On The Number of Solutions of Systems of Random Equations

  • David R. Brillinger
Part of the Selected Works in Probability and Statistics book series (SWPS)


A variety of statistical properties have been developed for the number of solutions of an equation


  1. 1.
    BOCHNER, S. (1960). Harmonic Analysis and the Theory of Probability. Univ. of California Press.Google Scholar
  2. 2.
    CRAMER, H. and LEADBETTER, M. R. (1967). Stationary and Related Stochastic Processes. Wiley, New York.Google Scholar
  3. 3.
    FEDERER, H. (1969). Geometric Measure Theory. Springer-Verlag, Berlin.Google Scholar
  4. 4.
    KAC, M. (1943). On the average number of real roots of a random algebraic equation. Bull. Amer. Math. Soc. 49 314–320.MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    LEADBETTER, M. R. (1966). On crossings of levels and curves by a wide class of stochastic processes. Ann. Math. Statist. 37 260–267.MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    LITTLEWOOD, J. E. and OFFORD, A. C. (1948). On the distribution of zeros and a-values of a random integral function II. Ann. of Math. 49 885–952.Google Scholar
  7. 7.
    LONGUET-HIGGINS, M. S. (1957). The statistical analysis of a random moving surface. Philos. Trans. Roy. Soc. London Ser. A 249 321–387.Google Scholar
  8. 8.
    OFFORD, A. C. (1965). The distribution of the values of an entire function whose coefficients are independent random variables I. Proc. London Math. Soc. (3) 14A 199–238.Google Scholar
  9. 9.
    OFFORD, A. C. (1967). The distribution of zeros of power series whose coefficients are independent random variables. Indian J. Math. 9 175–196.Google Scholar
  10. 10.
    PALEY, R. E. A. C. and WIENER, N. (1934). Fourier Transforms in the Complex Domain. Amer. Math. Soc, Providence.Google Scholar
  11. 11.
    RADO, T. and REICHELDERFER, P. V. (1955). Continuous Transformations in Analysis. Springer-Verlag, Berlin.Google Scholar
  12. 12.
    RICE, S. O. (1945). Mathematical analysis of random noise. Bell System Tech. J. 24 46156.Google Scholar
  13. 13.
    SRINIVASAN, S. K. (1969). Stochastic Theory and Cascade Processes. Elsevier, New York.Google Scholar
  14. 14.
    WHITNEY, H. (1957). Geometric Integration Theory. Princeton Univ. Press.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • David R. Brillinger
    • 1
  1. 1.University of CaliforniaBerkeleyUSA

Personalised recommendations