Advertisement

Statistical Inference for Stationary Point Processes

  • David R. Brillinger
Chapter
Part of the Selected Works in Probability and Statistics book series (SWPS)

Abstract

This work is divided into three principal sections which also correspond to the three lectures given at Bloomington. The topics cover, some useful point process parameters and their properties, estimation of time domain parameters and the estimation of freq1.1ence domain parameters.

Keywords

Point Process Asymptotic Variance Domain Parameter Statistical Interference Product Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. BRILLINGER, D. R. (1972). The spectral analysis of stationary interval functions. pp. 483–513 in Proc. Sixth Berkeley Symp. Math. Stat. Prob., Vol. I. (eds. L. M. LeCam, J. Neyman, E. L. Scott). Berkeley, University of California Press.Google Scholar
  2. BRILLINGER, D. R. (1974a). Cross-spectral analysis of processes with stationary increments including G/G/~ queue. Ann. Prob., 2, 815–827.MathSciNetMATHCrossRefGoogle Scholar
  3. BRILLINGER, D. R. (1974b). The identification of point process systems. Special Invited Lecture presented to the Institute of Mathematical Statistics at Edmonton.Google Scholar
  4. COX, D. R. (1965). On the estimation of the intensity function of a stationary point process. J. R. Statist. Soc., B, 27. 332–337.Google Scholar
  5. COX, D. R. and LEWIS, P. A. W. (1966). The Statistical Analysis of Series of Events.Google Scholar
  6. London, Methuen.Google Scholar
  7. COX, D. R. and LEWIS, P. A. W. (1972). Multivariate point processes. pp. 401–448 in Proc. Sixth Berkeley SymP. Math. Stat. Prob., Vol. II. (eds. L. M. LeCam, J. Neyman, E. L. Scott).,Berkeley, University of California Press.Google Scholar
  8. CRAMER, H., LEADBETTER, M. R. and SERFLING, R. J. (1971). On distribution function - moment relationships in stationary point processes. Zeit. Wahrschein., 18. 1–8.MathSciNetCrossRefGoogle Scholar
  9. DALEY, D. J. and VERE-JONES, D. (1972). A summary of the theory of point processes. pp. 299–383 in STOCHASTIC POINT PROCESSES ( ed. P. A. W. Lewis)Google Scholar
  10. DEO, C. M. (1973). A note on empirical processes of strong-mixing sequences. Ann. Prob., 1. 870875.Google Scholar
  11. HAWKES, A. G. (1972). Spectra of some mutually exciting point processes with associated variables. pp. 261–271 in Stochastic Point Processes (ed. P. A. W. Lewis). New York, Wile~Google Scholar
  12. HAWKES, A. G. and ADAOPOULOS, L. (1973). Cluster models for earthquakes - regional comparisons. Bul. Inter. Statist. Inst., 39.Google Scholar
  13. LEONOV, V. P. and SHIRYAEV, A. N. (1959). On a method of calculation of semi-invariants. Theory Probe Appl., 4. 319–329.Google Scholar
  14. LEWIS, P. A. W. (1972). Recent results in the statistical analysis of univariate point processes. pp. 1–54 in Stochastic Point Processes (ed. P. A. W. Lewis). New York, Wiley.Google Scholar
  15. RICE, J. A. (1973). Statistical analysis of selfexciting point processes and related linear models. Ph.D. Thesis, University of California, Berkeley.Google Scholar
  16. SRINIVASAN, S. K. (1974). Stochastic Point Processe~ New York, Hafner.Google Scholar
  17. TORRES-MELO, L. (1974). Stationary point processes. Ph.D. Thesis, University of California, Berkeley.Google Scholar
  18. WALKER, A. M. (1964). Asymptotic properties of least squares estimates of parameters of the spectrum of a stationary nondeterministic time series. J. Austral. Math. Soc., 4. 363–384.MathSciNetMATHCrossRefGoogle Scholar
  19. WHITTLE, p. (1953). Estimation and information in stationary time series. Ark. Math. Astron. Fys., 2. 423–434.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • David R. Brillinger
    • 1
  1. 1.The University of CaliforniaBerkeleyUSA

Personalised recommendations