Skip to main content

Linear Regression

  • Chapter
  • First Online:
Book cover Regression Methods in Biostatistics

Abstract

Post-menopausal women who exercise less tend to have lower bone mineral density (BMD), putting them at increased risk for fractures. But they also tend to be older, frailer, and heavier, which may explain the association between exercise and BMD. People whose diet is high fat on average have higher low-density lipoprotein (LDL) cholesterol, a risk factor for CHD. But they are also more likely to smoke and be overweight, factors which are also strongly associated with CHD risk. Increasing body mass index (BMI) predicts higher levels of hemoglobin HbA 1c , a marker for poor control of glucose levels; however, older age and ethnic background also predict higher HbA 1c .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ananth, C. V. and Kleinbaum, D. G. (1997). Regression models for ordinal responses: a review of methods and applications. International Journal of Epidemiology, 26, 1323–1333.

    Article  Google Scholar 

  • Baron, R. M. and Kenny, D. A. (1986). The moderator-mediator variable distinction in social psychological research: conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology, 51(6), 1173–1182.

    Article  Google Scholar 

  • Belsey, D. A., Kuh, E. and Welsch, R. E. (1980). Regression Diagnostics. John Wiley & Sons, New York, Chichester.

    Book  Google Scholar 

  • Breiman, L. (2001). Statistical modeling: the two cultures. Statistical Science, 16(3), 199–231.

    Article  MathSciNet  MATH  Google Scholar 

  • Brookes, S. T., Whitley, E., Peters, T. J., Mulheran, P. A., Egger, M. and Smith, G. D. (2001). Subgroup analyses in randomised controlled trials: quantifying the risks of false-positives and false-negatives. The National Coordinating Centre for Health Technology Assessment, University of Southampton, Southampton, UK.

    Google Scholar 

  • Cleveland, W. S. (1985). The Elements of Graphing Data. Wadsworth & Brooks/Cole, Pacific Grove, CA.

    Google Scholar 

  • Draper, N. R. and Smith, H. (1981). Applied Regression Analysis. John Wiley & Sons, New York, Chichester.

    MATH  Google Scholar 

  • Freedman, L. S., Graubard, B. I. and Schatzkin, A. (1992). Statistical validation of intermediate endpoints for chronic diseases. Statistics in Medicine, 11, 167–178.

    Article  Google Scholar 

  • Gail, M. and Simon, R. (1985). Testing for qualitative interactions between treatment effects and patient subsets. Biometrics, 41, 361–372.

    Article  MATH  Google Scholar 

  • Greenland, S. (1989). Modeling and variable selection in epidemiologic analysis. American Journal of Public Health, 79(3), 340–349.

    Article  Google Scholar 

  • Greenland, S. (1994). Alternative models for ordinal logistic regression. Statistics in Medicine, 13, 1665–1677.

    Article  Google Scholar 

  • Hastie, T. J. and Tibshirani, R. J. (1986). Generalized additive models (with discussion). Statistical Science, 1, 297–318.

    Article  MathSciNet  Google Scholar 

  • Hsieh, F. Y., Bloch, D. A. and Larsen, M. D. (1998). A simple method of sample size calculation for linear and logistic regression. Statistics in Medicine, 17, 541–557.

    Article  Google Scholar 

  • Hulley, S., Grady, D., Bush, T., Furberg, C., Herrington, D., Riggs, B. and Vittinghoff, E. (1998). Randomized trial of estrogen plus progestin for secondary prevention of heart disease in postmenopausal women. The Heart and Estrogen/progestin Replacement Study. Journal of the American Medical Association, 280(7), 605–613.

    Google Scholar 

  • Li, Z., Meredith, M. P. and Hoseyni, M. S. (2001). A method to assess the proportion of treatment effect explained by a surrogate endpoint. Statistics in Medicine, 20, 3175–3188.

    Article  Google Scholar 

  • Long, J. S. and Ervin, L. H. (2000). Using heteroscedasticity consistent standard errors in the linear regression model. American Statistician, 54, 217 – 224.

    Article  Google Scholar 

  • MacKinnon, J. G. and White, H. (1985). Some heteroskedasticity consistent covariance matrix estimators with improved finite sample properties. Journal of Econometrics, 29, 53–57.

    Article  MathSciNet  Google Scholar 

  • Molenberghs, G., Buyse, M., Geys, H., Renard, D., Burzykowski, T. and Alonso, A. (2002). Statistical challenges in evaluation of surrogate endpoints in randomized trials. Controlled Clinical Trials, 23, 607–625.

    Article  Google Scholar 

  • Petersen, M., Sinisi, S. and van der Laan, M. (2006). Estimation of direct causal effects. Epidemiology-Baltimore, 17(3), 276–284.

    Google Scholar 

  • Robins, J. M. and Greenland, S. (1992). Identifiability and exchangeability for direct and indirect effects. Epidemiology, 3, 143–155.

    Article  Google Scholar 

  • Stone, C. J. (1986). Comment: Generalized additive models. Statistical Science, 47, 312–314.

    Article  Google Scholar 

  • VanderWeele, T. (2009). Marginal structural models for the estimation of direct and indirect effects. Epidemiology-Baltimore, 20(1), 18–26.

    MathSciNet  Google Scholar 

  • Vansteelandt, S. (2009). Estimating direct effects in cohort and case-control studies. Epidemiology, 20(6), 851–860.

    Article  Google Scholar 

  • Vuong, Q. H. (1989). Likelihood ratio tests for model selection and non-nested hypotheses. Econometrica, 57(2), 307–333.

    Article  MathSciNet  MATH  Google Scholar 

  • Weisberg, S. (1985). Applied Linear Regression. John Wiley & Sons, New York, Chichester.

    MATH  Google Scholar 

  • Huber, P. J. (1967). The behaviour of maximum likelihood estimates under nonstandard conditions. In: The Fifth Berkeley Symposium in Mathematical Statistics and Probability (edited by L. Le Cam and J. Neyman). University of California Press, Berkeley.

    Google Scholar 

  • Snedecor, G. W. and Cochran, W. G. (1989). Statistical Methods. Iowa State University Press, Ames, IA, eighth ed.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Vittinghoff, E., Glidden, D.V., Shiboski, S.C., McCulloch, C.E. (2012). Linear Regression. In: Regression Methods in Biostatistics. Statistics for Biology and Health. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1353-0_4

Download citation

Publish with us

Policies and ethics