Skip to main content

Constructive Effects of Noise in Hysteretic Systems

  • Chapter
  • First Online:
Book cover Noise-Driven Phenomena in Hysteretic Systems

Part of the book series: Signals and Communication Technology ((SCT,volume 218))

  • 1010 Accesses

Abstract

This chapter presents benefits of noise in hysteretic systems by using the framework developed in the previous chapters. While it is mostly seen as a disruptive effect, noise can also have a constructive role by helping a system to overcome a barrier in various activation processes, by providing some degree of randomness useful in audio or visual perceptions, or by activating some kind of resonance response in nonlinear systems. These aspects are introduced and intuitively explained while providing a short overview of key results obtained in this area. Although the applications of noise benefits spread over many areas, from climatology and signal processing to nanotechnology and neuroscience, most of the studies can be theoretically framed into two-state models or simple variants thereof, while complex multi-stable systems are rarely addressed. The major contribution of this chapter is to provide a unitary framework for studying constructive effects of arbitrary colored noise in complex hysteretic systems and its implementation in HysterSoft©. Several examples are discussed following the line of the recent articles published by our group.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aldrich, N. (2004). Digital audio explained: for the audio engineer (2nd ed.). Fort Wayne: Sweetwater Sound Inc.

    Google Scholar 

  2. Lyons, R. G. (ed.) (2012). Streamlining digital signal processing: A tricks of the trade guidebook (2nd ed.). Hoboken: John Wiley &Sons.

    Google Scholar 

  3. Bohn, D. (2006). Pro audio reference (2nd ed.). Mukilteo: Rane Corp.

    Google Scholar 

  4. Kosko, B. (2006). Noise. New York: Viking/Penguin.

    Google Scholar 

  5. Malekzadeh, F. A., Mahmoudi, R., van Roermund, A. H. M. (2012). Analog dithering techniques for wireless transmitters. New York: Springer.

    Google Scholar 

  6. Velho, L., Frery, A. C., Gomes, J. (2009). Image processing for computer graphics and vision (2nd ed.). London: Springer.

    Google Scholar 

  7. Hocevar, S. (2013). The science behind colour ASCII art. Libcaca software library.

    Google Scholar 

  8. Benzi, R., Sutera, A., & Vulpiani, A. (1981). The mechanism of stochastic resonance. Journal of Physics A: Mathematical and General, 14, L453–L457.

    Article  MathSciNet  Google Scholar 

  9. Benzi, R., Parisi, G., Sutera, A., & Vulpiani, A. (1982). Stochastic resonance in climatic change. Tellus, 34, 10–16.

    Article  Google Scholar 

  10. Fauve, S., & Heslot, F. (1983). Stochastic resonance in a bistable system. Physical Letters A, 97, 5–7.

    Article  Google Scholar 

  11. McNamara, B., Wiesenfeld, K., & Roy, R. (1988). Observation of stochastic resonance in a ring laser. Physical Review Letters, 60, 2626–2629.

    Article  Google Scholar 

  12. Douglass, J. K., Wilkens, L., Pantazelou, E., & Moss, F. (1993). Noise enhancement of information transfer in crayfish mechanoreceptors by stochastic resonance. Nature, 365, 337–340.

    Article  Google Scholar 

  13. Levin, J. E., & Miller, J. P. (1996). Broadband neural encoding in the cricket cercal sensory system enhanced by Stochastic Resonance. Nature, 380, 165–168.

    Article  Google Scholar 

  14. Gammaitoni, L., Hanggi, P., Jung, P., & Marchesoni, F. (1998). Stochastic resonance. Reviews of Modern Physics, 70, 223–287.

    Article  Google Scholar 

  15. Ando, B., & Graziani, S. (2000). Stochastic resonance. Boston: Kluwer Academic Publishers.

    Google Scholar 

  16. Lindner, B., Garcia-Ojalvo, J., Neiman, A., Schimansky-Geier, L. (2004). Effects of noise in excitable systems. Physics Reports, 392, 321–424.

    Google Scholar 

  17. Sagues, F., Sancho, J. M., & Garcia-Ojalvo, J. (2007). Spatiotemporal order out of noise. Reviews of Modern Physics, 79, 829–882.

    Article  Google Scholar 

  18. Gammaitoni, L., Hänggi, P., Jung, P., & Marchesoni, F. (2009). Stochastic resonance: A remarkable idea that changed our perception of noise. European Physical Journal B, 69, 1–3.

    Article  Google Scholar 

  19. Linder, B., Erdmann, U., Sokolov I. M. (Eds.). (2010). The dynamics of nonlinear stochastic systems. The European Physical Journal, Special Topics, 187, 1–274.

    Google Scholar 

  20. Berglund, N., Gentz, B. (2010). Noise-induced phenomena in slow-fast dynamical systems: a sample-paths approach. London: Springer.

    Google Scholar 

  21. McDonnell, M. D., Stocks, N. G., Pearce, C. E. M., Abbott, D. (2008). Stochastic resonance: From suprathreshold stochastic resonance to stochastic signal quantization. New York: Cambridge University Press.

    Google Scholar 

  22. Gang, H., Haken, H., & Fagen, X. (1993). Stochastic resonance without external periodic force. Physical Review Letters, 77, 1925–1928.

    Article  Google Scholar 

  23. Longtin, A. (1997). Autonomous stochastic resonance in bursting neurons. Physical Review E, 55, 868–876.

    Article  Google Scholar 

  24. Pikovsky, A. S., & Kurths, J. (1997). Coherence resonance in a noise-driven excitable system. Physical Review Letters, 78, 775–778.

    Article  MathSciNet  MATH  Google Scholar 

  25. Neiman, A., Saparin, P. I., & Stone, L. (1997). Coherence resonance at noisy precursors of bifurcations in nonlinear dynamical systems. Physical Review E, 56, 270.

    Article  Google Scholar 

  26. Postnov, D. E., Han, S. K., Yim, T. G., & Sosnovtseva, O. V. (1999). Experimental observation of coherence resonance in cascaded excitable systems. Physical Review E, 59, R3791–R3794.

    Article  Google Scholar 

  27. Giacomelli, G., Giudici, M., Balle, S., & Tredicce, J. R. (2000). Experimental evidence of coherence resonance in an optical system. Physical Review Letters, 84, 3298–3301.

    Article  Google Scholar 

  28. Miyakawa, K., Isikawa, H. (2002). Experimental observation of coherence resonance in an excitable chemical reaction system. Physical Review E, 66, 046204.

    Google Scholar 

  29. Beato, V., Sendina-Nadal, I., Gerdes, I., & Engel, H. (2008). Coherence resonance in a chemical excitable system driven by coloured noise. Philosophical Transactions A, 366, 381–395.

    Article  MathSciNet  MATH  Google Scholar 

  30. Gu, H., Yang, M., Li, L., Liu, Z., & Ren, W. (2002). Experimental observation of the stochastic bursting caused by coherence resonance in a neural pacemaker. NeuroReport, 13, 1657–1660.

    Article  Google Scholar 

  31. Bertotti, G. & Mayergoyz, I. (2005). The science of hysteresis. Oxford: Elsevier.

    Google Scholar 

  32. Dimian, M., & Andrei, P. (2011). Noise induced resonance phenomena in stochastically driven hysteretic systems. Journal of Applied Physics, 109, 07D330.

    Google Scholar 

  33. Dimian, M., Andrei, P., Manu, O., & Popa, V. (2011). Comparison of noise-induced resonances for different models of hysteresis. IEEE Transactions on Magnetics, 47(10), 3825–3828.

    Article  Google Scholar 

  34. Dimian, M., Manu, O., Andrei, P. (2012). Influence of noise color on stochastic resonance in hysteretic systems. Journal of Applied Physics, 111, 07D132.

    Google Scholar 

  35. Mantegna, R. N., Spagnolo, B., Testa, L., Trapanese, M. (2005). Stochastic resonance in magnetic systems described by Preisach hysteresis model. Journal of Applied Physics, 97, 10E519.

    Google Scholar 

  36. Testa, L., & Trapanese, M. (2008). Magnetic stochastic resonance in systems described by dynamic Preisach model. Physica B, 403, 486–490.

    Article  Google Scholar 

  37. Gardiner, C. (2009). Stochastic methods-a handbook for the natural and social sciences. Berlin: Springer.

    Google Scholar 

  38. Melnikov, V. I. (1993). Schmitt trigger: A solvable model of stochastic resonance. Physical Review E, 48, 2481–2489.

    Article  Google Scholar 

  39. Korman, C., & Mayergoyz, I. (1997). Review of Preisach type models driven by stochastic inputs as models for after-effect. Physica B, 233, 381–389.

    Article  Google Scholar 

  40. Makra, P., Gingl, Z., & Fulei, T. (2003). Signal-to-noise ratio gain in stochastic resonators driven by coloured noises. Physical Letters A, 317, 228–232.

    Article  MATH  Google Scholar 

  41. Fuentes, M. A., & Wio, H. S. (2006). Stochastic Resonance: influence of f −k noise spectrum. European Physical Journal B, 52(2), 249–253.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihai Dimian .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Dimian, M., Andrei, P. (2014). Constructive Effects of Noise in Hysteretic Systems. In: Noise-Driven Phenomena in Hysteretic Systems. Signals and Communication Technology, vol 218. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1374-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-1374-5_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-1373-8

  • Online ISBN: 978-1-4614-1374-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics