Advertisement

Analog-to-Digital Conversion

  • Marcel J. M. Pelgrom
Chapter

Abstract

Several classifications exist of Nyquist-rate analog-to-digital converters. In this chapter the converters are subdivided in parallel search, sequential search, and linear search. Each of these architectures requires a comparator. Therefore this building block is extensively analyzed in all its aspects. The section is concluded with a comparator catalog.

The full-flash converter is the conversion solution for the highest speed range. Moreover it is a building block for more complex converters. Variants, such as gain stage, interpolation, and folding are analyzed and described.

The sub-ranging methods and pipeline converters are the solutions for the medium speed range demands. Next to a treatise on the various aspects of the architecture an analysis is made of the error sources, calibration techniques, and design issues.

In the next sections the successive approximation and linear topologies are discussed. These topologies are slower but receive today more attention as a massive parallelism allows them to compete with the performance of the pipeline converter. The issues associated with multiplexing are analyzed.

Finally some less prominent ideas for conversion are briefly highlighted.

Keywords

Input Signal Clock Cycle Successive Approximation Reference Voltage Clock Period 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Seitzer D, Pretzl G, Hamdy NA (1983) Electronic analog-to-digital conversion. Wiley Interscience, New York. ISBN: 0-471-90198-9Google Scholar
  2. 2.
    van de Plassche R (1994) Integrated analog-to-digital and digital-to-analog converters. Kluwer Academic Publishers, the Netherlands. ISBN: 0-7923-9436-4 (2nd edition ISBN: 1-4020-7500-6, the Netherlands, 2003)Google Scholar
  3. 3.
    Razavi B (1994) Principles of data conversion system design. Wiley-IEEE Press, USA. ISBN: 978-0-7803-1093-3CrossRefGoogle Scholar
  4. 4.
    Jespers P (2001) Integrated converters D-to-A and A-to-D architectures, analysis and simulation. Oxford Press, USA. ISBN: 0-19-856446-5Google Scholar
  5. 5.
    Maloberti F (2007) Data converters. Springer, Berlin. ISBN: 0-38-732485-2Google Scholar
  6. 6.
    Carmichael RD (1931) Smith ER Mathematical tables and formulas. Dover publications, New York. ISBN: 486-60111-0Google Scholar
  7. 7.
    Abramovic M, Stegun IA (eds) (1965) Handbook of mathematical functions. Dover publications, New York. ISBN: 0-486-61272-4Google Scholar
  8. 8.
    Beyer WH (1987) CRC standard mathematical tables, 28th edn. CRC press, Boca Raton. ISBN: 0-8493-0628-0Google Scholar
  9. 9.
    Sansen W (1999) Distortion in elementary transistor circuits. IEEE Trans Circ Syst II 46: 315–325CrossRefGoogle Scholar
  10. 10.
    Rey WJJ (1983) Introduction to robust and quasi-robust statistical methods. Springer, Berlin. ISBN: 0-387-12866-2MATHCrossRefGoogle Scholar
  11. 11.
    Papoulis A (1965) Probability, random variables, and stochastic processes, student edn. McGrawHill, New York (4th edition ISBN: 0-073-66011-6, McGrawHill 2001)Google Scholar
  12. 12.
    Weast RC (ed) (1984) CRC handbook of chemstry and physics, 64th edn. CRC Press, Boca Raton. ISBN: 0-8493-0464-4Google Scholar
  13. 13.
    van der Pauw LJ (1958) A method of measuring specific resistivity and hall effect of discs of arbitrary shape. Philips Res Rep 13:1–9Google Scholar
  14. 14.
    Sze SM (1981) Physics of semiconductor devices, 2nd edn. Wiley, New York (3rd edition ISBN: 978-0-471-14323-9, 2006)Google Scholar
  15. 15.
    Black JR (1969) Electromigration: a brief survey and some recent results. IEEE Trans Electron Devices ED-16:338–347CrossRefGoogle Scholar
  16. 16.
    Ogawa ET, Lee K-D, Blaschke VA, Ho PS (2002) Electromigration reliability issues in dual-damascene Cu interconnections. IEEE Trans Reliab 51:403–419CrossRefGoogle Scholar
  17. 17.
    van der Ziel A (1986) Noise in solid-state devices and circuits. Wiley-lnterscience, New York. ISBN: 0-471-832340Google Scholar
  18. 18.
    Feynman RP, Leighton RB, Sands M (1977) The Feynman lectures on physics, 6th edn, vol 1,2, and 3. Addison Wesley Publishing Company, California. ISBN: 0-201-02010-6-HGoogle Scholar
  19. 19.
    Rosa EB (1908) The self and mutual inductances of linear conductors. Bull Bur of Stand 4:301–344Google Scholar
  20. 20.
    ITRS The national technology roadmap for semiconductors, technology needs. 1994–2011. Updates: http://www.itrs.net.
  21. 21.
    Seto JYW (1975) The electrical properties of polycrystalline silicon films. J Appl Phys 46:5247–5254CrossRefGoogle Scholar
  22. 22.
    de Graaff HC, Klaassen FM (1990) Compact transistor modeling for circuit design. Springer, Wien. ISBN: 3-211-82136-8CrossRefGoogle Scholar
  23. 23.
    Ghandhi S (1957) Darlington’s compound connection for transistors. IRE Trans Circ Theor 4:291–292 (see also US patent 2-663-806)Google Scholar
  24. 24.
    McCreary JL (1981) Matching properties, and voltage and temperature dependence of MOS capacitors. IEEE J Solid-State Circ 16:608–616CrossRefGoogle Scholar
  25. 25.
    Shyu J-B, Temes GC, Yao K (1982) Random errors in MOS capacitors. IEEE J Solid-State Circ 17:1070–1076CrossRefGoogle Scholar
  26. 26.
    Aparicio R (2002) Capacity limits and matching properties of integrated capacitors. IEEE J Solid-State Circ 27:384–393CrossRefGoogle Scholar
  27. 27.
    Bely M et al (2007) Capacitive integrated circuit structure. US patent 7-170-178Google Scholar
  28. 28.
    Wei C, Barrington RF, Mautz JR, Sarkar TK (1984) Multiconductor transmission lines in multilayered dielectric media. IEEE Trans Microw Theor Technol 32:439–450CrossRefGoogle Scholar
  29. 29.
    Wallinga H, Bult K (1989) Design and analysis of CMOS analog signal processing circuits by means of a graphcal MOST model. IEEE J Solid-State Circ 24:672–680CrossRefGoogle Scholar
  30. 30.
    Vertregt M (2006) The analog challenge of nanometer CMOS. In: Technical digest international electron devices meeting, IEDM Digest of Technical Papers, pp 1–8Google Scholar
  31. 31.
    Pelgrom MJM, Duinmaijer ACJ, Welbers APG (1989) Matching properties of MOS transistors. IEEE J Solid-State Circ 24:1433–1440CrossRefGoogle Scholar
  32. 32.
    Woerlee PH, Knitel MJ, van Langevelde R, Klaassen DBM, Tiemeijer LF, Scholten AJ, Zegers-van Duijnhoven ATA (2001) RF-CMOS performance trends. IEEE Trans Electron Devices 48:1776–1782CrossRefGoogle Scholar
  33. 33.
    Scholten AJ, Tiemeijer LF, De Vreede PWH, Klaassen DBM (1999) A large signal non-quasi-static MOS model for RF circuit simulation. In: Technical digest international electron devices meeting, pp 163–166Google Scholar
  34. 34.
    Meindl JD (1995) Low power microelectronics: retrospect and prospect. Proc of the IEEE 83:619–635CrossRefGoogle Scholar
  35. 35.
    Klaassen FM, Hes W (1986) On the temperature coefficient of the MOSFET threshold voltage. Solid-State Electron 29:787–789CrossRefGoogle Scholar
  36. 36.
    Scholten AJ, Tiemeijer LF, van Langevelde R, Havens RJ, Zegers-van Duijnhoven ATA, Venezia VC (2003) Noise modeling for RF CMOS circuit simulation. IEEE Trans Electron Devices 50:618–632CrossRefGoogle Scholar
  37. 37.
    Brews JR (2006) MOSFET hand analysis using BSIM. IEEE Circ Devices Mag 21:28–36CrossRefGoogle Scholar
  38. 38.
    Gildenblat G, Li X, Wu W, Wang H, Jha A, van Langevelde R, Smit GDJ, Scholten AJ, Klaassen DBM (2006) PSP: an advanced surface-potential-based MOSFET model for circuit simulation. IEEE Trans Electron Devices 53:1979–1993CrossRefGoogle Scholar
  39. 39.
    Enz CC, Krummenacher F, Vittoz EA (1995) An analytical MOS transistor model valid in all regions of operations and dedicated to low- voltage and low-current applications. Analog Integr Circ Signal Process J 8:83–114CrossRefGoogle Scholar
  40. 40.
    Sakurai T, Newton AR (1990) Alpha-power law MOSFET model and its applications to CMOS inverter delay and other formulas. IEEE J Solid-State Circ 25:584–594CrossRefGoogle Scholar
  41. 41.
    Lee MSL, Tenbroek BM, Redman-White W, Benson J, Uren MJ (2001) A physically based compact model of partially depleted MOSFETs for analog circuit stimulation. IEEE J Solid-State Circ 36:110–121CrossRefGoogle Scholar
  42. 42.
    Middlebrook RD (2006) The general feedback theorem: a final solution for feedback systems. IEEE Microw Mag 7:50–63CrossRefGoogle Scholar
  43. 43.
    Unbehauen R (1972) Synthese elektrischer Netzwerke. Oldenbourg Verlag, GermanCrossRefGoogle Scholar
  44. 44.
    Sallen RP, Key EL (1955) A practical method of designing RC active filters. IRE Trans Circ Theor 2 CT-2:74–85Google Scholar
  45. 45.
    Nauta B (1992) Analog CMOS filters for very high frequencies. Kluwer Academic Publishers, Dordrecht. ISBN 0792392728Google Scholar
  46. 46.
    Berndt DF, Dutta Roy SC (1969) Inductor simulation with a single unity gain amplifier. IEEE J Solid State Circ 4:161–162CrossRefGoogle Scholar
  47. 47.
    Martin K, Sedra A (1981) Effects of the op amp finite gain and bandwidth on the performance of switched-capacitor filters. IEEE Trans Circ Syst CAS-28:822–829CrossRefGoogle Scholar
  48. 48.
    Huang Q, Sansen W (1987) Design techniques for improved capacitor area efficiency in switched-capacitor biquads. IEEE Trans Circ Syst CAS-34:1590–1599CrossRefGoogle Scholar
  49. 49.
    Allen PE, Sanchez-Sinencio E (1984) Switched capacitor circuits. Van Nostrand Reinhold, New York. ISBN: 0-4422-0873-1CrossRefGoogle Scholar
  50. 50.
    Allstot D, Black W (1983) Technological design consideration for monolithic MOS switched-capacitor filtering systems. Proc IEEE 71:967–986CrossRefGoogle Scholar
  51. 51.
    Gregorian R, Temes GC (1986) Analog MOS integrated circuits for signal processing. Wiley, New York. ISBN: 0-471-09797-7Google Scholar
  52. 52.
    Johns D, Martin KW (1997) Analog integrated circuit design. Wiley, New York. ISBN: 0-471-14448-7Google Scholar
  53. 53.
    Schreier R, Silva J, Steensgaard J, Temes GC (2005) Design-oriented estimation of thermal noise in switched-capacitor circuits. IEEE Trans Circ Syst I 15:2358–2368CrossRefGoogle Scholar
  54. 54.
    Gray PR, Meyer RG (1993) Analysis and design of analog integrated circuits, 3rd edn. Wiley, New York (4th edn, Wiley, New York, ISBN: 0-471-32168-0, 2001)Google Scholar
  55. 55.
    Allen P, Holberg D (1987) CMOS analog circuit design. Holt, Rinehart and Winston Inc, New YorkGoogle Scholar
  56. 56.
    Rijns JJF (1996) CMOS low-distortion high-frequency variable-gain amplifier. IEEE J Solid-State Circ 31:1029–1034CrossRefGoogle Scholar
  57. 57.
    Krummenacher F, Joehl N (2009) A differential-ramp based 65 dB-linear VGA technique in 65 nm CMOS. IEEE J Solid-State Circ 44:2503–2514CrossRefGoogle Scholar
  58. 58.
    Gilbert B (1968) A precise four-quadrant multiplier with subnanosecond response. IEEE J Solid-State Circ 3:365–373CrossRefGoogle Scholar
  59. 59.
    Elwan H, Tekin A, Pedrotti K (1988) A 4-MHz CMOS continuous-time filter with on-chip automatic tuning. IEEE J. Solid-State Circ 23:750–758CrossRefGoogle Scholar
  60. 60.
    Bult K, Geelen GJGM (1990) A fast-settling CMOS op amp for SC circuits with 90-dB DC gain. IEEE J Solid-State Circ 25:1379–1384CrossRefGoogle Scholar
  61. 61.
    Sackinger E, Guggenbuhl W (1990) A high-swing, high-impedance MOS cascode circuit. IEEE J Solid-State Circ 25:289–298CrossRefGoogle Scholar
  62. 62.
    Kamath BYT, Meyer RG, Gray PR (1974) Relationship between frequency response and settling time of operational amplifiers. IEEE J Solid-State Circ 9:347–352CrossRefGoogle Scholar
  63. 63.
    Solomon J (1974) The monolitic op amp: a tutorial study. IEEE J Solid-State Circ 9:314–332CrossRefGoogle Scholar
  64. 64.
    Tsividis Y, Gray P (1976) An integrated NMOS operational amplifier with internal compensation. IEEE J Solid-State Circ 11:748–754CrossRefGoogle Scholar
  65. 65.
    Tsividis Y (1978) Design consideration in single-channel MOS analog lntegraied circuits–a tutorial. IEEE J Solid-State Circ 13:383–391CrossRefGoogle Scholar
  66. 66.
    Gray PR, Meyer R (1982) MOS operational amplifier design a tutorial overview. IEEE J Solid-state Circ 17:969–982CrossRefGoogle Scholar
  67. 67.
    Redman-White W (1997) A high bandwidth constant gm and slew-rate rail-to-rail CMOS input circuit and its application to analog cells for low voltage VLSI systems. IEEE J Solid-State Circ 32:701–712CrossRefGoogle Scholar
  68. 68.
    Ahuja B (1983) An improved frequency compensation technique for CMOS operational amplifiers. IEEE J Solid-state Circ 18:629–633MathSciNetCrossRefGoogle Scholar
  69. 69.
    Cherry EM, Hooper DE (1963) The design of wide-band transistor feedback amplifiers. Proc IEEE 110(2):375–389Google Scholar
  70. 70.
    Hermans C, Steyaert MSJ (2006) A high-speed 850-nm optical receiver front-end in 0.18μm CMOS. IEEE J Solid-State Circ 41:1606–1614CrossRefGoogle Scholar
  71. 71.
    Leeson DB (1966) A simple model of feedback oscillator noise spectrum. Proc IEEE 54:329–330CrossRefGoogle Scholar
  72. 72.
    Demir A (2006) Computing timing jitter from phase noise spectra for oscillators and phase-locked loops with white and 1 ∕ f noise. IEEE Trans Circ Syst I 53:1869–1884CrossRefGoogle Scholar
  73. 73.
    Hajimiri A, Lee T (1998) A general theory of phase noise in electrical oscillators. IEEE J Solid-State Circ 33:179–194CrossRefGoogle Scholar
  74. 74.
    Razavi B (1996) A study of phase noise in CMOS oscillators. IEEE J Solid-State Circ 31:331–343CrossRefGoogle Scholar
  75. 75.
    van der Tang JD (2002) High frequency oscillator design for integrated transceivers. Ph.D. thesis, Technical University EindhovenGoogle Scholar
  76. 76.
    Huang Q (2000) Phase noise to carrier ratio in LC oscillators. IEEE Trans Circ Syst I: Fundam Theor Appl 47:965–980CrossRefGoogle Scholar
  77. 77.
    Vittoz E, Degrauwe M, Bitz S (1988) High-performance crystal oscillator circuits: theory and application. IEEE J Solid-state Circ 23:774–783CrossRefGoogle Scholar
  78. 78.
    Thommen W (1999) An improved low-power crystal oscillator. In: 25th European solid-state circuits conference, pp 146–149Google Scholar
  79. 79.
    Santos JT, Meyer RG A one-pin crystal oscillator for VLSI circuits. IEEE J Solid-State Circ 19:228–236 (1984)CrossRefGoogle Scholar
  80. 80.
    Geraedts P, van Tuijl E, Klumperink E, Wienk G, Nauta B (2008) A 90 μW 12 MHz relaxation oscillator with a -162dB FOM. In: International solid-state circuits conference, digest of technical papers, pp 348–349Google Scholar
  81. 81.
    Sebastiano F, Breems L, Makinwa K, Drago S, Leenaerts D, Nauta B (2009) A low-voltage mobility-based frequency reference for crystal-less ULP radios. IEEE J Solid-State Circ 44:2002–2009CrossRefGoogle Scholar
  82. 82.
    Gao X, Klumperink EAM, Bohsali M, Nauta B (2009) A low noise sub-sampling PLL in which divider noise is eliminated and PD/CP noise is not multiplied by N 2. IEEE J Solid-State Circ 44:3253–3263CrossRefGoogle Scholar
  83. 83.
    Rabiner LR, Gold B (1975) Theory and application of digital signal processing. Prentice-Hall, Englewood Cliffs. ISBN: 0-139-141014Google Scholar
  84. 84.
    van den Enden AWM, Verhoeckx NAM (1989) Discrete time signal processing, an introduction. Prentice Hall, New Jersey. ISBN: 0-132-167557Google Scholar
  85. 85.
    Nyquist H (1928) Certain topics in telegraph transmission theory. Trans AIEE 47:617–644 (Reprinted in Proc IEEE 90:280–305, 2002)Google Scholar
  86. 86.
    Shannon CE (1948) A mathematical theory of communication. Bell Syst Technol J 27: 379–423 and 623–656Google Scholar
  87. 87.
    Shannon CE (1949) Communication in the presence of noise. Proc IRE 37:10–21 (Reprinted in Proc IEEE 86:447–457, 1998)Google Scholar
  88. 88.
    Unser M (2000) Sampling-50 years after Shannon. Proc IEEE 88:569–587CrossRefGoogle Scholar
  89. 89.
    Candes E, Romberg J, Tao T (2006) Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans Inform Theor 52:489–509MathSciNetCrossRefMATHGoogle Scholar
  90. 90.
    Shinagawa M, Akazawa Y, Wakimoto T (1990) Jitter analysis of high-speed sampling systems. IEEE J Solid-State Circ 25:220–224CrossRefGoogle Scholar
  91. 91.
    McClellan JH, Parks TW, Rabiner LR (1973) A computer program for designing optimum FIR linear phase digital filters. IEEE Trans Audio Electroacoustics 21:506–526CrossRefGoogle Scholar
  92. 92.
    Séquin CH, Tompsett MF (1975) Charge transfer devices, supplement 8 to advances in electronics and electron physics. Academic, New YorkGoogle Scholar
  93. 93.
    Crols J, Steyaert M (1994) Switched-opamp: an approach to realize full CMOS switched-capacitor circuits at very low power supply voltages. IEEE J Solid-State Circ 29:936–942CrossRefGoogle Scholar
  94. 94.
    Baschirotto A (1997) Castello R A 1-V 1.8-MHz CMOS switched-opamp SC filter with rail-to-rail output swing. IEEE J Solid-State Circ 32:1979–1986CrossRefGoogle Scholar
  95. 95.
    Keramat A, Tao Z (2000) A capacitor mismatch and gain insensitive 1.5-bit/stage pipelined A/D converter. In: Proceedings of the 43rd IEEE Midwest symposium on circuits and systems, pp 48–51Google Scholar
  96. 96.
    Dickson J (1976) On-chip high-voltage generation MNOS integrated circuits using an improved voltage multiplier technique. IEEE J Solid-State Circ 11:374–378CrossRefGoogle Scholar
  97. 97.
    Knepper RW (1978) Dynamic depletion mode: An E/D mosfet circuit method for improved performance. IEEE J Solid-State Circ 13:542–548CrossRefGoogle Scholar
  98. 98.
    Abo AM, Gray PR (1999) A 1.5-V, 10-bit, 14.3-MS/s CMOS pipe-line analog-to-digital converter. IEEE J Solid-State Circ 34:599–606CrossRefGoogle Scholar
  99. 99.
    Limotyrakis S, Kulchycki SD, Su DK, Wooley BA (2005) A 150-MS/s 8-b 71-mW CMOS time-interleaved ADC. IEEE J Solid-State Circ 40:1057–1067CrossRefGoogle Scholar
  100. 100.
    Song BA, Tompsett MF, Lakshmikumar KR (1988) A 12-bit 1 -MS / s capacitor error-averaging pipelined A/D converter. IEEE J Solid-State Circ 23:1324–1333CrossRefGoogle Scholar
  101. 101.
    Yang W, Kelly D, Mehr I, Sayuk MT, Singer L (2001) A 3-V 340-mW 14-b 75-MS/s CMOS ADC with 85-dB SFDR at Nyquist input. IEEE J Solid-State Circ 36:1931–1936CrossRefGoogle Scholar
  102. 102.
    Gregoire BR, Moon U (2008) An Over-60 dB true rail-to-rail performance using correlated level shifting and an opamp with only 30 dB loop gain. IEEE J Solid-State Circ 43:2620–2630CrossRefGoogle Scholar
  103. 103.
    Wakimoto T, Akazawa Y (1993) Circuits to reduce distortion in the diode-bridge track-and-hold. IEEE J Solid-State Circ 28:384–387CrossRefGoogle Scholar
  104. 104.
    Vorenkamp P, Verdaasdonk JPM (1992) Fully bipolar, 120-MS/s 10-b track-and-hold circuit. IEEE J Solid-State Circ 27:988–992CrossRefGoogle Scholar
  105. 105.
    Harley Reeves A (1942) Electric signaling system. US Patent 2-272-070, 3 Feb 1942. Also French Patent 852-183 issued 1938, and British Patent 538-860 issued 1939Google Scholar
  106. 106.
    IEEE Std 1057-1994 (1994) IEEE standard for digitizing waveform recordersGoogle Scholar
  107. 107.
    IEEE 1241–2000 Standard for terminology and test methods for analog-to-digital converters. IEEE Std1241, 2000, ISBN: 0-7381-2724-8, revision 2007Google Scholar
  108. 108.
    Tilden SJ, Linnenbrink TE, Green PJ (1999) Overview of IEEE-STD-1241 standard for terminology and test methods for analog-to-digital converters. In: Instrumentation and measurement technology conference, pp 1498–1503Google Scholar
  109. 109.
    Bennett WR (1948) Spectra of quantized signals. Bell Syst Technol J 27:446–472Google Scholar
  110. 110.
    Blachman N (1985) The intermodulation and distortion due to quantization of sinusoids. IEEE Trans Acoustics Speech Signal Process ASSP 33:1417–1426CrossRefGoogle Scholar
  111. 111.
    Oude Alink MS, Kokkeler ABJ, Klumperink EAM, Rovers KC, Smit G, Nauta B (2009) Spurious-free dynamic range of a uniform quantizer. IEEE Trans Circ Syst II: Express Briefs 56:434–438CrossRefGoogle Scholar
  112. 112.
    Lloyd S (1982) Least squares quantization in PCM. IEEE Trans Inform Theor 28:129–137 (transcript from 1957 paper)Google Scholar
  113. 113.
    Max J (1960) Quantizing for minimum distortion. IRE Trans Inform Theor 6:7–12MathSciNetCrossRefGoogle Scholar
  114. 114.
    Wannamaker RA, Lipshitz SP, Vanderkooy J, Wright JN (2000) A theory of nonsubtractive dither. IEEE Trans on Signal Process 48:499–516CrossRefGoogle Scholar
  115. 115.
    Hilbiber D (1964) A new semiconductor voltage standard. In: IEEE International Solid-State Circuits Conference, Digest of Technical Papers, pp 32–33Google Scholar
  116. 116.
    Widlar RJ (1971) New developments in IC voltage regulators. IEEE J Solid-State Circ 6:2–7CrossRefGoogle Scholar
  117. 117.
    Kuijk KE (1973) A precision reference voltage source. IEEE J Solid-State Circ 8:222–226CrossRefGoogle Scholar
  118. 118.
    Brokaw AP (1974) A simple three-terminal IC bandgap reference. IEEE J Solid-State Circ 9:388–393CrossRefGoogle Scholar
  119. 119.
    Pertijs MAP, Huijsing JH (2006) Precision temperature sensors in CMOS technology. Springer, New York, ISBN: 140205257XGoogle Scholar
  120. 120.
    Song BS, Gray PR (1983) A precision curvature-compensated CMOS bandgap reference. IEEE J Solid-State Circ 18:634–643CrossRefGoogle Scholar
  121. 121.
    Banba H, Shiga H, Umezawa A, Miyaba T, Tanzawa T, Atsumi S, Sakui K (1999) A CMOS Band-gap reference circuit with sub 1-V operation. IEEE J Solid-State Circ 34:670–674CrossRefGoogle Scholar
  122. 122.
    Petrescu V, Pelgrom MJM, Veendrick HJM, Pavithran P, Wieling J (2006) Monitors for a signal integrity measurement system. In: 32nd European solid-state circuits conference, pp 122–125Google Scholar
  123. 123.
    Petrescu V, Pelgrom MJM, Veendrick HJM, Pavithran P, Wieling J (2006) A signal-integrity self-test concept for debugging nanometer CMOS ICs. In: IEEE international solid-state circuits conference, digest of technical papers, pp 544–545 (2006)Google Scholar
  124. 124.
    Fayomi CJB, Wirth GI, Achigui HF, Matsuzawa A (2010) Sub 1 V CMOS bandgap reference design techniques: a survey. Analog Integr Circ Signal Process 62:141–157CrossRefGoogle Scholar
  125. 125.
    Annema A-J (1999) Low-power bandgap references featuring DTMOSTs. IEEE J Solid-State Circ 34:949–955CrossRefGoogle Scholar
  126. 126.
    Sansen WM, Op’t Eynde F, Steyaert M (1988) A CMOS temperature compensated current reference. IEEE J Solid-State Circ 23:821–823CrossRefGoogle Scholar
  127. 127.
    Blauschild RA, Tucci PA, Muller RS, Meyer RG (1978) A new NMOS temperature-stable voltage reference. IEEE J Solid-State Circ 13:767–774CrossRefGoogle Scholar
  128. 128.
    Song H-J, Kim C-K (1993) A temperature-stabilized SOI voltage reference based on threshold voltage difference between enhancement and depletion NMOSFET’s. IEEE J Solid-State Circ 28:671–677CrossRefGoogle Scholar
  129. 129.
    van de Plassche RJ (1976) Dynamic element matching for high-accuracy monolithic D/A converters. IEEE J Solid-State Circ 21:795–800CrossRefGoogle Scholar
  130. 130.
    Schoeff JA (1979) An inherently monotonic 12 bit DAC. IEEE J Solid-State Circ 24:904–911CrossRefGoogle Scholar
  131. 131.
    Naylor JR (1983) A complete high-speed voltage output 16-bit monolithic DAC. IEEE J Solid-State Circ 28:729–735CrossRefGoogle Scholar
  132. 132.
    Schouwenaars HJ, Dijkmans EC, Kup BMJ, van Tuijl EJM (1986) A monolithic dual 16-bit D/A converter. IEEE J Solid-State Circ 21:424–429CrossRefGoogle Scholar
  133. 133.
    Groeneveld DWJ, Schouwenaars HJ, Termeer HAH, Bastiaansen CAA (1989) A self-calibration technique for monolithic high-resolution D/A converters. IEEE J Solid-State Circ 24:1517–1522CrossRefGoogle Scholar
  134. 134.
    Schouwenaars HJ, Groeneveld DWJ, Termeer HAH (1988) A low-power stereo 16-bit CMOS D/A converter for digital audio. IEEE J Solid-State Circ 23:1290–1297CrossRefGoogle Scholar
  135. 135.
    Lin C-H, Bult K (1998) A 10-b 250-M sample/s CMOS DAC in 1 mm2. In: IEEE International solid-state circuits conference, digest of technical papers, pp 214–215Google Scholar
  136. 136.
    Van Den Bosch A, Borremans M, Steyaert M, Sansen W (2001) A 12 b 500 MS/s current-steering CMOS D/A converter. In: IEEE international solid-state circuits conference, digest of technical papers, pp 366–367Google Scholar
  137. 137.
    Van Den Bosch A, Borremans M, Steyaert M, Sansen W (2001) A 10-bit 1-GSample/s Nyquist current-steering CMOS D/A converter. IEEE J Solid-State Circ 36:315–324CrossRefGoogle Scholar
  138. 138.
    Bastiaansen CAA, Groeneveld DWJ, Schouwenaars HJ, Termeer HAH (1991) A 10-b 40-MHz 0.8-μm CMOS current-output D/A converter. IEEE J Solid-State Circ 26:917–921CrossRefGoogle Scholar
  139. 139.
    Doris K, Briaire J, Leenaerts D, Vertregt M, van Roermund A (2005) A 12b 500MS/s DAC with > 70 dB SFDR up to 120MHz in 0.18μm CMOS. In: IEEE international solid-state circuits conference, digest of technical papers, pp 116–588Google Scholar
  140. 140.
    Van der Plas GAM, Vandenbussche J, Sansen W, Steyaert MSJ, Gielen GGE (1999) A 14-bit intrinsic accuracy Q 2 random walk CMOS DAC. IEEE J Solid-State Circ 34:1708–1718CrossRefGoogle Scholar
  141. 141.
    Jewett B, Liu J, Poulton K (2005) A 1.2GS/s 15b DAC for precision signal generation. In: IEEE international solid-state circuits conference, digest of technical papers, pp 110–111Google Scholar
  142. 142.
    Park S, Kim G, Park S-C, Kim W (2002) A digital-to-analog converter based on differential-quad switching. IEEE J Solid-State Circ 37:1335–1338CrossRefGoogle Scholar
  143. 143.
    Engel G, Kuo S, Rose S (2012) A 14b 3/6GHz current-steering RF DAC in 0.18m CMOS with 66dB ACLR at 2.9GHz. In: International solid-state circuits conference, digest of technical papers, pp 458–449Google Scholar
  144. 144.
    Schafferer B, Adams R (2004) A 3V CMOS 400mW 14b 1.4GS/s DAC for multi-carrier applications. In: IEEE international solid-state circuits conference, digest of technical papers, pp 360–361Google Scholar
  145. 145.
    Schofield W, Mercer D, Onge LS (2003) A 16b 400MS/s DAC with <  − 80dBc IMD to 300MHz and <  − 160dBm/Hz noise power spectral density. In: IEEE international solid-state circuits conference, digest of technical papers, pp 126–127Google Scholar
  146. 146.
    Su DK, Wooley BA (1993) A CMOS oversampling D/A converter with a current-mode semidigital reconstruction filter. IEEE J Solid-State Circ 28:1224–1233CrossRefGoogle Scholar
  147. 147.
    Barkin DB, Lin ACY, Su DK, Wooley BA (2004) A CMOS oversampling bandpass cascaded D/A converter with digital FIR and current-mode semi-digital filtering. IEEE J Solid-State Circ 39:585–593CrossRefGoogle Scholar
  148. 148.
    Suarez RE, Gray PR, Hodges DA (1975) All-MOS charge-redistribution analog-to-digital conversion techniques, II. IEEE J Solid-State Circ 10:379–385CrossRefGoogle Scholar
  149. 149.
    Song B-S, Lee S-H, Tompsett MF (1990) A 10-b 15-MHz CMOS recycling two-step A/D converter. IEEE J Solid-State Circ 25:1328–1338CrossRefGoogle Scholar
  150. 150.
    Philips K, van den Homberg J, Dijkmans C (1999) PowerDAC: a single-chip audio DAC with a 70%-efficient power stage in 0.5 μm CMOS. In: IEEE international solid-state circuits conference, digest of technical papers, pp 154–155Google Scholar
  151. 151.
    Fan Q, Huijsing JH, Makinwa KAA (2012) A 21 nV/\(\sqrt{Hz}\) Hz chopper-stabilized multi-path current-feedback instrumentation amplifier with 2 μV offset. IEEE J Solid-State Circ 47: 464-475CrossRefGoogle Scholar
  152. 152.
    Blanken PG, Menten SEJ (2002) A 10 μV-offset 8 kHz bandwidth 4th-order chopped ΣΔ A/D converter for battery management. In: IEEE international solid-state circuits conference, digest of technical papers, pp 388–389Google Scholar
  153. 153.
    Carley L (1989) A noise-shaping coder topology for 15+ bit converters. IEEE J Solid-State Circ 24:267–273CrossRefGoogle Scholar
  154. 154.
    Nys OJAP, Henderson RK (1996) An analysis of dynamic element matching techniques in sigma-delta modulation. In: IEEE international symposium on circuits and systems, pp 231–234Google Scholar
  155. 155.
    Henderson RK, Nys OJAP (1996) Dynamic element matching techniques with arbitrary noise shaping function. In: IEEE international symposium on circuits and systems, pp. 293–296Google Scholar
  156. 156.
    Story MJ (1992) Digital to analog converter adapted to select input sources based on a preselected algorithm once per cycle of a sampling signal. US patent 5-138-317Google Scholar
  157. 157.
    Maloberti A (1991) Convertitore digitale analogico sigma-delta multilivello con matching dinamico degli elementi. Tesi di Laurea, Universita degli Studi di Pavia, 1990–1991 (this thesis was not available)Google Scholar
  158. 158.
    Miller MR, Petrie CS (2003) A multibit sigma-delta ADC for multimode receivers. IEEE J Solid-State Circ 38:475–482CrossRefGoogle Scholar
  159. 159.
    Risbo L, Hezar R, Kelleci B, Kiper H, Fares M (2011) A 108dB-DR 120dB-THD and 0.5Vrms output audio DAC with inter-symbol-interference-shaping algorithm in 45nm CMOS. In: IEEE international solid-state circuits conference, digest of technical papers, pp 484–485Google Scholar
  160. 160.
    Dingwall AGF, Zazzu V (1985) An 8-MHz CMOS subranging 8-bit A/D converter. IEEE J Solid-State Circ 20:1138–1143CrossRefGoogle Scholar
  161. 161.
    Abrial A, Bouvier J, Fournier J, Senn P, Viellard M (1988) A 27-MHz digital-to-analog video processor. IEEE J Solid-State Circ 23:1358–1369CrossRefGoogle Scholar
  162. 162.
    Pelgrom MJM (1990) A 10b 50MHz CMOS D/A converter with 75Ω buffer. IEEE J Solid-State Circ 25:1347–1352CrossRefGoogle Scholar
  163. 163.
    Miki T, Nakamura Y, Nakaya M, Asai S, Akasaka Y, Horiba Y (1986) An 80-MHz 8-bit CMOS D/A converter. IEEE J Solid-State Circ 21:983–988CrossRefGoogle Scholar
  164. 164.
    Pelgrom MJM, Roorda M (1988) An algorithmic 15 bit CMOS digital-to-analog converter. IEEE J Solid-State Circ 23:1402–1405CrossRefGoogle Scholar
  165. 165.
    Matsumoto H, Watanabe K (1986) Switched-capacitor algorithmic digital-to-analog converters. IEEE Trans Circ Syst 33:721–724CrossRefGoogle Scholar
  166. 166.
    Fiedler HL, Hoefflinger B, Demmer W, Draheim P (1981) A 5-bit building block for 20 MHz A/D converters. IEEE J Solid-State Circ 26:151–155CrossRefGoogle Scholar
  167. 167.
    Wu J-T, Wooley BA (1988) A 100-MHz pipelined CMOS comparator. IEEE J Solid-State Circ 23:1379–1385CrossRefGoogle Scholar
  168. 168.
    Nauta B, Venes AGW (1995) A 70 Ms/s 110 mW 8-b CMOS folding and interpolating A/D converter. IEEE J Solid-State Circ 30:1302–1308CrossRefGoogle Scholar
  169. 169.
    Yin G, Op’t Eynde F, Sansen W (1992) A high-speed CMOS comparator with 8-b resolution. IEEE J Solid-State Circ 37:208–211CrossRefGoogle Scholar
  170. 170.
    Venes AGW, van de Plassche RJ (1996) An 80-MHz, 80-mW, 8-b CMOS folding A/D converter with distributed track-and-hold preprocessing. IEEE J Solid-State Circ 31: 1846–1853CrossRefGoogle Scholar
  171. 171.
    Ellersick W, Chih-Kong KY, Horowitz M, Dally W (1999) GAD: a 12-GS/s CMOS 4-bit A/D converter for an equalized multi-level link. In: Symposium on VLSI circuits, digest of technical papers, pp 49–52Google Scholar
  172. 172.
    Montanaro J et al (1996) A 160 MHz, 32b, 0.5W CMOS RISC microprocessor. IEEE J Solid-State Circ 31:1703–1714CrossRefGoogle Scholar
  173. 173.
    Verbruggen B, Craninckx J, Kuijk M, Wambacq P, Van der Plas G (2008) A 2.2mW 5b 1.75GS/s folding flash ADC in 90nm digital CMOS. In: IEEE international solid-state circuits conference, digest of technical papers, pp 252–611Google Scholar
  174. 174.
    Schinkel D, Mensink E, Klumperink E, van Tuijl E, Nauta B (2007) A double-tail latch-type voltage sense amplifier with 18ps setup+hold time. In: IEEE international solid-state circuits conference, digest of technical papers, pp 314–315Google Scholar
  175. 175.
    Fukushima N, Yamada T, Kumazawa N, Hasegawa Y, Soneda M (1989) A CMOS 40MHz 8b 105mW two-step ADC. In: International solid-state circuits conference, digest of technical papers, pp 14–15Google Scholar
  176. 176.
    Atherton JH, Simmonds HT (1992) An offset reduction technique for use with CMOS integrated comparators and amplifiers. IEEE J Solid-State Circ 27:1168–1175CrossRefGoogle Scholar
  177. 177.
    Wong K-LJ, Yang C-KK (2004) Offset compensation in comparators with minimum input-referred supply noise. IEEE J Solid-State Circ 37:837–840CrossRefGoogle Scholar
  178. 178.
    Kusumoto K, Matsuzawa A, Murata K (1993) A 10-b 20-MHz 30-mW pipelined interpolating CMOS ADC. IEEE J Solid-State Circ 28:1200–1206CrossRefGoogle Scholar
  179. 179.
    Haas M, Draxelmayr D, Kuttner F, Zojer B (1990) A monolithic triple 8-bit CMOS video coder. IEEE Trans Consum Electron 36:722–729CrossRefGoogle Scholar
  180. 180.
    Schvan P, Pollex D, Wang S-C, Falt C, Ben-Hamida N (2006) A 22GS/s 5b ADC in 0.13m SiGe BiCMOS. In: International solid-state circuits conference, digest of technical papers, pp 572–573Google Scholar
  181. 181.
    Reyhani H, Quinlan P (1994) A 5 V, 6-b, 80 Ms/s BiCMOS flash ADC. IEEE J Solid-State Circ 29:873–878CrossRefGoogle Scholar
  182. 182.
    Vorenkamp P, Verdaasdonk JPM (1992) A 10b 50MHz pipelined ADC. In: International solid-state circuits conference, digest of technical papers, pp 32–33Google Scholar
  183. 183.
    Kattmann K, Barrow J (1991) A technique for reducing differential nonlinearity errors in flash A/D converters. In: International solid-state circuits conference, digest of technical papers, pp 170–171Google Scholar
  184. 184.
    Scholtens PCS, Vertregt M (2002) A 6-b 1.6-Gsample/s flash ADC in 0.18μm CMOS using averaging termination. IEEE J Solid-State Circ 37:1599–1609CrossRefGoogle Scholar
  185. 185.
    Bult K, Buchwald A (1997) An embedded 240-mW 10-b 50-MS/s CMOS ADC in 1-mm2. IEEE J Solid-State Circ 32:1887–1895CrossRefGoogle Scholar
  186. 186.
    Uyttenhove K, Vandenbussche J, Lauwers E, Gielen GGE, Steyaert MSJ (2003) Design techniques and implementation of an 8-bit 200-MS/s interpolating/averaging CMOS A/D converter. IEEE J Solid-State Circ 38:483–494CrossRefGoogle Scholar
  187. 187.
    Van De Grift REJ, Rutten IWJM, van der Veen M (1987) An 8-bit video ADC incorporating folding and interpolation techniques. IEEE J Solid-State Circ 22:944–953CrossRefGoogle Scholar
  188. 188.
    Vorenkamp P, Roovers R (1997) A 12-b, 60-MS/s cascaded folding and interpolating ADC. IEEE J Solid-State Circ 32:1876–1886CrossRefGoogle Scholar
  189. 189.
    Van De Plassche RJ, van der Grift REJ (1979) A high-speed 7 bit A/D converter. IEEE J Solid-State Circ 14:938–943CrossRefGoogle Scholar
  190. 190.
    Hoogzaad G, Roovers R (1999) A 65-mW, 10-bit, 40-MS/s BiCMOS Nyquist ADC in 0.8 mm2. IEEE J Solid-State Circ 34:1796–1802CrossRefGoogle Scholar
  191. 191.
    Choe MJ, Song B-S, Bacrania K (2000) A 13b 40MS/s CMOS pipelined folding ADC with background offset trimming. In: International solid-state circuits conference, digest of technical papers, pp 36–37Google Scholar
  192. 192.
    Lewis SH, Gray PR (1987) A pipelined 5-MS/s 9-bit analog-to-digital converter. IEEE J Solid-State Circ 22:954–961CrossRefGoogle Scholar
  193. 193.
    van der Ploeg H, Vertregt M, Lammers M (2006) A 15-bit 30-MS/s 145-mW three-step ADC for imaging applications. IEEE J Solid-State Circ 41:1572–1577CrossRefGoogle Scholar
  194. 194.
    Shimizu Y, Murayama S, Kudoh K, Yatsuda H, Ogawa A (2006) A 30mW 12b 40MS/s subranging ADC with a high-gain offset-canceling positive-feedback amplifier in 90nm digital CMOS. In: International solid-state circuits conference, digest of technical papers, pp 802–803Google Scholar
  195. 195.
    Moreland C, Murden F, Elliott M, Young J, Hensley M, Stop R (2000) A 14b 100MS/s subranging ADC. IEEE J Solid-State Circ 35:1791–1798CrossRefGoogle Scholar
  196. 196.
    McCharles R, Hodges D (1978) Charge circuits for analog LSI. IEEE Trans Circ Syst 25:490–497CrossRefGoogle Scholar
  197. 197.
    Cho TB, Gray PR (1995) A 10 b, 20 Msample/s, 35 mW pipeline A/D converter. IEEE J Solid-State Circ 30:166–172CrossRefGoogle Scholar
  198. 198.
    Chai Y, Wu J-T (2012) A 5.37mW 10b 200MS/s dual-path pipelined ADC. In: International solid-state circuits conference, digest of technical papers, pp 462–463Google Scholar
  199. 199.
    Li PW, Chin MJ, Gray PR, Castello R (1984) A ratio-independent algorithmic analog-to-digital conversion technique. IEEE J Solid-State Circ 19:828–836CrossRefGoogle Scholar
  200. 200.
    Karanicolas AN, Lee H-S, Barcrania KL (1993) A 15-b 1-MS/s digitally self-calibrated pipeline ADC. IEEE J Solid-State Circ 28:1207–1215CrossRefGoogle Scholar
  201. 201.
    Nagaraj K, Fetterman HS, Anidjar J, Lewis SH, Renninger RG (1997) A 250-mW, 8-b, 52-MSs/s parallel-pipelined A/D converter with reduced number of amplifiers. IEEE J Solid-State Circ 32:312–320CrossRefGoogle Scholar
  202. 202.
    Chiu Y, Gray PR, Nikolic B (2004) A 14-b 12-MS/s CMOS pipeline ADC with over 100-dB SFDR. IEEE J Solid-State Circ 39:2139–2151CrossRefGoogle Scholar
  203. 203.
    Wang X, Hurst PJ, Lewis SH (2004) A 12-bit 20-MS/s pipelined analog-to-digital converter with nested digital background calibration. IEEE J Solid-State Circ 39:1799–1808CrossRefGoogle Scholar
  204. 204.
    Murmann B, Boser BE (2003) A 12-bit 75-MS/s pipelined ADC using open-loop residue amplification. IEEE J Solid-State Circ 38:2040–2050CrossRefGoogle Scholar
  205. 205.
    Iroaga E, Murmann B (2007) A 12-Bit 75-MS/s pipelined ADC using incomplete settling. IEEE J Solid-State Circ 42:748–756CrossRefGoogle Scholar
  206. 206.
    Geelen G, Paulus E, Simanjuntak D, Pastoor H, Verlinden R (2006) A 90nm CMOS 1.2V 10b power and speed programmable pipelined ADC with 0.5pJ/conversion-step. In: International solid-state circuits conference, digest of technical papers, 214–215Google Scholar
  207. 207.
    Bardsley S, Dillon C, Kummaraguntla R, Lane C, Ali AMA, Rigsbee B, Combs D (2006) A 100-dB SFDR 80-MSPS 14-Bit 0.35-μm BiCMOS Pipeline ADC. IEEE J Solid-State Circ 41:2144–2153CrossRefGoogle Scholar
  208. 208.
    Lee BG, Min BM, Manganaro G, Valvano JW (2008) A 14b 100 MS/s pipelined ADC with a merged active S/H and first MDAC. In: International solid-state circuits conference, digest of technical papers, pp 248–249Google Scholar
  209. 209.
    van de Vel H, Buter B, Ploeg Hvd, Vertregt M, Geelen G, Paulus E (2009) A 1.2 V 250-mW 14-b 100 MS/s digitally calibrated pipeline ADC in 90-nm CMOS. IEEE J Solid-State Circ 44:1047–1056CrossRefGoogle Scholar
  210. 210.
    Lee CC, Flynn MP (2011) A SAR-assisted two-stage pipeline ADC. IEEE J Solid-State Circ 46:859–869CrossRefGoogle Scholar
  211. 211.
    Verbruggen B, Iriguchi M, Craninckx J (2012) A 1.7mW 11b 250MS/s 2 interleaved fully dynamic pipelined SAR ADC in 40nm digital CMOS. In: International solid-state circuits conference, digest of technical papers, pp 466–467Google Scholar
  212. 212.
    Min BM, Kim P, Bowman FW, Boisvert DM, Aude AJ (2003) A 69-mW 10-bit 80-MS/s pipelined CMOS ADC. IEEE J Solid-State Circ 38:2031–2039CrossRefGoogle Scholar
  213. 213.
    Mehr I, Singer L (2000) A 55-mW 10-bit 40-MS/s Nyquist-rate CMOS ADC. IEEE J Solid-State Circ 35:318–323CrossRefGoogle Scholar
  214. 214.
    Sepke T, Fiorenza JK, Sodini CG, Holloway P, Lee H-S (2006) Comparator-based switched-capacitor circuits for scaled CMOS technologies. In: International solid-state circuits conference, digest of technical papers, pp 812–821Google Scholar
  215. 215.
    Brooks L, Lee H-S (2009) A 12b 50MS/s fully differential zero-crossing-based ADC without CMFB. In: International solid-state circuits conference, digest of technical papers, pp 166–167Google Scholar
  216. 216.
    Wang H, Wang X, Hurst PJ, Lewis SH (2009) Nested digital background calibration of a 12-bit pipelined ADC without an input SHA. IEEE J Solid-State Circ 44:2780–2789CrossRefGoogle Scholar
  217. 217.
    McCreary JL, Gray PR (1975) All-MOS charge redistribution analog-to-digital conversion techniques I. IEEE J Solid-State Circ 10:371–379CrossRefGoogle Scholar
  218. 218.
    Craninckx J, Van der Plas G (2007) A 65fJ/conversion-step 0-to-50MS/s 0-to-0.7mW 9b cHARGE-sHaring SAR ADC in 90nm digital CMOS. In: International solid-state circuits conference, digest of technical papers, pp 246–247Google Scholar
  219. 219.
    Agnes A, Bonizzoni E, Malcovati P, Maloberti F (2008) A 9.4-ENOB 1V 3.8μW 100kS/s SAR ADC with time-domain comparator. In: International solid-state circuits conference, digest of technical papers, pp 246–247Google Scholar
  220. 220.
    van Elzakker M, van Tuijl E, Geraedts P, Schinkel D, Klumperink E, Nauta B (2008) A 1.9μW 4.4fJ/conversion-step 10b 1MS/s charge-redistribution ADC. In: International solid-state circuits conference, digest of technical papers, pp 244–245Google Scholar
  221. 221.
    Harpe P, Zhang Y, Dolmans G, Philips K, de Groot H (2012) A 7-to-10b 0-to-4MS/s flexible SAR ADC with 6.5-to-16fJ/conversion-step. In: International solid-state circuits conference, digest of technical papers, pp 472–473Google Scholar
  222. 222.
    Kuttner F (2002) A 1.2V 10 b 20 MS/s non-binary successive approximation ADC in 0.13μm CMOS. In: International solid-state circuits conference, digest of technical papers, pp 176–177Google Scholar
  223. 223.
    Hesener M, Ficher T, Hanneberg A, Herbison D, Kuttner F, Wenskel H (2007) A 14b 4OMS/s redundant SAR ADC with 480MHz in 0.13pm CMOS. In: International solid-state circuits conference, digest of technical papers, pp 248–249Google Scholar
  224. 224.
    Shih C, Gray PR (1986) Reference refreshing cyclic analog-to-digital and digital-to-analog converters. IEEE J Solid-State Circ 21:544–554CrossRefGoogle Scholar
  225. 225.
    Ginetti B, Jespers P, Vandemeulebroecke A (1992) A CMOS 13-b cyclic. A/D converter. IEEE J Solid-State Circ 27:957–964CrossRefGoogle Scholar
  226. 226.
    Mase M, Kawahito S, Sasaki M, Wakamori Y, Furuta M (2005) A wide dynamic range CMOS image sensor with multiple exposure-time signal outputs and 12-bit column-parallel cyclic A/D converters. IEEE J Solid-State Circ 40:2787–2795CrossRefGoogle Scholar
  227. 227.
    Snoeij MF, Theuwissen AJP, Makinwa KAA, Huijsing JH (2007) Multiple-ramp column-parallel ADC architectures for CMOS image sensors. IEEE J Solid-State Circ 42:2986–2977CrossRefGoogle Scholar
  228. 228.
    Naraghi S, Courcy M, Flynn MP (2009) A 9b 14 μW 0.06mm2 PPM ADC in 90nm digital CMOS. In: IEEE international solid-state circuits conference digest of technical papers, pp 168–169Google Scholar
  229. 229.
    Howard BK (1955) Binary quantizer. US patent 2-715-678Google Scholar
  230. 230.
    van der Ploeg H, Hoogzaad G, Termeer HAH, Vertregt M, Roovers RLJ (2001) A 2.5V, 12b, 54MS/s, 0.25um CMOS ADC. In: International solid-state circuits conference, digest of technical papers, pp 132–133Google Scholar
  231. 231.
    Pelgrom MJM, Jochijms A, Heijns H (1987) A CCD delay line for video applications. IEEE Trans Consum Electron 33:603–609CrossRefGoogle Scholar
  232. 232.
    Kurosawa N, Kobayashi H, Maruyama K, Sugawara H, Kobayashi K (2001) Explicit analysis of channel mismatch effects in time-interleaved ADC systems. IEEE Trans Circ Syst I: Fundam Theor Appl 48:261–271CrossRefGoogle Scholar
  233. 233.
    Doris K, Janssen E, Nani C, Zanikopoulos A, Wiede Gvd (2011) A 480 mW 2.6 GS/s 10b time-interleaved ADC With 48.5 dB SNDR up to Nyquist in 65 nm CMOS. IEEE J Solid-State Circ 46:2821–2833CrossRefGoogle Scholar
  234. 234.
    Hsu C-C, Huang F-C, Shih C-Y, Huang C-C, Lin Y-H, Lee C-C, Razavi B (2007) An 11b 800MS/s time-interleaved ADC with digital background calibration. In: International solid-state circuits conference, digest of technical papers, pp 164–165Google Scholar
  235. 235.
    Vertregt M, Dijkstra MB, Rens ACv, Pelgrom MJM (1993) A Versatile digital CMOS video delay line with embedded ADC, DAC and RAM. In: 19th European solid-state circuits conference, pp 226–229Google Scholar
  236. 236.
    Pelgrom MJM, Rens ACv, Vertregt M, Dijkstra MB (1994) A 25-Ms/s 8-bit CMOS A/D converter for embedded application. IEEE J Solid-State Circ 29:879–886Google Scholar
  237. 237.
    Murray B, Menting H (1992) A highly integrated D2MAC decoder. In: IEEE international conference on consumer electronics, digest of technical papers, pp 56–57Google Scholar
  238. 238.
    Mark JW, Todd TD (1981) A nonuniform sampling approach to data compression. IEEE Trans Commun 29:24–32CrossRefGoogle Scholar
  239. 239.
    Allier E, Goulier J, Sicard G, Dezzani A, Andre E, Renaudin M (2005) A 120nm low power asynchronous ADC. In: International symposium on low-power electronics and design, pp 60–65Google Scholar
  240. 240.
    Trakimas M, Sonkusale SR (2011) An adaptive resolution asynchronous adc architecture for data compression in energy constrained sensing applications. IEEE Trans Circ Syst I 58: 921–934MathSciNetCrossRefGoogle Scholar
  241. 241.
    Lin C-S, Liu B-D (2003) A new successive approximation architecture for low-power low-cost CMOS A/D converter. IEEE J Solid-State Circ 38:54–62CrossRefGoogle Scholar
  242. 242.
    Chen S-WM, Brodersen RW (2006) A 6-bit 600-MS/s 5.3-mW asynchronous ADC in 0.13-μm CMOS. IEEE J Solid-State Circ 41:2669–2680CrossRefGoogle Scholar
  243. 243.
    Pernillo J, Flynn MP (2011) A 1.5-GS/s flash ADC With 57.7-dB SFDR and 6.4-bit ENOB in 90 nm digital CMOS. IEEE Trans Circ Syst II: Express Briefs 58:837–841CrossRefGoogle Scholar
  244. 244.
    Jansson J-P, Mantyniemi A, Kostamovaara J (2006) A CMOS time-to-digital converter with better than 10 ps single-shot precision. IEEE J Solid-State Circ 41:1286–1296CrossRefGoogle Scholar
  245. 245.
    Chen P, Liu S-L, Wu J (2000) A CMOS pulse-shrinking delay element for time interval measurement. IEEE Trans Circ Syst 47:954–958CrossRefGoogle Scholar
  246. 246.
    Rahkonen TE, Kostamovaara JT (1993) The use of stabilized CMOS delay lines for the digitization of short time intervals. IEEE J Solid-State Circ 28:887–894CrossRefGoogle Scholar
  247. 247.
    van der Ploeg H (1997) The Nonius analog-to-digital converter. In: Internal Philips research report/ University Twente B.Sc. report, supervisor M. PelgromGoogle Scholar
  248. 248.
    Groza VZ (2001) High-resolution floating-point ADC. IEEE Trans Instrumentation and Measurement 50:1812–1829CrossRefGoogle Scholar
  249. 249.
    de Jager F (1952) Delta modulation, a method of PCM transmission using the 1-unit code. Philips Res Rep 7:442–466Google Scholar
  250. 250.
    Cutler C (1960) Transmission systems employing quantization. US Patent 2-927-962Google Scholar
  251. 251.
    Widrow B (1956) A study of rough amplitude quantization by means of Nyquist sampling theory. IRE Trans Circ Theor CT-3:266–276CrossRefGoogle Scholar
  252. 252.
    Inose H, Yasuda Y, Murakami J (1962) A telemetering system by code modulation- ΔΣ modulation. IRE Trans Space Electron Telemetry SET-8:204–209 (Proc IEEE 51:1524–1535, 1963)Google Scholar
  253. 253.
    Candy JC, Temes GC (eds) (1992) Oversampling delta-sigma data converters: theory, design and simulation. IEEE, New YorkGoogle Scholar
  254. 254.
    Norsworthy SR, Schreier R, Temes GC (eds) (1997) Delta-sigma data converters: theory, design, and simulation. IEEE Press, Piscataway. ISBN: 0-7803-1045-4Google Scholar
  255. 255.
    Schreier R, Temes GC (2004) Understanding delta-sigma data converters. Wiley, New York. ISBN: 0-471-46585-2CrossRefGoogle Scholar
  256. 256.
    Naus PJA, Dijkmans EC (1991) Multi-bit oversampled ΣΔ A/D converters as front-end for CD players. IEEE J Solid-State Circ 26:905–909CrossRefGoogle Scholar
  257. 257.
    Kup BMJ, Dijkmans EC, Naus PJA, Sneep J (1991) A bit-stream digital-to-analog converter with 18-b resolution. IEEE J Solid-State Circ 26:1757–1763CrossRefGoogle Scholar
  258. 258.
    Naus PJA, Dijkmans EC, Stikvoort EF, Holland DJ, Bradinal W (1987) A CMOS stereo 16-bit D/A converter for digital audio. IEEE J Solid-State Circ 22:390–395CrossRefGoogle Scholar
  259. 259.
    Adams R, Nguyen KQ (1998) A 113-dB SNR oversampling DAC with segmented noise-shaped scrambling. IEEE J Solid-State Circ 33:1871–1878CrossRefGoogle Scholar
  260. 260.
    Naus PJA, Dijkmans EC (1988) Low signal level distortion in sigma-delta modulators. In: 84th convention of the audio engineering society, ParisGoogle Scholar
  261. 261.
    Vleugels K, Rabii S, Wooley BA (2001) A 2.5 v sigma-delta modulator for broadband communications applications. IEEE J Solid-State Circ 36:1887–1889CrossRefGoogle Scholar
  262. 262.
    Hart A, Voinigescu SP (2009) A 1 GHz bandwidth low-pass sigma-delta ADC with 20-50 GHz adjustable sampling rate. IEEE J Solid-State Circ 44:1401–1414CrossRefGoogle Scholar
  263. 263.
    Gambini S, Rabaey J (2007) A 100-kS/s 65-dB DR sigma-delta ADC with 0.65V supply voltage. In: 33th European solid state circuits conference, pp 202–205Google Scholar
  264. 264.
    Lee WL, Sodini CG (1987) A topology for higher order interpolative coders. In: Proceedings of the IEEE international symposium on circuits and systems, pp 459–462Google Scholar
  265. 265.
    Chao KC-H, Nadeem S, Lee WL, Sodini CG (1990) A higher order topology for interpolative modulators for oversampling A/D converters. IEEE Trans Circ Syst 37:309–318CrossRefGoogle Scholar
  266. 266.
    Williams III LA, Wooley BA (1994) A third-order sigma-delta modulator with extended dynamic range. IEEE J Solid-State Circ 29:193–202CrossRefGoogle Scholar
  267. 267.
    Christen T, Burger T, Huang Q (2007) A 0.13μm CMOS EDGE/UMTS/WLAN tri-mode ADC with -92dB THD. In: International solid-state circuits conference, digest of technical papers, pp 240–241Google Scholar
  268. 268.
    Breems LJ, Rutten R, van Veldhoven RHM, van der Weide G (2007) A 56 mW continuous-time quadrature cascaded ΣΔ modulator with 77 dB DR in a near zero-IF 20 MHz Band. IEEE J Solid-State Circ 42:2696–2705CrossRefGoogle Scholar
  269. 269.
    Kulchycki SD, Trofin R, Vleugels K, Wooley BA (2008) A 77-dB dynamic range, 7.5-MHz hybrid continuous-time/discrete-time cascaded sigma delta modulator. IEEE J Solid-State Circ 43:796–804CrossRefGoogle Scholar
  270. 270.
    Breems LJ, Dijkmans EC, Huijsing JH (2001) A quadrature data-dependent DEM algorithm to improve image rejection of a complex ΣΔ modulator. IEEE J Solid-State Circ 36:1879–1886CrossRefGoogle Scholar
  271. 271.
    van der Zwan EJ, Dijkmans EC (1996) A 0.2 mW CMOS ΣΔ modulator for speech coding with 80 dB dynamic range. IEEE J Solid-State Circ 31:1873–1880CrossRefGoogle Scholar
  272. 272.
    Keller M, Buhmann A, Sauerbrey J, Ortmanns M, Manoli Y (2008) A comparative study on excess-loop-delay compensation techniques for continuous-time sigmadelta modulators. IEEE Trans Circ Syst I 55:3480–3487MathSciNetCrossRefGoogle Scholar
  273. 273.
    Philips KJP (2005) ΣΔ AD conversion for signal conditioning. Ph.D. thesis Technical University EindhovenGoogle Scholar
  274. 274.
    Philips K, Nuijten PACM, Roovers RLJ, van Roermund AHM, Chavero FM, Pallares MT, Torralba A (2004) A continuous-time SD ADC with increased immunity to interferers. IEEE J Solid-State Circ 39:2170–2178CrossRefGoogle Scholar
  275. 275.
    Nguyen K, Adams R, Sweetland K, Chen H (2005) A 106-dB SNR hybrid oversampling analog-to-digital converter for digital audio. IEEE J Solid-State Circ 40:2408–2415CrossRefGoogle Scholar
  276. 276.
    Shettigar P, Pavan S (2012) A 15mW 3.6GS/s CT-SD ADC with 36MHz bandwidth and 83dB DR in 90nm CMOS. In: International solid-state circuits conference, digest of technical papers, pp 156–157Google Scholar
  277. 277.
    Bolatkale M, Breems LJ, Rutten R, Makinwa KAA (2011) A 4 GHz continuous-time ADC with 70 dB DR and 74 dBFS THD in 125 MHz BW. IEEE J Solid-State Circ 46:2857–2868CrossRefGoogle Scholar
  278. 278.
    Shibata1 H, Schreier R, Yang W, Shaikh A, Paterson D, Caldwell1 T, Alldred D, Lai PW (2012) A DC-to-1GHz tunable RF SD ADC achieving DR = 74dB and BW = 150MHz at f0 = 450MHz Using 550mW. In: IEEE international solid-state circuits conference, digest of technical papers, pp 150–151Google Scholar
  279. 279.
    Adams RW (1986) Design and implementation of an audio 18-bit analog-to-digital converter using oversampling techniques. J. Audio Eng Soc 34:153–166Google Scholar
  280. 280.
    van Veldhoven RHM, Minnis BJ, Hegt HA, van Roermund AHM (2002) A 3.3-mW ΣΔ modulator for UMTS in 0.18-μm CMOS with 70-dB dynamic range in 2-MHz bandwidth. IEEE J Solid-State Circ 37:1645–1652CrossRefGoogle Scholar
  281. 281.
    Lipshitz SP, Vanderkooy J (2001) Why 1-bit sigma-delta conversion is unsuitable for high-quality applications. In: Paper 5395 in 110th convention of the audio engineering society, AmsterdamGoogle Scholar
  282. 282.
    Silva PGR, Breems LJ, Makinwa K, Roovers R, Huijsing JH (2007) An IF-to-baseband ΣΔ modulator for AM/FM/IBOC radio receivers with a 118 dB dynamic range. IEEE J Solid-State Circ 42:1076–1089CrossRefGoogle Scholar
  283. 283.
    292 Ouzounov SF, Roza E, Hegt JA, van de Weide G, van Roermund AHM (2006) Analysis and design of high-performance asynchronous sigma delta modulators with binary quantizer. IEEE J Solid-State Circ 41:588–596CrossRefGoogle Scholar
  284. 284.
    Park H, Nam KY, Su DK, Vleugels K, Wooley BA (2009) A 0.7-V 870-μW digital-audio CMOS sigma-delta modulator. IEEE J Solid-State Circ 44:1078–1088CrossRefGoogle Scholar
  285. 285.
    Engelen J, van de Plassche R, Stikoort E, Venes A (1999) A sixth-order continuous-time bandpass sigma-delta modulator for digital radio IF. IEEE J Solid-State Circ 34:1753–1764CrossRefGoogle Scholar
  286. 286.
    Schreier R, Abaskharoun N, Shibata H, Mehr I, Rose S, Paterson D (2006) A 375mW quadrature bandpass delta sigma ADC with 90dB DR and 8.5MHz BW at 44MHz. In: International solid-state circuits conference, digest of technical papers, pp 141–142Google Scholar
  287. 287.
    Ryckaert J et al (2009) A 2.4GHz Low-Power Sixth-Order RF bandpass SD Converter in CMOS. IEEE J Solid-State Circ 44:2873–2880CrossRefGoogle Scholar
  288. 288.
    289 Harrison J, Nesselroth M, Mamuad R, Behzad A, Adams A, Avery S (2012) An LC bandpass SD ADC with 70dB SNDR over 20MHz bandwidth using CMOS DACs. In: International solid-state circuits conference, digest of technical papers, pp 146–147Google Scholar
  289. 289.
    Chae H, Jeong J, Manganaro G, Flynn M (2012) A 12mW low-power continuous-time bandpass SD modulator with 58dB SNDR and 24MHz bandwidth at 200MHz IF. In: International solid-state circuits conference, digest of technical papers, pp 148–149Google Scholar
  290. 290.
    van der Zwan EJ, Philips K, Bastiaansen CAA (2000) A 10.7-MHz IF-to-baseband ΣΔ A/D conversion system for AM/FM radio receivers. IEEE J Solid-State Circ 35:1810–1819CrossRefGoogle Scholar
  291. 291.
    Bergveld HJ, van Kaam KMM, Leenaerts DMW, Philips KJP, Vaassen AWP, Wetzker G (2004) A low-power highly-digitized receiver for 2.4-GHz-band GFSK applications. In: IEEE radio frequency integrated circuits (RFIC) symposium, pp 347–350Google Scholar
  292. 292.
    283 van Veldhoven RHM (2003) A triple-mode continuous-time ΣΔ modulator with switched-capacitor feedback DAC for a GSM-EDGE/ CDMA2000/UMTS receiver. IEEE J Solid-State Circ 38:2069–2076CrossRefGoogle Scholar
  293. 293.
    Kavusi S, Kakavand H, El Gamal A (2006) On incremental sigma-delta modulation with optimal filtering. IEEE Trans Circ Syst I: Fundam Theor Appl 53:1004–1015MathSciNetCrossRefGoogle Scholar
  294. 294.
    Irons FH (2000) The noise power ratio theory and adc testing. IEEE Trans Instrum Meas 49:659–665CrossRefGoogle Scholar
  295. 295.
    Milor LS (1998) A tutorial introduction to research on analog and mixed-signal circuit testing. IEEE Trans Circ Syst-II 45:1389–1407CrossRefGoogle Scholar
  296. 296.
    Veendrick H (1998) Deep submicron CMOS ICs. Kluwer, Deventer. ISBN: 90-557-612-81 (Revised edition: H. Veendrick, Nanometer CMOS ICs, Springer, Deventer ISBN: 978-1-4020-8332-7, 2008)Google Scholar
  297. 297.
    Langevelde Rv (2003) RF performance and modeling of CMOS devices. In: Educational sessions workbook of custom integrated circuits conferenceGoogle Scholar
  298. 298.
    Pelgrom MJM, Vertregt M (1997) CMOS technology for mixed signal ICs. Solid-State Electron 41:967–974CrossRefGoogle Scholar
  299. 299.
    Gregor RW (1992) On the relationship between topography and transistor matching in an analog CMOS technology. IEEE Trans Electron Devices 39:275–282CrossRefGoogle Scholar
  300. 300.
    Stathis JH, Zafar S (2006) The negative bias temperature instability in MOS devices: a review. Microelectron Reliab 46:270–286CrossRefGoogle Scholar
  301. 301.
    Hook TB, Brown J, Cottrell P, Adler E, Hoyniak D, Johnson J, Mann R (2003) Lateral ion implant straggle and mask proximity effect. IEEE Trans Electron Devices 50:1946–1951CrossRefGoogle Scholar
  302. 302.
    Drennan P, Kniffin M, Locascio D (2006) Implications of proximity effects for analog design. In: IEEE custom integrated circuits conference, pp 169–176Google Scholar
  303. 303.
    Bianchi RA, Bouche G, Roux-dit-Buisson O (2002) Accurate modeling of trench isolation induced mechanical stress effects on MOSFET electrical performance. In: Technical digest international electron devices meeting, pp 117–120Google Scholar
  304. 304.
    Su K-Wi et al (2003) A scaleable model for STI mechanical stress effect on layout dependence of MOS electrical characteristics. In: Proceedings of the IEEE custom integrated circuits conference, pp 245–248Google Scholar
  305. 305.
    Wils N, Tuinhout HP, Meijer M (2009) Characterization of STI edge effects on CMOS variability. IEEE Trans Semiconductor Manufacturing 22:59–65CrossRefGoogle Scholar
  306. 306.
    Ge L, Adams V, Loiko K, Tekleab D, Bo X-Z, Foisy M, Kolagunta V, Veeraraghavan S (2007) Modeling and simulation of poly-space effects in uniaxially-strained etch stop layer stressors. In: IEEE international SOI conference, pp 25–26Google Scholar
  307. 307.
    Tuinhout HP, Pelgrom MJM, Penning de Vries R, Vertregt M (1996) Effects of metal coverage on MOSFET matching. In: Technical digest international electron devices meeting, pp 735–739Google Scholar
  308. 308.
    Tuinhout HP, Bretveld A, Peters WCM (2004) Measuring the span of stress asymmetries on high-precision matched devices. In: International conference on microelectronic test structures, pp 117–122Google Scholar
  309. 309.
    Tuinhout HP, Vertregt M (2001) Characterization of systematic MOSFET current factor mismatch caused by metal CMP dummy structures. IEEE Trans Semiconductor Manufacturing 14:302–310CrossRefGoogle Scholar
  310. 310.
    Pelgrom MJM, Vertregt M, Tuinhout HP Matching of MOS transistors. MEAD course material, 1998–2009Google Scholar
  311. 311.
    Lam M-F, Tammineedi A, Geiger R (2001) Current mirror layout strategies for enhancing matching performance. Analog Integr Circ Signal Process 28:9–26CrossRefGoogle Scholar
  312. 312.
    Tuinhout HP, Elzinga H, Brugman JT, Postma F (1994) Accurate capacitor matching measurements using floating-gate test structures. In: IEEE international conference on microelectronic test structures, pp 133–137Google Scholar
  313. 313.
    Tuinhout HP, van Rossem F, Wils N (2009) High-precision on-wafer backend capacitor mismatch measurements using a benchtop semiconductor characterization system. In: IEEE international conference on microelectronic test structures, pp 3–8Google Scholar
  314. 314.
    Drennan PG (1999) Diffused resistor mismatch modeling and characterization. In: Bipolar/BiCMOS circuits and technology meeting, pp 27–30Google Scholar
  315. 315.
    Tuinhout HP, Hoogzaad G, Vertregt M, Roovers R, Erdmann C (2002) Design and characterisation of a high precision resistor ladder test structure. In: IEEE international conference on microelectronic test structures, pp 223–228Google Scholar
  316. 316.
    Lakshmikumar KR, Hadaway RA, Copeland MA (1986) Characterization and modeling of mismatch in MOS transistors for precision analog design. IEEE J Solid-State Circ 21: 1057–1066CrossRefGoogle Scholar
  317. 317.
    Michael C, Ismail M (1992) Statistical modeling of device mismatch for analog MOS integrated circuits. IEEE J Solid-State Circ 27:154–166CrossRefGoogle Scholar
  318. 318.
    Forti F, Wright ME (1994) Measurement of MOS current mismatch in the weak inversion region. IEEE J Solid-State Circ 29:138–142CrossRefGoogle Scholar
  319. 319.
    Croon JA, Sansen W, Maes HE (2005) Matching properties of deep sub-micron MOS transistors. Springer, Dordrecht, The Netherlands. ISBN: 0-387-24314-3Google Scholar
  320. 320.
    Tuinhout HP (2003) Improving BiCMOS technologies using BJT parametric mismatch characterisation. In: Bipolar/BiCMOS circuits and technology meeting, pp 163–170Google Scholar
  321. 321.
    Brown AR, Roy G, Asenov A (2007) Poly-Si-gate-related variability in decananometer MOSFETs with conventional architecture. IEEE Trans Electron Devices 54:3056–3063CrossRefGoogle Scholar
  322. 322.
    Mizuno T, Okamura J, Toriumi A (1994) Experimental study of threshold voltage fluctuation due to statistical variation of channel dopant number in MOSFETs. IEEE Trans Electron Devices 41:2216–2221CrossRefGoogle Scholar
  323. 323.
    Bastos J, Steyaert M, Roovers R, Kinget P, Sansen W, Graindourze B, Pergoot A, Janssens E (1995) Mismatch characterization of small size MOS transistors. In: IEEE international conference on microelectronic test structures, pp 271–276Google Scholar
  324. 324.
    Stolk PA, Widdershoven FP, Klaassen DBM (1998) Modeling statistical dopant fluctuations in MOS transistors. IEEE Trans Electron Devices 45:1960–1971CrossRefGoogle Scholar
  325. 325.
    Andricciola P, Tuinhout HP (2009) The temperature dependence of mismatch in deep-submicrometer bulk MOSFETs. IEEE Electron Device Lett 30:690–692CrossRefGoogle Scholar
  326. 326.
    Hook TB, Johnson JB, Cathignol A, Cros A, Ghibaudo G (2011) Comment on (channel length and threshold voltage dependence of a transistor mismatch in a 32-nm HKMG technology). IEEE Trans Electron Devices 58:1255–1256CrossRefGoogle Scholar
  327. 327.
    Croon JA, Tuinhout HP, Difrenza R, Knol J, Moonen AJ, Decoutere S, Maes HE, Sansen W (2002) A comparison of extraction techniques for threshold voltage mismatch. In: IEEE international conference on microelectronic test structures, pp 235–240Google Scholar
  328. 328.
    Tuinhout HP (2005) Electrical characterisation of matched pairs for evaluation of integrated circuit technologies. Ph.D. Thesis Delft University of Technology. (http://repository.tudelft.nl/file/82893/025295)
  329. 329.
    Takeuchi K, Hane M (2008) Statistical compact model parameter extraction by direct fitting to variations. IEEE Trans Electron Devices 55:1487–1493CrossRefGoogle Scholar
  330. 330.
    Cheng B, Roy S, Asenov A (2007) Statistical compact model parameter extraction strategy for intrinsic parameter fluctuation. In: Grasser T, Selberherr S (eds) Simulation on semiconductor processes and devices. Springer, Wien, pp 301–304CrossRefGoogle Scholar
  331. 331.
    Vertregt M, Scholtens PCS (2004) Assessment of the merits of CMOS technology scaling for analog circuit design. In: 30th European solid-state circuits conference, pp 57–64Google Scholar
  332. 332.
    Pelgrom MJM (1994) Low-power high-speed A/D conversion. In: 20th European solid-state circuits conference, low-power workshopGoogle Scholar
  333. 333.
    Kinget P, Steyaert M (1996) Impact of transistor mismatch on the speed accuracy power trade-off. In: Custom integrated circuits conferenceGoogle Scholar
  334. 334.
    Pelgrom MJM, Tuinhout HP, Vertregt M (1998) Transistor matching in analog CMOS applications. In: International electron devices meeting, pp 915–918Google Scholar
  335. 335.
    Doorn TS, ter Maten EJW, Croon JA, Di Bucchianico A, Wittich O (2008) Importance sampling Monte Carlo simulations for accurate estimation of SRAM yield. In: 34th European solid-state circuits conference, pp 230–233Google Scholar
  336. 336.
    Dijkstra E, Nys O, Blumenkrantz E (1995) Low power oversampled A/D converters. In: van de Plassche RJ (ed) Advances in analog circuit design. Kluwer Academic Publishers, Norwell, p 89Google Scholar
  337. 337.
    Pelgrom MJM (1998) Low-power CMOS data conversion. In: Sanchez-Sinencio E, Andreou A (eds) Low-voltage low-power integrated circutis and systems. IEEE Press, New York. ISBN: 0-7803-3446-9Google Scholar
  338. 338.
    Walden RH (1999) Analog-to-digital converter survey and analysis. IEEE J Select Areas in Commun 17:539–550CrossRefGoogle Scholar
  339. 339.
    Vittoz E (1995) Low power low-voltage limitations and prospects in analog design. In: van de Plassche RJ (ed) Advances in analog circuit design. Kluwer Academic Publishers, Norwell, p 3Google Scholar
  340. 340.
    Giotta D, Pessl P, Clara M, Klatzer W, Gaggl R (2004) Low-power 14-bit current steering DAC for ADSL applications in 0.13 μm CMOS. In: European solid-state circuits conference, pp 163–166Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  • Marcel J. M. Pelgrom
    • 1
  1. 1.NXP SemiconductorsEindhovenNetherlands

Personalised recommendations