Advertisement

Structural Mechanisms of β-Lactam Antibiotic Resistance in Penicillin-Binding Proteins

Chapter

Abstract

The effectiveness of β-lactam antibiotics is under siege by multiple pathogenic bacteria. These bacteria can produce β-lactamases that hydrolyze the antibiotic, alter their permeability by increasing efflux or decreasing influx (Gram-negative-specific), and structurally alter existing penicillin-binding proteins (PBPs) to lower the rate of acylation or obtain a completely new penicillin-binding protein with extremely low rates of acylation by most β-lactam antibiotics. This chapter focuses on the genetic, biochemical, and structural mechanisms involved in PBP-mediated resistance, with a particular emphasis on resistance mechanisms in the pathogenic Gram-negative pathogen, Neisseria gonorrhoeae.

Keywords

Penicillin Resistance TGase Activity Strain FA6140 Acylation Rate TPase Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Fleming A (1929) On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzae. Br J Exp Pathol 10:226–236Google Scholar
  2. 2.
    Tipper DJ, Strominger JL (1965) Mechanism of action of penicillins: a proposal based on their structural similarity to acyl-D-alanyl-D-alanine. Proc Natl Acad Sci USA 54:1133–1141PubMedCrossRefGoogle Scholar
  3. 3.
    Wise EMJ, Park JT (1965) Penicillin: its basic site of action as an inhibitor of a peptide cross-linking reaction in the cell wall mucopeptide synthesis. Proc Natl Acad Sci USA 54:1133–1141CrossRefGoogle Scholar
  4. 4.
    Rasmussen JR, Strominger JL (1978) Utilization of a depsipeptide substrate for trapping acyl-enzyme intermediates of penicillin-sensitive D-alanine carboxypeptidases. Proc Natl Acad Sci USA 75:84–88PubMedCrossRefGoogle Scholar
  5. 5.
    Yocum RR, RasmussenJR SJL (1980) The mechanism of action of penicillin: penicillin acylates the active site of Bacillus stearothermophilus D-alanine carboxypeptidase. J Biol Chem 255:3977–3986PubMedGoogle Scholar
  6. 6.
    Spratt BG (1975) Distinct penicillin-binding proteins involved in the division, elongation, and shape of Escherichia coli. Proc Natl Acad Sci USA 72:2999–3003PubMedCrossRefGoogle Scholar
  7. 7.
    Spratt BG, PardeeA B (1975) Penicillin-binding proteins and cell shape in E. coli. Nature 254:516–517PubMedCrossRefGoogle Scholar
  8. 8.
    Zhao G, Meier TI, Kahl SD et al (1999) BOCILLIN FL, a sensitive and commercially available reagent for detection of penicillin-binding proteins. Antimicrob Agents Chemother 43:1124–1128PubMedGoogle Scholar
  9. 9.
    Ghuysen JM (1988) Bacterial active-site serine penicillin-interactive proteins and domains: mechanism, structure, and evolution. Rev Infect Dis 10:726–732PubMedCrossRefGoogle Scholar
  10. 10.
    Marrec-Fairley M, Piette A, Gallet X et al (2000) Differential functionalities of amphiphilic peptide segments of the cell-septation penicillin-binding protein 3 of Escherichia coli. Mol Microbiol 37:1019–1031PubMedCrossRefGoogle Scholar
  11. 11.
    von Rechenberg M, Ursinus A, Holtje JV (1996) Affinity chromatography as a means to study multienzyme complexes involved in murein synthesis. Microb Drug Resist 2:155–157CrossRefGoogle Scholar
  12. 12.
    Holtje JV (1996) A hypothetical holoenzyme involved in the replication of the murein sacculus of Escherichia coli. Microbiology 142:1911–1918PubMedCrossRefGoogle Scholar
  13. 13.
    Vollmer W, von Rechenberg M, Holtje JV (1999) Demonstration of molecular interactions between the murein polymerase PBP1B, the lytic transglycosylase MltA, and the scaffolding protein MipA of Escherichia coli. J Biol Chem 274:6726–6734PubMedCrossRefGoogle Scholar
  14. 14.
    Vollmer W, Holtje JV (2001) Morphogenesis of Escherichia coli. Curr Opin Microbiol 4:625–633PubMedCrossRefGoogle Scholar
  15. 15.
    Morlot C, Zapun A, Dideberg O et al (2003) Growth and division of Streptococcus pneumoniae: localization of the high molecular weight penicillin-binding proteins during the cell cycle. Mol Microbiol 50:845–855PubMedCrossRefGoogle Scholar
  16. 16.
    Frere JM, Nguyen-Disteche M, Coyette J, Joris B (1992) Mode of action: interaction with the penicillin binding proteins. In: Page MI (ed) The chemistry of ß-lactams. Chapman and Hall, GlasgowGoogle Scholar
  17. 17.
    Ropp PA, Hu M, Olesky M, Nicholas RA (2002) Mutations in ponA, the gene encoding penicillin-binding protein 1, and a novel locus, penC, are required for high-level chromosomally mediated penicillin resistance in Neisseria gonorrhoeae. Antimicrob Agents Chemother 46:769–777PubMedCrossRefGoogle Scholar
  18. 18.
    Powell AJ, Tomberg J, Deacon AM et al (2009) Crystal structures of penicillin-binding protein 2 from penicillin-susceptible and -resistant strains of Neisseria gonorrhoeae reveal an unexpectedly subtle mechanism for antibiotic resistance. J Biol Chem 284:1202–1212PubMedCrossRefGoogle Scholar
  19. 19.
    Stefanova ME, Tomberg J, Olesky M et al (2003) Neisseria gonorrhoeae penicillin-binding protein 3 exhibits exceptionally high carboxypeptidase and beta-lactam binding activities. Biochemistry 42:14614–14625PubMedCrossRefGoogle Scholar
  20. 20.
    Stefanova ME, Tomberg J, Davies C et al (2004) Overexpression and enzymatic characterization of Neisseria gonorrhoeae penicillin-binding protein 4. Eur J Biochem 271:23–32PubMedCrossRefGoogle Scholar
  21. 21.
    Minasov G, Wang X, Shoichet BK (2002) An ultrahigh resolution structure of TEM-1 beta-lactamase suggests a role for Glu166 as the general base in acylation. J Am Chem Soc 124:5333–5340PubMedCrossRefGoogle Scholar
  22. 22.
    Meroueh SO, Fisher JF, Schlegel HB et al (2005) Ab initio QM/MM study of class A beta-lactamase acylation: dual participation of Glu166 and Lys73 in a concerted base promotion of Ser70. J Am Chem Soc 127:15397–15407PubMedCrossRefGoogle Scholar
  23. 23.
    Tremblay LW, Xu H, Blanchard JS (2010) Structures of the Michaelis complex (1.2Å) and the covalent acyl intermediate (2.0Å) of cefamandole bound in the active sites of the Mycobacterium tuberculosis β-lactamase K73A and E166A mutants. Biochemistry 49:9685–9687PubMedCrossRefGoogle Scholar
  24. 24.
    Adam M, Damblon C, Jamin M et al (1991) Acyltransferase activities of the high-molecular-mass essential penicillin-binding proteins. Biochem J 279:601–604PubMedGoogle Scholar
  25. 25.
    Bertsche U, Breukink E, Kast T, Vollmer W (2005) In vitro murein peptidoglycan synthesis by dimers of the bifunctional transglycosylase-transpeptidase PBP1B from Escherichia coli. J Biol Chem 280:38096–38101PubMedCrossRefGoogle Scholar
  26. 26.
    Born P, Breukink E, Vollmer W (2006) In vitro synthesis of cross-linked murein and its attachment to sacculi by PBP1A from Escherichia coli. J Biol Chem 281:26985–26993PubMedCrossRefGoogle Scholar
  27. 27.
    Nieto M, Perkins HR, Leyh-Bouille M et al (1973) Peptide inhibitors of Streptomyces DD-carboxypeptidases. Biochem J 131:163–171PubMedGoogle Scholar
  28. 28.
    Gutheil WG, Stefanova ME, Nicholas RA (2000) Fluorescent coupled enzyme assays for D-alanine: application to penicillin-binding protein and vancomycin activity assays. Anal Biochem 287:196–202PubMedCrossRefGoogle Scholar
  29. 29.
    Stefanova ME, Davies C, Nicholas RA, Gutheil WG (2002) pH, inhibitor, and substrate specificity studies on Escherichia coli penicillin-binding protein 5. Biochim Biophys Acta 1597: 292–300PubMedCrossRefGoogle Scholar
  30. 30.
    Nicola G, Peddi S, Stefanova ME et al (2005) Crystal structure of Escherichia coli Penicillin-binding protein 5 bound to a tripeptide boronic acid inhibitor: a role for Ser-110 in deacylation. Biochemistry 44:8207–8217PubMedCrossRefGoogle Scholar
  31. 31.
    Zhang W, Shi Q, Meroueh SO et al (2007) Catalytic mechanism of penicillin-binding protein 5 of Escherichia coli. Biochemistry 46:10113–10121PubMedCrossRefGoogle Scholar
  32. 32.
    Silvaggi NR, Anderson JW, Brinsmade SR et al (2003) The crystal structure of phosphonate-inhibited D-Ala-D-Ala peptidase reveals an analogue of a tetrahedral transition state. Biochemistry 42:1199–1208PubMedCrossRefGoogle Scholar
  33. 33.
    Dzhekieva L, Rocaboy M, Kerff F et al (2010) Crystal structure of a complex between the Actinomadura R39 DD-peptidase and a peptidoglycan-mimetic boronate inhibitor: interpretation of a transition state analogue in terms of catalytic mechanism. Biochemistry 49:6411–6419PubMedCrossRefGoogle Scholar
  34. 34.
    Sheehan JC (1982) The enchanted ring: the untold story of penicillin. MIT Press, Cambridge, MAGoogle Scholar
  35. 35.
    Pratt RF (2002) Functional evolution of the serine β-lactamase active site. J Chem Soc Perkin Trans 2:851–861Google Scholar
  36. 36.
    Nicola G, Tomberg J, Pratt RF et al (2010) Crystal structures of covalent complexes of beta-lactam antibiotics with Escherichia coli penicillin-binding protein 5: toward an understanding of antibiotic specificity. Biochemistry 49:8094–8104PubMedCrossRefGoogle Scholar
  37. 37.
    Nikaido H, Rosenberg EY (1983) Porin channels in Escherichia coli: studies with liposomes reconstituted from purified proteins. J Bacteriol 153:241–252PubMedGoogle Scholar
  38. 38.
    Hartman BJ, Tomasz A (1984) Low-affinity penicillin-binding protein associated with β-lactam resistance in Staphylococcus aureus. J Bacteriol 158:513–516PubMedGoogle Scholar
  39. 39.
    Tsubakishita S, Kuwahara-Arai K, Sasaki T, Hiramatsu K (2010) Origin and molecular evolution of the determinant of methicillin resistance in staphylococci. Antimicrob Agents Chemother 54:4352–4359PubMedCrossRefGoogle Scholar
  40. 40.
    Hakenbeck R, Briese T, Laible G et al (1991) Penicillin-binding proteins in Streptococcus pneumoniae: alterations during development of intrinsic penicillin resistance. J Chemother 3:86–90PubMedGoogle Scholar
  41. 41.
    Coffey TJ, Dowson CG, Daniels M et al (1991) Horizontal transfer of multiple penicillin-binding protein genes, and capsular biosynthetic genes, in natural populations of Streptococcus pneumoniae. Mol Microbiol 5:2255–2260PubMedCrossRefGoogle Scholar
  42. 42.
    CDC (2007) Update to CDC’s sexually transmitted diseases treatment guidelines, 2006: fluoroquinolones no longer recommended for treatment of gonococcal infections. MMWR Morb Mortal Wkly Rep 56:332–336Google Scholar
  43. 43.
    CDC (2009) Sexually Transmitted Disease Surveillance 2007 Supplement, Gonococcal Isolate Surveillance Project (GISP) Annual report 2007. U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, AtlantaGoogle Scholar
  44. 44.
    Roberts M, Elwell LP, Falkow S (1977) Molecular characterization of two β-lactamase-specifying plasmids isolated from Neisseria gonorrhoeae. J Bacteriol 131:557–563PubMedGoogle Scholar
  45. 45.
    Elwell LP, Roberts M, Mayer LW, Falkow S (1977) Plasmid-mediated β-lactamase production in Neisseria gonorrhoeae. Antimicrob Agents Chemother 11:528–533PubMedGoogle Scholar
  46. 46.
    Sparling PF (1966) Genetic transformation of Neisseria gonorrhoeae to streptomycin resistance. J Bacteriol 92:1364–1371PubMedGoogle Scholar
  47. 47.
    Cannon JG, Sparling PF (1984) The genetics of the gonococcus. Ann Rev Genet 38:111–133Google Scholar
  48. 48.
    Sparling PF, Sarubbi FAJ, Blackman E (1975) Inheritance of low-level resistance to penicillin, tetracycline, and chloramphenicol in Neisseria gonorrhoeae. J Bacteriol 124:740–749PubMedGoogle Scholar
  49. 49.
    Shafer WM, Folster JP, Nicholas RA (2010) Molecular mechanisms of antibiotic resistance expressed by the pathogenic Neisseria. In: Genco CA, Wetzler L (eds) Neisseria: molecular mechanisms of pathogenesis. Caister Academic, NorwichGoogle Scholar
  50. 50.
    Dougherty TJ (1986) Genetic analysis and penicillin-binding protein alterations in Neisseria gonorrhoeae with chromosomally mediated resistance. Antimicrob Agents Chemother 30:649–652PubMedGoogle Scholar
  51. 51.
    Barbour AG (1981) Properties of penicillin-binding proteins in Neisseria gonorrhoeae. Antimicrob Agents Chemother 19(2):316–322PubMedGoogle Scholar
  52. 52.
    Spratt BG (1988) Hybrid penicillin-binding proteins in penicillin-resistant strains of Neisseria gonorrhoeae. Nature 332:173–176PubMedCrossRefGoogle Scholar
  53. 53.
    Zhang QY, Jones DM, SaezNieto JA et al (1990) Genetic diversity of penicillin-binding protein 2 genes of penicillin-resistant strains of Neisseria meningitidis revealed by fingerprinting of amplified DNA. Antimicrob Agents Chemother 34:1523–1528PubMedGoogle Scholar
  54. 54.
    Spratt BG, Bowler LD, Zhang QY et al (1992) Role of interspecies transfer of chromosomal genes in the evolution of penicillin resistance in pathogenic and commensal Neisseria species. J Mol Evol 34:115–125PubMedCrossRefGoogle Scholar
  55. 55.
    Dowson CG, Hutchison A, Spratt BG (1989) Extensive re-modelling of the transpeptidase domain of penicillin-binding protein 2B of a penicillin-resistant South African isolate of Streptococcus pneumoniae. Mol Microbiol 3:95–102PubMedCrossRefGoogle Scholar
  56. 56.
    Pan W, Spratt BG (1994) Regulation of the permeability of the gonococcal cell envelope by the mtr system. Mol Microbiol 11:769–775PubMedCrossRefGoogle Scholar
  57. 57.
    Hagman KE, Pan W, Spratt BG et al (1995) Resistance of Neisseria gonorrhoeae to antimicrobial hydrophobic agents is modulated by the mtrRCDE efflux system. Microbiology 141: 611–622PubMedCrossRefGoogle Scholar
  58. 58.
    Shafer WM, Balthazar JT, Hagman KE, Morse SA (1995) Missense mutations that alter the DNA-binding domain of the MtrR protein occur frequently in rectal isolates of Neisseria gonorrhoeae that are resistant to faecal lipids. Microbiology 141:907–911PubMedCrossRefGoogle Scholar
  59. 59.
    Hagman KE, Lucas CE, Balthazar JT et al (1997) The MtrD protein of Neisseria gonorrhoeae is a member of the resistance/nodulation/division protein family constituting part of an efflux system. Microbiology 143:2117–2125PubMedCrossRefGoogle Scholar
  60. 60.
    Veal WL, Nicholas RA, Shafer WM (2002) Overexpression of the MtrC-MtrD-MtrE efflux pump due to an mtrR mutation is required for chromosomally mediated penicillin resistance in Neisseria gonorrhoeae. J Bacteriol 184:5619–5624PubMedCrossRefGoogle Scholar
  61. 61.
    Olesky M, Rosenberg RL, Nicholas RA (2006) Porin-mediated antibiotic resistance in Neisseria gonorrhoeae: ion, solute and antibiotic permeation through PIB proteins with penB mutations. J Bacteriol 188:2300–2308PubMedCrossRefGoogle Scholar
  62. 62.
    Olesky M, Hobbs M, Nicholas RA (2002) Identification and analysis of amino acid mutations in porin IB that mediate intermediate-level resistance to penicillin and tetracycline in Neisseria gonorrhoeae. Antimicrob Agents Chemother 46:2811–2820PubMedCrossRefGoogle Scholar
  63. 63.
    Gill MJ, Simjee S, Al-Hattawi K et al (1998) Gonococcal resistance to beta-lactams and tetracycline involves mutation in loop 3 of the porin encoded at the penB locus. Antimicrob Agents Chemother 42:2799–2803PubMedGoogle Scholar
  64. 64.
    Zhao S, Duncan M, Tomberg J et al (2009) Genetics of chromosomally mediated intermediate resistance to ceftriaxone and cefixime in Neisseria gonorrhoeae. Antimicrob Agents Chemother 53:3744–3751PubMedCrossRefGoogle Scholar
  65. 65.
    Faruki H, Sparling PF (1986) Genetics of resistance in a non-ß-lactamase-producing gonococcus with relatively high-level penicillin resistance. Antimicrob Agents Chemother 30: 856–860PubMedGoogle Scholar
  66. 66.
    Ropp PA, Nicholas RA (1997) Cloning and characterization of the ponA gene encoding ­penicillin-binding protein 1 from Neisseria gonorrhoeae and Neisseria meningitidis. J Bacteriol 179:2783–2787PubMedGoogle Scholar
  67. 67.
    Zhao S, Tobiason DM, Hu M et al (2005) The penC mutation conferring antibiotic resistance in Neisseria gonorrhoeae arises from a mutation in the PilQ secretin that interferes with multimer stability. Mol Microbiol 57:1238–1251PubMedCrossRefGoogle Scholar
  68. 68.
    Ameyama S, Onodera S, Takahata M et al (2002) Mosaic-like structure of penicillin-binding protein 2 gene (penA) in clinical isolates of Neisseria gonorrhoeae with reduced susceptibility to cefixime. Antimicrob Agents Chemother 46:3744–3749PubMedCrossRefGoogle Scholar
  69. 69.
    Tomberg J, Unemo M, Davies C, Nicholas RA (2010) Molecular and structural analysis of mosaic variants of penicillin-binding protein 2 conferring decreased susceptibility to expanded-spectrum cephalosporins in Neisseria gonorrhoeae: role of epistatic mutations. Biochemistry 49:8062–8070PubMedCrossRefGoogle Scholar
  70. 70.
    Lindberg R, Fredlund H, Nicholas RA, Unemo M (2007) Neisseria gonorrhoeae isolates with reduced susceptibility to cefixime and ceftriaxone: association with genetic polymorphisms in penA, mtrR, porB1b, and ponA. Antimicrob Agents Chemother 51:2117–2122PubMedCrossRefGoogle Scholar
  71. 71.
    Lee SG, Lee H, Jeong SH et al (2010) Various penA mutations together with mtrR, porB and ponA mutations in Neisseria gonorrhoeae isolates with reduced susceptibility to cefixime or ceftriaxone. J Antimicrob Chemother 65:669–675PubMedCrossRefGoogle Scholar
  72. 72.
    Lee B (1971) Conformation of penicillin as a transition-state analog of the substrate of peptidoglycan transpeptidase. J Mol Biol 61:463–469PubMedCrossRefGoogle Scholar
  73. 73.
    Schultz DE, Spratt BG, Nicholas RA (1991) Expression and purification of a soluble form of penicillin-binding protein 2 from both penicillin-susceptible and penicillin-resistant Neisseria gonorrhoeae. Protein Expr Purif 2:339–349PubMedCrossRefGoogle Scholar
  74. 74.
    van der Linden MP, deHaan L, Dideberg O, Keck W (1994) Site-directed mutagenesis of proposed active-site residues of penicillin-binding protein 5 from Escherichia coli. Biochem J 303:357–362PubMedGoogle Scholar
  75. 75.
    Brannigan JA, Tirodimos IA, Zhang QY et al (1990) Insertion of an extra amino acid is the main cause of the low affinity of penicillin-binding protein 2 in penicillin-resistant strains of Neisseria gonorrhoeae. Mol Microbiol 4(6):913–919PubMedCrossRefGoogle Scholar
  76. 76.
    Gordon E, Mouz N, Duee E, Dideberg O (2000) The crystal structure of the penicillin-binding protein 2x from Streptococcus pneumoniae and its acyl-enzyme form: implication in drug resistance. J Mol Biol 299:477–485PubMedCrossRefGoogle Scholar
  77. 77.
    Meroueh SO, Roblin P, Golemi D et al (2002) Molecular dynamics at the root of expansion of function in the M69L inhibitor-resistant TEM β-lactamase from Escherichia coli. J Am Chem Soc 124:9422–9430PubMedCrossRefGoogle Scholar
  78. 78.
    Laible G, Spratt BG, Hakenbeck R (1991) Interspecies recombinational events during the evolution of altered PBP 2x genes in penicillin-resistant clinical isolates of Streptococcus pneumoniae. Mol Microbiol 5:1993–2002PubMedCrossRefGoogle Scholar
  79. 79.
    Dowson CG, Hutchison A, Brannigan JA et al (1989) Horizontal transfer of penicillin-binding protein genes in penicillin- resistant clinical isolates of Streptococcus pneumoniae. Proc Natl Acad Sci USA 86:8842–8846PubMedCrossRefGoogle Scholar
  80. 80.
    Dessen A, Mouz N, Gordon E et al (2001) Crystal structure of PBP2x from a highly penicillin-resistant Streptococcus pneumoniae clinical isolate: a mosaic framework containing 83 mutations. J Biol Chem 276:45106–45112PubMedCrossRefGoogle Scholar
  81. 81.
    Carapito R, Chesnel L, VernetT ZA (2006) Pneumococcal beta-lactam resistance due to a conformational change in penicillin-binding protein 2x. J Biol Chem 281:1771–1777PubMedCrossRefGoogle Scholar
  82. 82.
    Rybkine T, Mainardi JL, Sougakoff W et al (1998) Penicillin-binding protein 5 sequence alterations in clinical isolates of Enterococcus faecium with different levels of beta-lactam resistance. J Infect Dis 178:159–163PubMedGoogle Scholar
  83. 83.
    Sauvage E, Kerff F, Fonze E et al (2002) The 2.4-Å crystal structure of the penicillin-resistant penicillin-binding protein PBP5fm from Enterococcus faecium in complex with benzylpenicillin. Cell Mol Life Sci 59:1223–1232PubMedCrossRefGoogle Scholar
  84. 84.
    Severin A, Tomasz A (1996) Naturally occurring peptidoglycan variants of Streptococcus pneumoniae. J Bacteriol 178:168–174PubMedGoogle Scholar
  85. 85.
    Garcia-Bustos J, Tomasz A (1990) A biological price of antibiotic resistance: major changes in the peptidoglycan structure of penicillin-resistant pneumococci. Proc Natl Acad Sci USA 87: 5415–5419PubMedCrossRefGoogle Scholar
  86. 86.
    Antignac A, Boneca IG, Rousselle JC et al (2003) Correlation between alterations of the penicillin-binding protein 2 and modifications of the peptidoglycan structure in Neisseria meningitidis with reduced susceptibility to penicillin G. J Biol Chem 278:31529–31535PubMedCrossRefGoogle Scholar
  87. 87.
    Chesnel L, Pernot L, Lemaire D et al (2003) The structural modifications induced by the M339F substitution in PBP2x from Streptococcus pneumoniae further decreases the susceptibility to beta-lactams of resistant strains. J Biol Chem 278:44448–44456PubMedCrossRefGoogle Scholar
  88. 88.
    Pernot L, Chesnel L, Le Gouellec A et al (2004) A PBP2x from a clinical isolate of Streptococcus pneumoniae exhibits an alternative mechanism for reduction of susceptibility to β-lactam antibiotics. J Biol Chem 279:16463–16470PubMedCrossRefGoogle Scholar
  89. 89.
    Lim D, Strynadka NC (2002) Structural basis for the beta lactam resistance of PBP2a from methicillin-resistant Staphylococcus aureus. Nat Struct Biol 9:870–876PubMedGoogle Scholar
  90. 90.
    Contreras-Martel C, Job V, Di Guilmi AM et al (2006) Crystal structure of penicillin-binding protein 1a (PBP1a) reveals a mutational hotspot implicated in beta-lactam resistance in Streptococcus pneumoniae. J Mol Biol 355:684–696PubMedCrossRefGoogle Scholar
  91. 91.
    Contreras-Martel C, Dahout-Gonzalez C, Martins Ados S et al (2009) PBP active site flexibility as the key mechanism for beta-lactam resistance in pneumococci. J Mol Biol 387: 899–909PubMedCrossRefGoogle Scholar
  92. 92.
    Job V, Carapito R, Vernet T et al (2008) Common alterations in PBP1a from resistant Streptococcus pneumoniae decrease its reactivity toward β-lactams: structural insights. J Biol Chem 283:4886–4894PubMedCrossRefGoogle Scholar
  93. 93.
    Takahata S, Senju N, Osaki Y et al (2006) Amino acid substitutions in mosaic penicillin-binding protein 2 associated with reduced susceptibility to cefixime in clinical isolates of Neisseria gonorrhoeae. Antimicrob Agents Chemother 50:3638–3645PubMedCrossRefGoogle Scholar
  94. 94.
    Kelly JA, Knox JR, Moews PC et al (1985) 2.8-Å structure of penicillin-sensitive D-alanyl carboxypeptidase-transpeptidase from Streptomyces R-61 and complexes with β-lactams. J Biol Chem 260:6449–6458PubMedGoogle Scholar
  95. 95.
    Davies C, White SW, Nicholas RA (2001) Crystal structure of a deacylation-defective mutant of penicillin-binding protein 5 at 2.3-Å resolution. J Biol Chem 276:616–623PubMedCrossRefGoogle Scholar
  96. 96.
    Nicholas RA, Krings S, Tomberg J et al (2003) Crystal structure of wild-type penicillin-binding protein 5 from Escherichia coli: implications for deacylation of the acyl-enzyme complex. J Biol Chem 278:52826–52833PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Departments of Pharmacology and Microbiology and ImmunologyUniversity of North Carolina at Chapel HillChapel HillUSA
  2. 2.Department of Biochemistry and Molecular BiologyMedical University of South CarolinaCharlestonUSA

Personalised recommendations