Skip to main content

Structural Mechanisms of β-Lactam Antibiotic Resistance in Penicillin-Binding Proteins

  • Chapter
  • First Online:
Book cover Antibiotic Discovery and Development

Abstract

The effectiveness of β-lactam antibiotics is under siege by multiple pathogenic bacteria. These bacteria can produce β-lactamases that hydrolyze the antibiotic, alter their permeability by increasing efflux or decreasing influx (Gram-negative-specific), and structurally alter existing penicillin-binding proteins (PBPs) to lower the rate of acylation or obtain a completely new penicillin-binding protein with extremely low rates of acylation by most β-lactam antibiotics. This chapter focuses on the genetic, biochemical, and structural mechanisms involved in PBP-mediated resistance, with a particular emphasis on resistance mechanisms in the pathogenic Gram-negative pathogen, Neisseria gonorrhoeae.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fleming A (1929) On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzae. Br J Exp Pathol 10:226–236

    CAS  Google Scholar 

  2. Tipper DJ, Strominger JL (1965) Mechanism of action of penicillins: a proposal based on their structural similarity to acyl-D-alanyl-D-alanine. Proc Natl Acad Sci USA 54:1133–1141

    Article  PubMed  CAS  Google Scholar 

  3. Wise EMJ, Park JT (1965) Penicillin: its basic site of action as an inhibitor of a peptide cross-linking reaction in the cell wall mucopeptide synthesis. Proc Natl Acad Sci USA 54:1133–1141

    Article  Google Scholar 

  4. Rasmussen JR, Strominger JL (1978) Utilization of a depsipeptide substrate for trapping acyl-enzyme intermediates of penicillin-sensitive D-alanine carboxypeptidases. Proc Natl Acad Sci USA 75:84–88

    Article  PubMed  CAS  Google Scholar 

  5. Yocum RR, RasmussenJR SJL (1980) The mechanism of action of penicillin: penicillin acylates the active site of Bacillus stearothermophilus D-alanine carboxypeptidase. J Biol Chem 255:3977–3986

    PubMed  CAS  Google Scholar 

  6. Spratt BG (1975) Distinct penicillin-binding proteins involved in the division, elongation, and shape of Escherichia coli. Proc Natl Acad Sci USA 72:2999–3003

    Article  PubMed  CAS  Google Scholar 

  7. Spratt BG, PardeeA B (1975) Penicillin-binding proteins and cell shape in E. coli. Nature 254:516–517

    Article  PubMed  CAS  Google Scholar 

  8. Zhao G, Meier TI, Kahl SD et al (1999) BOCILLIN FL, a sensitive and commercially available reagent for detection of penicillin-binding proteins. Antimicrob Agents Chemother 43:1124–1128

    PubMed  CAS  Google Scholar 

  9. Ghuysen JM (1988) Bacterial active-site serine penicillin-interactive proteins and domains: mechanism, structure, and evolution. Rev Infect Dis 10:726–732

    Article  PubMed  CAS  Google Scholar 

  10. Marrec-Fairley M, Piette A, Gallet X et al (2000) Differential functionalities of amphiphilic peptide segments of the cell-septation penicillin-binding protein 3 of Escherichia coli. Mol Microbiol 37:1019–1031

    Article  PubMed  CAS  Google Scholar 

  11. von Rechenberg M, Ursinus A, Holtje JV (1996) Affinity chromatography as a means to study multienzyme complexes involved in murein synthesis. Microb Drug Resist 2:155–157

    Article  Google Scholar 

  12. Holtje JV (1996) A hypothetical holoenzyme involved in the replication of the murein sacculus of Escherichia coli. Microbiology 142:1911–1918

    Article  PubMed  Google Scholar 

  13. Vollmer W, von Rechenberg M, Holtje JV (1999) Demonstration of molecular interactions between the murein polymerase PBP1B, the lytic transglycosylase MltA, and the scaffolding protein MipA of Escherichia coli. J Biol Chem 274:6726–6734

    Article  PubMed  CAS  Google Scholar 

  14. Vollmer W, Holtje JV (2001) Morphogenesis of Escherichia coli. Curr Opin Microbiol 4:625–633

    Article  PubMed  CAS  Google Scholar 

  15. Morlot C, Zapun A, Dideberg O et al (2003) Growth and division of Streptococcus pneumoniae: localization of the high molecular weight penicillin-binding proteins during the cell cycle. Mol Microbiol 50:845–855

    Article  PubMed  CAS  Google Scholar 

  16. Frere JM, Nguyen-Disteche M, Coyette J, Joris B (1992) Mode of action: interaction with the penicillin binding proteins. In: Page MI (ed) The chemistry of ß-lactams. Chapman and Hall, Glasgow

    Google Scholar 

  17. Ropp PA, Hu M, Olesky M, Nicholas RA (2002) Mutations in ponA, the gene encoding penicillin-binding protein 1, and a novel locus, penC, are required for high-level chromosomally mediated penicillin resistance in Neisseria gonorrhoeae. Antimicrob Agents Chemother 46:769–777

    Article  PubMed  CAS  Google Scholar 

  18. Powell AJ, Tomberg J, Deacon AM et al (2009) Crystal structures of penicillin-binding protein 2 from penicillin-susceptible and -resistant strains of Neisseria gonorrhoeae reveal an unexpectedly subtle mechanism for antibiotic resistance. J Biol Chem 284:1202–1212

    Article  PubMed  CAS  Google Scholar 

  19. Stefanova ME, Tomberg J, Olesky M et al (2003) Neisseria gonorrhoeae penicillin-binding protein 3 exhibits exceptionally high carboxypeptidase and beta-lactam binding activities. Biochemistry 42:14614–14625

    Article  PubMed  CAS  Google Scholar 

  20. Stefanova ME, Tomberg J, Davies C et al (2004) Overexpression and enzymatic characterization of Neisseria gonorrhoeae penicillin-binding protein 4. Eur J Biochem 271:23–32

    Article  PubMed  CAS  Google Scholar 

  21. Minasov G, Wang X, Shoichet BK (2002) An ultrahigh resolution structure of TEM-1 beta-lactamase suggests a role for Glu166 as the general base in acylation. J Am Chem Soc 124:5333–5340

    Article  PubMed  CAS  Google Scholar 

  22. Meroueh SO, Fisher JF, Schlegel HB et al (2005) Ab initio QM/MM study of class A beta-lactamase acylation: dual participation of Glu166 and Lys73 in a concerted base promotion of Ser70. J Am Chem Soc 127:15397–15407

    Article  PubMed  CAS  Google Scholar 

  23. Tremblay LW, Xu H, Blanchard JS (2010) Structures of the Michaelis complex (1.2Å) and the covalent acyl intermediate (2.0Å) of cefamandole bound in the active sites of the Mycobacterium tuberculosis β-lactamase K73A and E166A mutants. Biochemistry 49:9685–9687

    Article  PubMed  CAS  Google Scholar 

  24. Adam M, Damblon C, Jamin M et al (1991) Acyltransferase activities of the high-molecular-mass essential penicillin-binding proteins. Biochem J 279:601–604

    PubMed  CAS  Google Scholar 

  25. Bertsche U, Breukink E, Kast T, Vollmer W (2005) In vitro murein peptidoglycan synthesis by dimers of the bifunctional transglycosylase-transpeptidase PBP1B from Escherichia coli. J Biol Chem 280:38096–38101

    Article  PubMed  CAS  Google Scholar 

  26. Born P, Breukink E, Vollmer W (2006) In vitro synthesis of cross-linked murein and its attachment to sacculi by PBP1A from Escherichia coli. J Biol Chem 281:26985–26993

    Article  PubMed  CAS  Google Scholar 

  27. Nieto M, Perkins HR, Leyh-Bouille M et al (1973) Peptide inhibitors of Streptomyces DD-carboxypeptidases. Biochem J 131:163–171

    PubMed  CAS  Google Scholar 

  28. Gutheil WG, Stefanova ME, Nicholas RA (2000) Fluorescent coupled enzyme assays for D-alanine: application to penicillin-binding protein and vancomycin activity assays. Anal Biochem 287:196–202

    Article  PubMed  CAS  Google Scholar 

  29. Stefanova ME, Davies C, Nicholas RA, Gutheil WG (2002) pH, inhibitor, and substrate specificity studies on Escherichia coli penicillin-binding protein 5. Biochim Biophys Acta 1597: 292–300

    Article  PubMed  CAS  Google Scholar 

  30. Nicola G, Peddi S, Stefanova ME et al (2005) Crystal structure of Escherichia coli Penicillin-binding protein 5 bound to a tripeptide boronic acid inhibitor: a role for Ser-110 in deacylation. Biochemistry 44:8207–8217

    Article  PubMed  CAS  Google Scholar 

  31. Zhang W, Shi Q, Meroueh SO et al (2007) Catalytic mechanism of penicillin-binding protein 5 of Escherichia coli. Biochemistry 46:10113–10121

    Article  PubMed  CAS  Google Scholar 

  32. Silvaggi NR, Anderson JW, Brinsmade SR et al (2003) The crystal structure of phosphonate-inhibited D-Ala-D-Ala peptidase reveals an analogue of a tetrahedral transition state. Biochemistry 42:1199–1208

    Article  PubMed  CAS  Google Scholar 

  33. Dzhekieva L, Rocaboy M, Kerff F et al (2010) Crystal structure of a complex between the Actinomadura R39 DD-peptidase and a peptidoglycan-mimetic boronate inhibitor: interpretation of a transition state analogue in terms of catalytic mechanism. Biochemistry 49:6411–6419

    Article  PubMed  CAS  Google Scholar 

  34. Sheehan JC (1982) The enchanted ring: the untold story of penicillin. MIT Press, Cambridge, MA

    Google Scholar 

  35. Pratt RF (2002) Functional evolution of the serine β-lactamase active site. J Chem Soc Perkin Trans 2:851–861

    Google Scholar 

  36. Nicola G, Tomberg J, Pratt RF et al (2010) Crystal structures of covalent complexes of beta-lactam antibiotics with Escherichia coli penicillin-binding protein 5: toward an understanding of antibiotic specificity. Biochemistry 49:8094–8104

    Article  PubMed  CAS  Google Scholar 

  37. Nikaido H, Rosenberg EY (1983) Porin channels in Escherichia coli: studies with liposomes reconstituted from purified proteins. J Bacteriol 153:241–252

    PubMed  CAS  Google Scholar 

  38. Hartman BJ, Tomasz A (1984) Low-affinity penicillin-binding protein associated with β-lactam resistance in Staphylococcus aureus. J Bacteriol 158:513–516

    PubMed  CAS  Google Scholar 

  39. Tsubakishita S, Kuwahara-Arai K, Sasaki T, Hiramatsu K (2010) Origin and molecular evolution of the determinant of methicillin resistance in staphylococci. Antimicrob Agents Chemother 54:4352–4359

    Article  PubMed  CAS  Google Scholar 

  40. Hakenbeck R, Briese T, Laible G et al (1991) Penicillin-binding proteins in Streptococcus pneumoniae: alterations during development of intrinsic penicillin resistance. J Chemother 3:86–90

    PubMed  CAS  Google Scholar 

  41. Coffey TJ, Dowson CG, Daniels M et al (1991) Horizontal transfer of multiple penicillin-binding protein genes, and capsular biosynthetic genes, in natural populations of Streptococcus pneumoniae. Mol Microbiol 5:2255–2260

    Article  PubMed  CAS  Google Scholar 

  42. CDC (2007) Update to CDC’s sexually transmitted diseases treatment guidelines, 2006: fluoroquinolones no longer recommended for treatment of gonococcal infections. MMWR Morb Mortal Wkly Rep 56:332–336

    Google Scholar 

  43. CDC (2009) Sexually Transmitted Disease Surveillance 2007 Supplement, Gonococcal Isolate Surveillance Project (GISP) Annual report 2007. U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, Atlanta

    Google Scholar 

  44. Roberts M, Elwell LP, Falkow S (1977) Molecular characterization of two β-lactamase-specifying plasmids isolated from Neisseria gonorrhoeae. J Bacteriol 131:557–563

    PubMed  CAS  Google Scholar 

  45. Elwell LP, Roberts M, Mayer LW, Falkow S (1977) Plasmid-mediated β-lactamase production in Neisseria gonorrhoeae. Antimicrob Agents Chemother 11:528–533

    PubMed  CAS  Google Scholar 

  46. Sparling PF (1966) Genetic transformation of Neisseria gonorrhoeae to streptomycin resistance. J Bacteriol 92:1364–1371

    PubMed  CAS  Google Scholar 

  47. Cannon JG, Sparling PF (1984) The genetics of the gonococcus. Ann Rev Genet 38:111–133

    CAS  Google Scholar 

  48. Sparling PF, Sarubbi FAJ, Blackman E (1975) Inheritance of low-level resistance to penicillin, tetracycline, and chloramphenicol in Neisseria gonorrhoeae. J Bacteriol 124:740–749

    PubMed  CAS  Google Scholar 

  49. Shafer WM, Folster JP, Nicholas RA (2010) Molecular mechanisms of antibiotic resistance expressed by the pathogenic Neisseria. In: Genco CA, Wetzler L (eds) Neisseria: molecular mechanisms of pathogenesis. Caister Academic, Norwich

    Google Scholar 

  50. Dougherty TJ (1986) Genetic analysis and penicillin-binding protein alterations in Neisseria gonorrhoeae with chromosomally mediated resistance. Antimicrob Agents Chemother 30:649–652

    PubMed  CAS  Google Scholar 

  51. Barbour AG (1981) Properties of penicillin-binding proteins in Neisseria gonorrhoeae. Antimicrob Agents Chemother 19(2):316–322

    PubMed  CAS  Google Scholar 

  52. Spratt BG (1988) Hybrid penicillin-binding proteins in penicillin-resistant strains of Neisseria gonorrhoeae. Nature 332:173–176

    Article  PubMed  CAS  Google Scholar 

  53. Zhang QY, Jones DM, SaezNieto JA et al (1990) Genetic diversity of penicillin-binding protein 2 genes of penicillin-resistant strains of Neisseria meningitidis revealed by fingerprinting of amplified DNA. Antimicrob Agents Chemother 34:1523–1528

    PubMed  CAS  Google Scholar 

  54. Spratt BG, Bowler LD, Zhang QY et al (1992) Role of interspecies transfer of chromosomal genes in the evolution of penicillin resistance in pathogenic and commensal Neisseria species. J Mol Evol 34:115–125

    Article  PubMed  CAS  Google Scholar 

  55. Dowson CG, Hutchison A, Spratt BG (1989) Extensive re-modelling of the transpeptidase domain of penicillin-binding protein 2B of a penicillin-resistant South African isolate of Streptococcus pneumoniae. Mol Microbiol 3:95–102

    Article  PubMed  CAS  Google Scholar 

  56. Pan W, Spratt BG (1994) Regulation of the permeability of the gonococcal cell envelope by the mtr system. Mol Microbiol 11:769–775

    Article  PubMed  CAS  Google Scholar 

  57. Hagman KE, Pan W, Spratt BG et al (1995) Resistance of Neisseria gonorrhoeae to antimicrobial hydrophobic agents is modulated by the mtrRCDE efflux system. Microbiology 141: 611–622

    Article  PubMed  CAS  Google Scholar 

  58. Shafer WM, Balthazar JT, Hagman KE, Morse SA (1995) Missense mutations that alter the DNA-binding domain of the MtrR protein occur frequently in rectal isolates of Neisseria gonorrhoeae that are resistant to faecal lipids. Microbiology 141:907–911

    Article  PubMed  CAS  Google Scholar 

  59. Hagman KE, Lucas CE, Balthazar JT et al (1997) The MtrD protein of Neisseria gonorrhoeae is a member of the resistance/nodulation/division protein family constituting part of an efflux system. Microbiology 143:2117–2125

    Article  PubMed  CAS  Google Scholar 

  60. Veal WL, Nicholas RA, Shafer WM (2002) Overexpression of the MtrC-MtrD-MtrE efflux pump due to an mtrR mutation is required for chromosomally mediated penicillin resistance in Neisseria gonorrhoeae. J Bacteriol 184:5619–5624

    Article  PubMed  CAS  Google Scholar 

  61. Olesky M, Rosenberg RL, Nicholas RA (2006) Porin-mediated antibiotic resistance in Neisseria gonorrhoeae: ion, solute and antibiotic permeation through PIB proteins with penB mutations. J Bacteriol 188:2300–2308

    Article  PubMed  CAS  Google Scholar 

  62. Olesky M, Hobbs M, Nicholas RA (2002) Identification and analysis of amino acid mutations in porin IB that mediate intermediate-level resistance to penicillin and tetracycline in Neisseria gonorrhoeae. Antimicrob Agents Chemother 46:2811–2820

    Article  PubMed  CAS  Google Scholar 

  63. Gill MJ, Simjee S, Al-Hattawi K et al (1998) Gonococcal resistance to beta-lactams and tetracycline involves mutation in loop 3 of the porin encoded at the penB locus. Antimicrob Agents Chemother 42:2799–2803

    PubMed  CAS  Google Scholar 

  64. Zhao S, Duncan M, Tomberg J et al (2009) Genetics of chromosomally mediated intermediate resistance to ceftriaxone and cefixime in Neisseria gonorrhoeae. Antimicrob Agents Chemother 53:3744–3751

    Article  PubMed  CAS  Google Scholar 

  65. Faruki H, Sparling PF (1986) Genetics of resistance in a non-ß-lactamase-producing gonococcus with relatively high-level penicillin resistance. Antimicrob Agents Chemother 30: 856–860

    PubMed  CAS  Google Scholar 

  66. Ropp PA, Nicholas RA (1997) Cloning and characterization of the ponA gene encoding ­penicillin-binding protein 1 from Neisseria gonorrhoeae and Neisseria meningitidis. J Bacteriol 179:2783–2787

    PubMed  CAS  Google Scholar 

  67. Zhao S, Tobiason DM, Hu M et al (2005) The penC mutation conferring antibiotic resistance in Neisseria gonorrhoeae arises from a mutation in the PilQ secretin that interferes with multimer stability. Mol Microbiol 57:1238–1251

    Article  PubMed  CAS  Google Scholar 

  68. Ameyama S, Onodera S, Takahata M et al (2002) Mosaic-like structure of penicillin-binding protein 2 gene (penA) in clinical isolates of Neisseria gonorrhoeae with reduced susceptibility to cefixime. Antimicrob Agents Chemother 46:3744–3749

    Article  PubMed  CAS  Google Scholar 

  69. Tomberg J, Unemo M, Davies C, Nicholas RA (2010) Molecular and structural analysis of mosaic variants of penicillin-binding protein 2 conferring decreased susceptibility to expanded-spectrum cephalosporins in Neisseria gonorrhoeae: role of epistatic mutations. Biochemistry 49:8062–8070

    Article  PubMed  CAS  Google Scholar 

  70. Lindberg R, Fredlund H, Nicholas RA, Unemo M (2007) Neisseria gonorrhoeae isolates with reduced susceptibility to cefixime and ceftriaxone: association with genetic polymorphisms in penA, mtrR, porB1b, and ponA. Antimicrob Agents Chemother 51:2117–2122

    Article  PubMed  CAS  Google Scholar 

  71. Lee SG, Lee H, Jeong SH et al (2010) Various penA mutations together with mtrR, porB and ponA mutations in Neisseria gonorrhoeae isolates with reduced susceptibility to cefixime or ceftriaxone. J Antimicrob Chemother 65:669–675

    Article  PubMed  CAS  Google Scholar 

  72. Lee B (1971) Conformation of penicillin as a transition-state analog of the substrate of peptidoglycan transpeptidase. J Mol Biol 61:463–469

    Article  PubMed  CAS  Google Scholar 

  73. Schultz DE, Spratt BG, Nicholas RA (1991) Expression and purification of a soluble form of penicillin-binding protein 2 from both penicillin-susceptible and penicillin-resistant Neisseria gonorrhoeae. Protein Expr Purif 2:339–349

    Article  PubMed  CAS  Google Scholar 

  74. van der Linden MP, deHaan L, Dideberg O, Keck W (1994) Site-directed mutagenesis of proposed active-site residues of penicillin-binding protein 5 from Escherichia coli. Biochem J 303:357–362

    PubMed  Google Scholar 

  75. Brannigan JA, Tirodimos IA, Zhang QY et al (1990) Insertion of an extra amino acid is the main cause of the low affinity of penicillin-binding protein 2 in penicillin-resistant strains of Neisseria gonorrhoeae. Mol Microbiol 4(6):913–919

    Article  PubMed  CAS  Google Scholar 

  76. Gordon E, Mouz N, Duee E, Dideberg O (2000) The crystal structure of the penicillin-binding protein 2x from Streptococcus pneumoniae and its acyl-enzyme form: implication in drug resistance. J Mol Biol 299:477–485

    Article  PubMed  CAS  Google Scholar 

  77. Meroueh SO, Roblin P, Golemi D et al (2002) Molecular dynamics at the root of expansion of function in the M69L inhibitor-resistant TEM β-lactamase from Escherichia coli. J Am Chem Soc 124:9422–9430

    Article  PubMed  CAS  Google Scholar 

  78. Laible G, Spratt BG, Hakenbeck R (1991) Interspecies recombinational events during the evolution of altered PBP 2x genes in penicillin-resistant clinical isolates of Streptococcus pneumoniae. Mol Microbiol 5:1993–2002

    Article  PubMed  CAS  Google Scholar 

  79. Dowson CG, Hutchison A, Brannigan JA et al (1989) Horizontal transfer of penicillin-binding protein genes in penicillin- resistant clinical isolates of Streptococcus pneumoniae. Proc Natl Acad Sci USA 86:8842–8846

    Article  PubMed  CAS  Google Scholar 

  80. Dessen A, Mouz N, Gordon E et al (2001) Crystal structure of PBP2x from a highly penicillin-resistant Streptococcus pneumoniae clinical isolate: a mosaic framework containing 83 mutations. J Biol Chem 276:45106–45112

    Article  PubMed  CAS  Google Scholar 

  81. Carapito R, Chesnel L, VernetT ZA (2006) Pneumococcal beta-lactam resistance due to a conformational change in penicillin-binding protein 2x. J Biol Chem 281:1771–1777

    Article  PubMed  CAS  Google Scholar 

  82. Rybkine T, Mainardi JL, Sougakoff W et al (1998) Penicillin-binding protein 5 sequence alterations in clinical isolates of Enterococcus faecium with different levels of beta-lactam resistance. J Infect Dis 178:159–163

    PubMed  CAS  Google Scholar 

  83. Sauvage E, Kerff F, Fonze E et al (2002) The 2.4-Å crystal structure of the penicillin-resistant penicillin-binding protein PBP5fm from Enterococcus faecium in complex with benzylpenicillin. Cell Mol Life Sci 59:1223–1232

    Article  PubMed  CAS  Google Scholar 

  84. Severin A, Tomasz A (1996) Naturally occurring peptidoglycan variants of Streptococcus pneumoniae. J Bacteriol 178:168–174

    PubMed  CAS  Google Scholar 

  85. Garcia-Bustos J, Tomasz A (1990) A biological price of antibiotic resistance: major changes in the peptidoglycan structure of penicillin-resistant pneumococci. Proc Natl Acad Sci USA 87: 5415–5419

    Article  PubMed  CAS  Google Scholar 

  86. Antignac A, Boneca IG, Rousselle JC et al (2003) Correlation between alterations of the penicillin-binding protein 2 and modifications of the peptidoglycan structure in Neisseria meningitidis with reduced susceptibility to penicillin G. J Biol Chem 278:31529–31535

    Article  PubMed  CAS  Google Scholar 

  87. Chesnel L, Pernot L, Lemaire D et al (2003) The structural modifications induced by the M339F substitution in PBP2x from Streptococcus pneumoniae further decreases the susceptibility to beta-lactams of resistant strains. J Biol Chem 278:44448–44456

    Article  PubMed  CAS  Google Scholar 

  88. Pernot L, Chesnel L, Le Gouellec A et al (2004) A PBP2x from a clinical isolate of Streptococcus pneumoniae exhibits an alternative mechanism for reduction of susceptibility to β-lactam antibiotics. J Biol Chem 279:16463–16470

    Article  PubMed  CAS  Google Scholar 

  89. Lim D, Strynadka NC (2002) Structural basis for the beta lactam resistance of PBP2a from methicillin-resistant Staphylococcus aureus. Nat Struct Biol 9:870–876

    PubMed  CAS  Google Scholar 

  90. Contreras-Martel C, Job V, Di Guilmi AM et al (2006) Crystal structure of penicillin-binding protein 1a (PBP1a) reveals a mutational hotspot implicated in beta-lactam resistance in Streptococcus pneumoniae. J Mol Biol 355:684–696

    Article  PubMed  CAS  Google Scholar 

  91. Contreras-Martel C, Dahout-Gonzalez C, Martins Ados S et al (2009) PBP active site flexibility as the key mechanism for beta-lactam resistance in pneumococci. J Mol Biol 387: 899–909

    Article  PubMed  CAS  Google Scholar 

  92. Job V, Carapito R, Vernet T et al (2008) Common alterations in PBP1a from resistant Streptococcus pneumoniae decrease its reactivity toward β-lactams: structural insights. J Biol Chem 283:4886–4894

    Article  PubMed  CAS  Google Scholar 

  93. Takahata S, Senju N, Osaki Y et al (2006) Amino acid substitutions in mosaic penicillin-binding protein 2 associated with reduced susceptibility to cefixime in clinical isolates of Neisseria gonorrhoeae. Antimicrob Agents Chemother 50:3638–3645

    Article  PubMed  CAS  Google Scholar 

  94. Kelly JA, Knox JR, Moews PC et al (1985) 2.8-Å structure of penicillin-sensitive D-alanyl carboxypeptidase-transpeptidase from Streptomyces R-61 and complexes with β-lactams. J Biol Chem 260:6449–6458

    PubMed  CAS  Google Scholar 

  95. Davies C, White SW, Nicholas RA (2001) Crystal structure of a deacylation-defective mutant of penicillin-binding protein 5 at 2.3-Å resolution. J Biol Chem 276:616–623

    Article  PubMed  CAS  Google Scholar 

  96. Nicholas RA, Krings S, Tomberg J et al (2003) Crystal structure of wild-type penicillin-binding protein 5 from Escherichia coli: implications for deacylation of the acyl-enzyme complex. J Biol Chem 278:52826–52833

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert A. Nicholas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Nicholas, R.A., Davies, C. (2012). Structural Mechanisms of β-Lactam Antibiotic Resistance in Penicillin-Binding Proteins. In: Dougherty, T., Pucci, M. (eds) Antibiotic Discovery and Development. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1400-1_11

Download citation

Publish with us

Policies and ethics