Skip to main content

Noise Driven Relaxation Phenomena in Hysteretic Systems

  • Chapter
  • First Online:
Noise-Driven Phenomena in Hysteretic Systems

Part of the book series: Signals and Communication Technology ((SCT,volume 218))

Abstract

This chapter analyzes noise driven relaxation phenomena in scalar and vector hysteretic systems. The analysis is performed only in the time domain without making any reference to the frequency domain. Analytical and numerical results are presented for most hysteretic models introduced in the first chapter. It is shown that the effect of thermal relaxation is to erase the history of the system by bringing it to a new, nondeterministic state. Special consideration is given to the degradation of the Preisach distribution and the separation line between the positive and negative hysterons in the Preisach model. The chapter also introduces scalar and vector viscosity coefficients and discusses the data collapse phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kozuki, N., & Fuchikami, N. (2003). Dynamical model of financial markets: fluctuating ‘temperature’ causes intermittent behavior of price changes. Physica a-Statistical Mechanics and Its Applications, 329, 222–230.

    Article  MATH  Google Scholar 

  2. Krause, S. M., & Bornholdt, S. (Nov 2012). Opinion formation model for markets with a social temperature and fear. Physical review. E, Statistical, nonlinear, and soft matter physics, 86, 056106.

    Google Scholar 

  3. IJzerman, H., & Semin, G. R. (2010). Temperature perceptions as a ground for social proximity. Journal of Experimental Social Psychology, 46, 867–873.

    Google Scholar 

  4. Laarhoven, P. J. M., & Aarts, E. H. (1987). Simulated annealing: Theory and applications. New York: Springer.

    Google Scholar 

  5. Kirkpatrick, S. et al. (1983, May 13). Optimization by simulated annealing. Science, 220, 671–680.

    Google Scholar 

  6. Černý, V. (1985, Jan 01). Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm. Journal of Optimization Theory and Applications, 45, 41–51.

    Google Scholar 

  7. Aharoni, T. A. (2001). Introduction to the theory of ferromagnetism. Oxford: Clarendon Press.

    Google Scholar 

  8. Bertotti, G. (1996). Energetic and thermodynamic aspects of hysteresis. Physical Review Letters, 76, 1739–1742.

    Article  Google Scholar 

  9. Neel, L. (1950). Theorie du trainage magnetique des substances massives dans le domaine de Rayleigh. Journal De Physique Et Le Radium, 11, 49–61.

    Google Scholar 

  10. Bertotti, G., & Mayergoyz, I. (2005). The science of hysteresis. New York: Elsevier.

    Google Scholar 

  11. Néel, L. (1950). Theorie Du Trainage Magnetique Des Substances Massives Dans Le Domaine De Rayleigh. Journal de Physique et le Radium, 11, 49–61.

    Article  Google Scholar 

  12. Weller, D., & Moser, A. (1999). Thermal effect limits in ultrahigh-density magnetic recording. IEEE Transactions on Magnetics, 35, 4423–4439.

    Article  Google Scholar 

  13. Bertotti, G., et al. (2001). Hysteresis in magnetic materials: the role of structural disorder, thermal relaxation, and dynamic effects. Journal of Magnetism and Magnetic Materials, 226, 1206–1212.

    Article  Google Scholar 

  14. Mitchler, P. D., et al. (1999). Interactions and thermal effects in systems of fine particles: A Preisach analysis of CrO2 audio tape and magnetoferritin. IEEE Transactions on Magnetics, 35, 2029–2042.

    Article  Google Scholar 

  15. Roshko, R. M., & Viddal, C. A. (2005). Non-Arrhenius relaxation effects in collections of two-level subsystems. Physical Review B, 72, 184422.

    Article  Google Scholar 

  16. Torre, E. D. (2000). Magnetic hysteresis. New York: John Wiley & Sons.

    Google Scholar 

  17. Hodgdon, M. L. (1988). Applications of a theory of ferromagnetic hysteresis. IEEE Transactions on Magnetics, 24, 218–221.

    Article  Google Scholar 

  18. Krzysztof, C. (2009). Modelling of dynamic hysteresis loops using the Jiles–Atherton approach. Math Comput Model Dyn Syst, 15, 95–105.

    Article  MATH  Google Scholar 

  19. Mayergoyz, I. D., & Korman, C. E. (1991). Preisach model with stochastic input as a model for viscosity. Journal of Applied Physics, 69, 2128–2134.

    Article  Google Scholar 

  20. Mayergoyz, I. D., & Korman, C. E. (1991). On a new approach to the modeling of viscosity in hysteretic systems. IEEE Transactions on Magnetics, 27, 4766–4768.

    Article  Google Scholar 

  21. Korman, C. E., & Mayergoyz, I. D. (1994). The input dependent Preisach model with stochastic input as a model for aftereffect. IEEE Transactions on Magnetics, 30, 4368–4370.

    Article  Google Scholar 

  22. Mayergoyz, I. D., & Korman, C. E. (1994). The Preisach model with stochastic input as a model for aftereffect. Journal of Applied Physics, 75, 5478–5480.

    Article  Google Scholar 

  23. Korman, C. E., & Mayergoyz, I. D. (1996). Preisach model driven by stochastic inputs as a model for aftereffect. IEEE Transactions on Magnetics, 32, 4204–4209.

    Article  Google Scholar 

  24. Korman, C. E., & Mayergoyz, I. D. (1997). Review of Preisach type models driven by stochastic inputs as a model for after-effect. Physica B, 233, 381–389.

    Article  Google Scholar 

  25. Néel, L. (1949). Théorie du traînage magnétique des ferromagnétiques en grains fins avec applications aux terres cuites. Annals of Géophysics, 5, 99–136.

    Google Scholar 

  26. Andrei, P., & Stancu, A. (2006, April 15). Monte Carlo analysis of magnetic aftereffect phenomena. Journal of Applied Physics, 99, 08D701.

    Google Scholar 

  27. Mayergoyz, I. (2003). Mathematical models of hysteresis and their applications: Electromagnetism. Amsterdam: Academic Press.

    Google Scholar 

  28. Mayergoyz, I., & Dimian, M. (2003). Analysis of spectral noise density of hysteretic systems driven by stochastic processes. Journal of Applied Physics, 93, 6826–6828.

    Article  Google Scholar 

  29. Dimian, M., & Mayergoyz, I. D. (2004). Spectral noise density of the Preisach model. IEEE Transactions on Magnetics, 40, 2134–2136.

    Article  Google Scholar 

  30. Dimian, M., & Mayergoyz, I. D. (2004). Spectral density analysis of nonlinear hysteretic systems. Physical Review E, 70, 046124.

    Article  MathSciNet  Google Scholar 

  31. Adedoyin, A. (2010). Analysis of aftereffect phenomena and noise spectral properties of magnetic hysteretic systems using phenomenological models of hysteresis. Ph.D. Thesis, Florida State University.

    Google Scholar 

  32. Adedoyin, A., & Andrei, P. (2008). Data collapse and viscosity in three-dimensional magnetic hysteresis modeling. IEEE Transactions on Magnetics, 44, 3165–3168.

    Article  Google Scholar 

  33. Mayergoyz, I. D., et al. (1999). Scaling and data collapse in magnetic viscosity. Journal of Applied Physics, 85, 4358–4360.

    Article  Google Scholar 

  34. Mayergoyz, I. D., et al. (2000). Scaling and data collapse in magnetic viscosity (creep) of superconductors. IEEE Transactions on Magnetics, 36, 3208–3210.

    Article  Google Scholar 

  35. Andrei, P., & Adedoyin, A. (2008, Apr 1). Phenomenological vector models of hysteresis driven by random fluctuation fields. Journal of Applied Physics, 103, 07D913.

    Google Scholar 

  36. Stancu, A., et al. (2006, April 15) Magnetic characterization of samples using first- and second-order reversal curve diagrams. Journal of Applied Physics, 99, 08D702.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihai Dimian .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Dimian, M., Andrei, P. (2014). Noise Driven Relaxation Phenomena in Hysteretic Systems. In: Noise-Driven Phenomena in Hysteretic Systems. Signals and Communication Technology, vol 218. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1374-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-1374-5_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-1373-8

  • Online ISBN: 978-1-4614-1374-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics