Chemother 24:131–145

    PubMed  CAS  Google Scholar 

  154. Shoji J, Hinoo H et al (1992) Structures of new peptide antibiotics, plusbacins A1-A4 and B1-B4. J Antibiot 45:824–831 (Tokyo)

    PubMed  CAS  Google Scholar 

  155. Shoji J, Hinoo H et al (1988) Isolation and characterization of katanosins A and B. J Antibiot 41:713–718 (Tokyo)

    PubMed  CAS  Google Scholar 

  156. Silver L, Bostian K (1990) Screening of natural products for antimicrobial agents. Eur J Clin Microbiol Infect Dis 9:455–461

    PubMed  CAS  Google Scholar 

  157. Silver LL (2005) A retrospective on the failures and successes of antibacterial drug discovery. IDrugs 8:651–655

    PubMed  CAS  Google Scholar 

  158. Silver LL (2006) Does the cell wall of bacteria remain a viable source of targets for novel antibiotics? Biochem Pharmacol 71:996–1005

    PubMed  CAS  Google Scholar 

  159. Silver LL (2007) Multi-targeting by monotherapeutic antibacterials. Nat Rev Drug Discov 6:41–55

    PubMed  CAS  Google Scholar 

  160. Silver LL (2008) Are natural products still the best source for antibacterial discovery? The bacterial entry factor. Exp Opin Drug Disc 3:487–500

    CAS  Google Scholar 

  161. Singh S, Pelaez F et al (2005) Discovery of natural product inhibitors of HIV-1 integrase at Merck. Drugs Fut 30:277–299

    CAS  Google Scholar 

  162. Singh SB, Barrett JF (2006) Empirical antibacterial drug discovery–foundation in natural products. Biochem Pharmacol 71:1006–1015

    PubMed  CAS  Google Scholar 

  163. Sitrin RD, Chan GW et al (1985) Aridicins, novel glycopeptide antibiotics. II. Isolation and characterization. J Antibiot 38:561–571 (Tokyo)

    PubMed  CAS  Google Scholar 

  164. Spiri-Nakagawa P, Fukushi Y et al (1986) Izupeptins A and B, new glycopeptide antibiotics produced by an actinomycete. J Antibiot 39:1719–1723 (Tokyo)

    PubMed  CAS  Google Scholar 

  165. Stacey KA, Simson E (1965) Improved method for the isolation of thymine-requiring mutants of Escherichia coli. J Bacteriol 90:554–555

    PubMed  CAS  Google Scholar 

  166. Stankiewicz A, Depew R (1983) A conditional-lethal mutation in the topA gene of Escherichia coli. In: 83rd annual management meeting, American Society for Microbiology, New Orleans

    Google Scholar 

  167. Stansly PG (1946) The presumptive identification of antibiotics. Science 103:402–403

    Google Scholar 

  168. Stapley EO (1958) Cross-resistance studies and antibiotic identification. Appl Microbiol 6:392–398

    PubMed  CAS  Google Scholar 

  169. Stapley EO, Jackson M et al (1972) Cephamycins, a new family of β-lactam antibiotics I. Production by Actinomycetes, including Streptomyces lactamdurans sp. n. Antimicrob Agents Chemother 2:122–131

    PubMed  CAS  Google Scholar 

  170. Strominger JL, Park JT et al (1959) Composition of the cell wall of Staphylococcus aureus: its relation to the mechanism of action of penicillin. J Biol Chem 234:3263–3268

    PubMed  CAS  Google Scholar 

  171. Sun D, Cohen S et al (2002) A pathway-specific cell based screening system to detect bacterial cell wall inhibitors. J Antibiot 55:279–287 (Tokyo)

    PubMed  CAS  Google Scholar 

  172. Suzuki H, Nishimura Y et al (1978) On the process of cellular division in Escherichia coli: a series of mutants of E. coli altered in the penicillin-binding proteins. Proc Natl Acad Sci USA 75:664–668

    PubMed  CAS  Google Scholar 

  173. Sykes R, Wells J, et al (1979) β-lactamase inhibitor EM4615 from Micromonospora species. UK Patent GB2021096

    Google Scholar 

  174. Sykes RB, Cimarusti CM et al (1981) Monocyclic β-lactam antibiotics produced by bacteria. Nature 291:489–491

    PubMed  CAS  Google Scholar 

  175. Sykes RB, Wells JS (1985) Screening for β-lactam antibiotics in nature. J Antibiot 38:119–121 (Tokyo)

    PubMed  CAS  Google Scholar 

  176. Takeuchi M, Inukai M et al (1980) Malioxamycin, a new antibiotic with spheroplast-forming activity. I. Producing organism, fermentation, isolation and characterization. J Antibiot 33:1213–1219 (Tokyo)

    PubMed  CAS  Google Scholar 

  177. Takeuchi M, Nakajima M et al (1989) Fosfonochlorin, a new antibiotic with spheroplast forming activity. J Antibiot 42:198–205 (Tokyo)

    PubMed  CAS  Google Scholar 

  178. Tamaki S, Nakajima S et al (1977) Thermosensitive mutation in Escherichia coli simultaneously causing defects in penicillin-binding protein-1Bs and in enzyme activity for peptidoglycan synthesis in vitro. Proc Natl Acad Sci USA 74:5472–5476

    PubMed  CAS  Google Scholar 

  179. Tanaka H, Oiwa R et al (1982) Studies on bacterial cell wall inhibitors. X. Properties of phosph-N-acetylmuramoyl-pentapeptide-transferase in peptidoglycan synthesis of Bacillus megaterium and its inhibition by amphomycin. J Antibiot 35:1216–1221 (Tokyo)

    PubMed  CAS  Google Scholar 

  180. Tanaka H, Oiwa R et al (1979) Amphomycin inhibits phospho-N-acetylmuramyl-pentapeptide translocase in peptidoglycan synthesis of Bacillus. Biochem Biophys Res Commun 86:902–908

    PubMed  CAS  Google Scholar 

  181. Tanaka H, Shimizu S et al (1979) The site of inhibition of cell wall synthesis by 3-amino-3-deoxy-D-glucose in Staphylococcus aureus. J Biochem 86:155–159

    PubMed  CAS  Google Scholar 

  182. Testa CA, Brown MJ (2003) The methylerythritol phosphate pathway and its significance as a novel drug target. Curr Pharm Biotechnol 4:248–259

    PubMed  CAS  Google Scholar 

  183. Treiber LR, Gullo VP et al (1981) Procedure for isolation of thienamycin from fermentation broths. Biotechnol Bioeng 23:1255–1265

    CAS  Google Scholar 

  184. Tsuji N, Kobayashi M et al (1988) New glycopeptide antibiotics. I. The structures of orienticins. J Antibiot 41:819–822 (Tokyo)

    PubMed  CAS  Google Scholar 

  185. Tsuno T, Ikeda C et al (1986) 3,3’-Neotrehalosadiamine (BMY-28251), a new aminosugar antibiotic. J Antibiot 39:1001–1003 (Tokyo)

    PubMed  CAS  Google Scholar 

  186. Ulijasz AT, Grenader A et al (1996) A vancomycin-inducible lacZ reporter system in Bacillus subtilis: induction by antibiotics that inhibit cell wall synthesis and by lysozyme. J Bacteriol 178:6305–6309

    PubMed  CAS  Google Scholar 

  187. Umezawa H, Mitsuhashi S et al (1973) Letter: two β-lactamase inhibitors produced by a streptomyces. J Antibiot 26:51–54 (Tokyo)

    PubMed  CAS  Google Scholar 

  188. Uri JV, Actor P et al (1978) A rapid and simple method for detection of β-lactamase inhibitors. J Antibiot 31:789–791 (Tokyo)

    PubMed  CAS  Google Scholar 

  189. Van Bambeke F, Mingeot-Leclercq MP et al (2008) The bacterial envelope as a target for novel anti-MRSA antibiotics. Trends Pharmacol Sci 29:124–134

    PubMed  Google Scholar 

  190. Wallas CH, Strominger JL (1963) Ristocetins, inhibitors of cell wall synthesis in Staphylococcus aureus. J Biol Chem 238:2264–2266

    PubMed  CAS  Google Scholar 

  191. Wells JS, Trejo WH et al (1982) SQ 26,180, a novel monobactam. I. Taxonomy, fermentation and biological properties. J Antibiot 35:184–188 (Tokyo)

    PubMed  CAS  Google Scholar 

  192. Williams D, Rajananda V, et al (1979) Structure of the antibiotic ristocetin A. J Chem Soc Chem Commun: 906–908

    Google Scholar 

  193. Witkin EM (1975) Elevated mutability of polA derivatives of Escherichia coli B/r at sublethal doses of ultraviolet light: evidence for an inducible error-prone repair system (“SOS repair”) and its anomalous expression in these strains. Genetics 79(Suppl):199–213

    PubMed  Google Scholar 

  194. Witkin EM (1976) Ultraviolet mutagenesis and inducible DNA repair in Escherichia coli. Microbiol Mol Biol Rev 40:869–907

    CAS  Google Scholar 

  195. Wood WB Jr, Archer GW (1961) Mechanism of action of antimicrobial drugs. Pediatr Clin North Am 8:969–980

    PubMed  CAS  Google Scholar 

  196. Woods D (1940) The relation of p-aminobenzoic acid to the mechanism of the action of sulphonamide. Brit J Exptl Path 21:74–90

    CAS  Google Scholar 

  197. Work TS (1954) The selective toxicity of antibiotics. J Appl Microbiol 17:136–141

    Google Scholar 

  198. Yakushi T, Tajima T et al (1997) Lethality of the covalent linkage between mislocalized major outer membrane lipoprotein and the peptidoglycan of Escherichia coli. J Bacteriol 179:2857–2862

    PubMed  CAS  Google Scholar 

  199. Yam TS, Hamilton-Miller JM et al (1998) The effect of a component of tea (Camellia sinensis) on methicillin resistance, PBP2’ synthesis, and β-lactamase production in Staphylococcus aureus. J Antimicrob Chemother 42:211–216

    PubMed  CAS  Google Scholar 

  200. Yao RC, Mahoney DF (1984) Enzyme-linked immunosorbent assay for the detection of fermentation metabolites: aminoglycoside antibiotics. J Antibiot 37:1462–1468 (Tokyo)

    PubMed  CAS  Google Scholar 

  201. Yim G, Wang HH et al (2006) The truth about antibiotics. Int J Med Microbiol 296: 163–170

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lynn L. Silver .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Silver, L.L. (2012). Rational Approaches to Antibacterial Discovery: Pre-Genomic Directed and Phenotypic Screening. In: Dougherty, T., Pucci, M. (eds) Antibiotic Discovery and Development. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1400-1_2

Download citation

Publish with us

Policies and ethics