Skip to main content

Survival Analysis

  • Chapter
  • First Online:
Regression Methods in Biostatistics

Part of the book series: Statistics for Biology and Health ((SBH))

Abstract

Children receiving a kidney transplant may be followed to identify predictors of mortality. Specifically, is mortality risk lower in recipients of kidneys obtained from a living donor? If so, is this effect explained by the time the transplanted kidney is in transport or how well the donor and recipient match on characteristics that affect immune response? Similarly, HIV-infected subjects may be followed to assess the effects of a new form of therapy on incidence of opportunistic infections. Or patients with liver cirrhosis may be followed to assess whether liver biopsy results predict mortality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aalen, O. (1989). A linear regression model for the analysis of life times. Statistics in Medicine, 8(8), 907–925.

    Article  Google Scholar 

  • Aurora, P., Whitehead, B. and Wade, A. (1999). Lung transplantation and life extension in children with cystic fibrosis. Lancet, 354, 1591–1593.

    Article  Google Scholar 

  • Black, D., Cummings, S., Karpf, D., Cauley, J., Thompson, D., Nevitt, M., Bauer, D., Genant, H., Haskell, W., Marcus, R. et al. (1996b). Randomised trial of effect of alendronate on risk of fracture in women with existing vertebral fractures. The Lancet, 348(9041), 1535–1541.

    Article  Google Scholar 

  • Buchbinder, S. P., Douglas, J. M., McKirnan, D. J., Judson, F. N., Katz, M. H. and MacQueen, K. M. (1996). Feasibility of human immunodeficiency virus vaccine trials in homosexual men in the United States: risk behavior, seroincidence, and willingness to participate. Journal of Infectious Diseases, 174(5), 954–961.

    Article  Google Scholar 

  • DeGruttola, V. and Tu, X. M. (1994). Modelling progression of cd4-lymphocyte count and its relationship to survival time. Biometrics, 50, 1003–1014.

    Article  Google Scholar 

  • Dickson, E. R., Grambsch, P. M. and Fleming, T. R. (1989). Prognosis in primary biliary-cirrhosis - model for decision-making. Hepatology, 10, 1–7.

    Article  Google Scholar 

  • Fine, J. and Gray, R. (1999). A proportional hazards model for the subdistribution of a competing risk. Journal of the American Statistical Association, 94(446), 496–497.

    Article  MathSciNet  MATH  Google Scholar 

  • Gail, M. H., Wieand, S. and Piantodosi, S. (1984). Biased estimates of treatment effect in randomized experiments with nonlinear regressions and omitted covariates. Biometrika, 71, 431–444.

    Article  MathSciNet  MATH  Google Scholar 

  • Glidden, D. V. and Vittinghoff, E. (2004). Modelling clustered survival data from multicentre clinical trials. Statistics in Medicine, 23, 369–388.

    Article  Google Scholar 

  • Henderson, R. and Oman, P. (1999). Effect of frailty on marginal regression estimates in survival analysis. Journal of the Royal Statistical Society, Series B, Methodological, 61, 367–379.

    Article  MathSciNet  MATH  Google Scholar 

  • Hsieh, F. Y., Bloch, D. A. and Larsen, M. D. (1998). A simple method of sample size calculation for linear and logistic regression. Statistics in Medicine, 17, 541–557.

    Article  Google Scholar 

  • Hsieh, F. Y. and Lavori, P. W. (2000). Sample-size calculations for the Cox proportional hazards regression model with nonbinary covariates. Controlled Clinical Trials, 21, 552–560.

    Article  Google Scholar 

  • Kalbfleisch, J. D. and Prentice, R. L. (1980). The Statistical Analysis of Failure Time Data. John Wiley & Sons, New York.

    MATH  Google Scholar 

  • Klein, J. P. and Moeschberger, M. L. (1997). Survival Analysis: Techniques for Censored and Truncated Data. Springer, New York.

    MATH  Google Scholar 

  • Marubini, E. and Valsecchi, M. G. (1995). Analysing Survival Data from Clinical Trials and Observational Studies. John Wiley & Sons, New York, Chichester.

    MATH  Google Scholar 

  • Miller, R. G., Gong, G. and Munoz, A. (1981). Survival Analysis. John Wiley & Sons, New York, Chichester.

    MATH  Google Scholar 

  • Orwoll, E., Blank, J., Barrett-Connor, E., Cauley, J., Cummings, S., Ensrud, K., Lewis, C., Cawthon, P., Marcus, R., Marshall, L. et al. (2005). Design and baseline characteristics of the osteoporotic fractures in men (MrOS) study–a large observational study of the determinants of fracture in older men. Contemporary Clinical Trials, 26(5), 569–585.

    Article  Google Scholar 

  • Rosenman, R. H., Friedman, M., Straus, R., Wurm, M., Kositchek, R., Hahn, W. and Werthessen, N. T. (1964). A predictive study of coronary heart disease: the western collaborative group study. Journal of the American Medical Association, 189, 113–120.

    Article  Google Scholar 

  • Schmoor, C., Sauerbrei, W. and Schumacher, M. (2000). Sample size considerations for the evaluation of prognostic factors in survival analysis. Statistics in Medicine, 19, 441–452.

    Article  Google Scholar 

  • Schmoor, C. and Schumacher, M. (1997). Effects of covariate omission and categorization when analysing randomized trials with the Cox model. Statistics in Medicine, 16, 225–237.

    Article  Google Scholar 

  • Schoenfeld, D. (1980). Chi-squared goodness-of-fit tests for the proportional hazards regression model. Biometrika, 67, 145–153.

    Article  MathSciNet  MATH  Google Scholar 

  • Self, S. and Pawitan, Y. (1992). Modeling a marker of disease progression and onset of disease. In: AIDS Epidemiology: Methodlogical Issues (edited by N. Jewell, K. Dietz and V. Farewell). Birkhauser, Boston.

    Google Scholar 

  • Suissa, S. (2008). Immortal time bias in pharmacoepidemiology. American Journal of Epidemiology, 167(4), 492–499.

    Article  Google Scholar 

  • Therneau, T. M. and Grambsch, P. M. (2000). Modeling Survival Data: Extending the Cox Model. Springer, New York.

    MATH  Google Scholar 

  • Tsiatis, A. A. and Davidian, M. (2004). Joint modeling of longitudinal and time-to-event data. Statistica Sinica, 14(3), 809–834.

    MathSciNet  MATH  Google Scholar 

  • Vittinghoff, E. and McCulloch, C. E. (2007). Relaxing the rule of ten events per variable in logistic and Cox regression. American Journal of Epidemiology, 165, 710–718.

    Article  Google Scholar 

  • Volberding, P. A., Lagakos, S. W. and Koch, M. A. (1990). Zidovudine in asymptomatic human-immunodeficiency-virus infection – a controlled trial in persons with fewer than 500 cd4-positive cells per cubic millimeter. The New England Journal of Medicine, 322(14), 941–949.

    Article  Google Scholar 

  • Wei, L. (1992). The accelerated failure time model: a useful alternative to the Cox regression model in survival analysis. Statistics in Medicine, 11(14-15), 1871–1879.

    Article  Google Scholar 

  • Wei, L. J. and Glidden, D. V. (1997). An overview of statistical methods for multiple failure time data in clinical trials (with discussion). Statistics in Medicine, 16(8), 833–839.

    Article  Google Scholar 

  • Wulfsohn, M. S. and Tsiatis, A. A. (1997). A joint model for survival and longitudinal data measured with error. Biometrics, 53, 330–339.

    Article  MathSciNet  MATH  Google Scholar 

  • Bernardo, M. V. P., Lipsitz, S. R., Harrington, D. P. and Catalano, P. J. (2000). Sample size calculations for failure time random variables in non-randomized studies. Journal of the Royal Statistical Society (Series D): The Statistician, 49, 31–40.

    Google Scholar 

  • Concato, J., Peduzzi, P. and Holfold, T. R. (1995). Importance of events per independent variable in proportional hazards analysis i. background, goals, and general strategy. Journal of Clinical Epidemiology, 48, 1495–1501.

    Google Scholar 

  • Peduzzi, P., Concato, J. and Feinstein, A. R. (1995). Importance of events per independent variable in proportional hazards regression analysis ii. accuracy and precision of regression estimates. Journal of Clinical Epidemiology, 48, 1503–1510.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Vittinghoff, E., Glidden, D.V., Shiboski, S.C., McCulloch, C.E. (2012). Survival Analysis. In: Regression Methods in Biostatistics. Statistics for Biology and Health. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1353-0_6

Download citation

Publish with us

Policies and ethics