Skip to main content

Noise and Stochastic Processes

  • Chapter
  • First Online:

Part of the book series: Signals and Communication Technology ((SCT,volume 218))

Abstract

This chapter presents an overview of the noise models that will be used throughout the book. In the area of magnetic hysteresis, most of the research employed Gaussian white noise as noise model, which is mathematically described by independent and identically distributed random variables following a Gaussian distribution. Once the interest in hysteresis was extended beyond the traditional area of magnetism, various noise models appeared naturally in the hysteresis analysis. For example, pink noise is ubiquitous in multi-stable electronic systems, Brown noise is very common in physical and chemical diffusion processes, and even white noise is often encountered in its impulsive form in economics and biological hysteretic systems, so Cauchy or Laplace probability distributions emerge as better model choices in these systems than Gaussian white noise. Various noise models and the numerical methods used in this study to simulate them are discussed in the first part of this chapter. The second part is devoted to introducing the theory of stochastic processes defined on graphs recently developed by Freidlin and Wentzell, which proved to be naturally suited to the stochastic analysis of hysteretic systems. First, several definitions and general properties of stochastic processes are discussed, stressing the link between transition probability of Markov processes and the semigroups of contractions. This relationship provides the characterization tool for the diffusion processes that can be defined on a graph, subject that is elaborated in the final sections of this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    See Kolmogorov continuity theorem [34].

  2. 2.

    See Theorem 3.2, page 85, Ref. [34].

References

  1. Busch-Vishniac, I. J., West, J. E., Barnhill, C., Hunter, T., Orellana, D., & Chivukula, R. (2005). Noise levels in Johns Hopkins Hospital. Journal of the Acoustical Society of America, 118(6), 3629–3645.

    Article  Google Scholar 

  2. Vaseghi, S. V. (2008). Advanced digital signal processing and noise reduction. New York: Wiley.

    Google Scholar 

  3. Perez, R. (1998). Wireless communications design handbook, volume 3: Interference into circuits: Aspects of noise, interference, and environmental concerns. San Diego: Academic Press.

    Google Scholar 

  4. Néel, L. (1949). Théorie du traînage magnétique des ferromagnétiques en grains fins avec applications aux terres cuites. Annals of Géophysics, 5, 99–136.

    Google Scholar 

  5. Wernsdorfer, W. (2001). Classical and quantum magnetization reversal studies in nanometer-sized particles and clusters. Advances in Chemical Physics, 118, 99.

    Article  Google Scholar 

  6. Coffey, W. T., Crothers, D. S. F., Dormann, J. L., et al. (1998). Thermally activated relaxation time of a single domain ferromagnetic particle subjected to a uniform field at an oblique angle to the easy axis: Comparison with experimental observations. Physical Review Letters, 80, 5655.

    Article  Google Scholar 

  7. Weller şi D., & Moser, A. (1999). Thermal effect limits in ultrahigh-density magnetic recording. IEEE Transactions on Magnetics, 35, 4423.

    Google Scholar 

  8. Rao, G. N., Yao, Y. D., & Chen, J. W. (2005). Superparamagnetic behavior of antiferromagnetic CuO nanoparticles. IEEE Transactions on Magnetics, 41, 3409.

    Article  Google Scholar 

  9. Matsumoto, K., Inomata, A., & Hasegawa, S. (2006). Thermally assisted magnetic recording. FUJITSU Scientific & Technical Journal, 42, 158.

    Google Scholar 

  10. Alex, M., Tselikov, A., McDaniel, T., et al. (2001). Characteristics of thermally assisted magnetic recording. IEEE Transactions on Magnetics, 37, 1244–1249.

    Article  Google Scholar 

  11. Kosko, B. (2006). Noise. London: Viking/Penguin.

    Google Scholar 

  12. Ando, B., & Graziani, S. (2000). Stochastic Resonance. Dordrecht: Kluwer Academic Publisher.

    Google Scholar 

  13. Lindner, B., Garcia-Ojalvo, J., Neiman, A., & Schimansky-Geier, L. (2004). Effects of noise in excitable systems. Physics Reports, 392, 321–424.

    Google Scholar 

  14. Sagues, F., Sancho, J. M., & Garcia-Ojalvo, J. (2007). Spatiotemporal order out of noise. Reviews of Modern Physics, 79, 829.

    Article  Google Scholar 

  15. Gammaitoni, L., Hänggi, P., Jung, P., & Marchesoni, F. (2009). Stochastic resonance: A remarkable idea that changed our perception of noise. European Physical Journal B, 69, 1–3.

    Article  Google Scholar 

  16. Gardiner, C. W. (1997). Handbook of Stochastic Methods. Berlin: Springer.

    Google Scholar 

  17. Doob, J. L. (1953). Stochastic Processes. New York: Wiley.

    Google Scholar 

  18. Arnold, L. (1972). Stochastic Differential Equations. New York: Wiley.

    Google Scholar 

  19. Papoulis, A. (2002). Probability random variables and stochastic processes. New York: McGraw Hill.

    Google Scholar 

  20. Gihman, I. I., & Skorohod, A. V. (1972). Stochastic Differential Equations. Berlin: Springer.

    Google Scholar 

  21. Gillespie, D. T. (1996). Exact numerical simulation of the Ornstein-Uhlenbeck process and its integral. Physical Review E, 54, 2084–2091.

    Article  MathSciNet  Google Scholar 

  22. Moss, F., & McClintock, P. V. (1989). Noise in nonlinear dynamical systems, vol. 1: Theory of continuous Fokker-Planck systems. Cambridge: Cambridge University Press.

    Google Scholar 

  23. Johnson, J. B. (1925). The Schottky effect in low frequency circuits. Physical Review, 26, 71–85.

    Article  Google Scholar 

  24. Schottky, W. (1926). Small-shot effect and Flicker effect. Physical Review, 28, 74–103.

    Article  Google Scholar 

  25. Milotti, E. (2002). 1/f noise: A pedagogical review. arxiv preprint: physics/0204033.

    Google Scholar 

  26. Ward, L., & Greenwood, P. (2007). 1/f noise. Scholarpedia, 2, 1537.

    Article  Google Scholar 

  27. http://www.nslij-genetics.org/wli/1fnoise/.

  28. Dutta, P., & Horn, P. M. (1981). Low-frequency fluctuations in solids: 1/f noise. Reviews of Modern Physics, 53, 497–516.

    Article  Google Scholar 

  29. Mandelbrot, B. (1977). Fractals: Form, chance and dimension. San Francisco: W. H. Freeman and Co.

    MATH  Google Scholar 

  30. Bak, P., Tang, C., & Wiesenfeld, K. (1987). Self-organized criticality: An explanation of the 1/f noise. Physical Review Letters, 59, 381–384.

    Article  MathSciNet  Google Scholar 

  31. Bak, P., Tang, C., & Wiesenfeld, K. (1988). Self-organized criticality. Physical Review A, 221, 364–374.

    Article  MathSciNet  Google Scholar 

  32. Yellott, J. I. (1983). Spectral consequences of photoreceptor sampling in the rhesus retina. Science, 221, 382–385.

    Article  Google Scholar 

  33. Freidlin, M. I. (1996). Markov processes and differential equations: Asymptotic problems. Berlin: Springer.

    Google Scholar 

  34. Dynkin, E. B. (1965). Markov processes. Berlin: Springer.

    Google Scholar 

  35. Mandl, P. (1968). Analytical treatment of one-dimensional markov processes. Berlin: Academia.

    Google Scholar 

  36. Freidlin, M. I., & Wentzell, A. D. (1993). Diffusion processes on graphs and the averaging principle. Annals of Probability, 21(4), 2215–2245.

    Article  MathSciNet  MATH  Google Scholar 

  37. Pfeiffer, R. M. (1998). Statistical problems for stochastic processes with hysteresis. Ph.D. Thesis, University of Maryland, College Park.

    Google Scholar 

  38. Freidlin, M. I., Mayergoyz, I. D., & Pfeiffer, R. (2000). Noise in hysteretic systems and stochastic processes on graphs. Physical Review E, 62, 1850–1856.

    Article  Google Scholar 

  39. Mayergoyz, I., & Dimian, M. (2003). Analysis of spectral noise density of hysteretic systems driven by stochastic processes. Journal of Applied Physics, 93(10), 6826–6828.

    Article  Google Scholar 

  40. Dimian, M., & Mayergoyz, I. D. (2004). Spectral density analysis of nonlinear hysteretic systems. Physical Review E, 70, Article 046124.

    Google Scholar 

  41. Dimian, M. (2008). Extracting energy from noise: Noise benefits in hysteretic systems. NANO: Brief reviews and reports, 3(5), 391–397.

    Google Scholar 

  42. Abramowitz M., & Stegun I. (Eds.). (1972). Handbook of mathematical functions. New York: Dover Publications.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihai Dimian .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Dimian, M., Andrei, P. (2014). Noise and Stochastic Processes. In: Noise-Driven Phenomena in Hysteretic Systems. Signals and Communication Technology, vol 218. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1374-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-1374-5_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-1373-8

  • Online ISBN: 978-1-4614-1374-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics