Advertisement

What is the Origin of the Lightest Elements?

Chapter
Part of the Astronomers' Universe book series (ASTRONOM)

Abstract

Although the birth event of our Universe occurred 13.7 billion years ago, it left enough signatures about its details that scientists are quite confident in our understanding of the basic features of that event. The first hints of the Big Bang came from astronomers, as discussed in this chapter. More recently, two incredible experiments, the Supernova Cosmology Project and the Wilkinson Microwave Anisotropy Probe, have determined the parameters that govern our Universe in exquisite detail. One longstanding paradox is also discussed, and shown to be solved by the Big Bang model. Finally, we explore the nuclear reactions that made a few light nuclei in the few minutes that followed the Big Bang. The abundances for these nuclei obtained by observational astronomers are compared to the calculations of the nucleosynthesis that occurred just after the Big Bang.

Keywords

Dark Matter Dark Energy Solar Neutrino Wilkinson Microwave Anisotropy Probe Hubble Constant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    M. Hamuy, M.M. Phillips, N.B. Suntzeff, R.N. Schommer, J. Mazo, and R. Aviles, The Morphology of Type IA Supernovae Light Curves, Astron. J. 112, 2398 (1996)CrossRefADSGoogle Scholar
  2. 2.
    R.N. Boyd, An Introduction to Nuclear Astrophysics, Univ. Chicago Press, Chicago, 2008Google Scholar
  3. 3.
    S. Perlmutter, G. Aldering, G. Goldhaber, R.A. Knop, P. Nugent, P.G. Castro, S. Deustua, S. Fabbro, A. Goobar, D.E. Groom, I.M. Hook, A.G. Kim, M.Y. Kim, J.C. Lee, N.J. Nunes, R. Pain, C.R. Pennypacker, R. Quimby, C. Lidman, R.S. Ellis, M. Irwin, R.G. McMahon, P. Ruiz-Lapuente, N. Walton, B. Schaefer, B.J. Boyle, A.V. Filippenko, T. Matheson, A.S. Fruchter, N. Panagia, H.J.M. Newberg, W.J. Couch, and The Supernova Cosmology Project, Measurements of the Cosmological Parameters Ω and Λ from 42 High-Redshift Supernovae, Astrophys. J. 517, 565 (1999)CrossRefADSGoogle Scholar
  4. 4.
    G.F. Smoot, C.L. Bennett, A. Kogut, E.L. Wright, J. Aymon, N.W. Boggess, E.S. Cheng, G. de Amici, S. Gulkis, M.G. Hauser, G. Hinshaw, P.D. Jackson, M. Janssen, E. Kaita, T. Kelsall, P. Keegstra, C. Lineweaver, K. Loewenstgein, P. Lubin, J. Mather, S.S. Meyer, S.H. Moseley, T. Murdock, L. Rokke, R.F. Silverberg, L. Tenorio, R. Weiss, and D.T. Wilkinson, Structure in the COBE Differential Microwave Radiometer First-Year Maps, Astrophys. J. 396, L1 (1992)CrossRefADSGoogle Scholar
  5. 5.
    C.L. Bennett, M. Halpern, G. Hinshaw, N. Jarosik, A. Kogut, M. Limon, S.S. Meyer, L. Page, D.N. Spergel, G.S. Tucker, E. Wollack, E.L. Wright, C. Barnes, M.R. Greason, R.S. Hill, E. Komatsu, M.R. Nolta, N. Odegard, H.V. Peiris, L. Verde, and J.L. Weiland, First-Year WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) Observations: Preliminary Maps and Basic Results, Astrophys. J. Suppl. Series 148, 1 (2003)CrossRefADSGoogle Scholar
  6. 6.
    N. Jarosik, C.L. Bennett, J. Dunkley, B. Gold, M.R. Greason, M. Halpern, R.S. Hill, G. Hinshaw, A. Kogut, E. Komatsu, D. ­Larson, M. Limon, S.S. Meyer, M.R. Nolta, N. Odegard, L. Page, K.M. Smith, D.N. Spergel, G.S. Tucker, J.L. Weiland, E. Wollack, and E.L. Wright, Seven-Year WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) Observations: Sky Maps, Systematic Errors, and Basic Results, Astrophys. J. Suppl. Series 192, 14 (2011)CrossRefADSGoogle Scholar
  7. 7.
    P.S. Wesson, Olbers’s Paradox and the Spectral Intensity of the Extragalactic Background Light, Astrophys. J. 367, 399 (1991)CrossRefADSGoogle Scholar
  8. 8.
    J.N. Bahcall, A.M. Serenelli, and S. Basu, New Solar Opacities, Abundances, Helioseismology, and Neutrino Fluxes. Astrophys. J. 621, L85 (2005)CrossRefADSGoogle Scholar
  9. 9.
    B.D. Fields and K.A. Olive, On the Evolution of Helium in Blue Compact Galaxies, Astrophys. J. 506, 177 (1998)CrossRefADSGoogle Scholar
  10. 10.
    D. Kirkman, D. Tytler, S. Burles, D. Lubin, J.M. O’Meara, QSO 0130-402: A Third QSO Showing a Low Deuterium to Hydrogen Abundance Ratio. Astrophys. J. 529, 655 (2000)CrossRefADSGoogle Scholar
  11. 11.
    J. Linsky, Atomic Deuterium/Hydrogen in the Galaxy. Space Sci. Rev. 106, 49 (2003)CrossRefADSGoogle Scholar
  12. 12.
    S.G. Ryan, T.C. Beers, K.A. Olive, B.D. Fields, and J.E. Norris, Primordial Lithium and Big Bang Nucleosynthesis. Astrophys. J. Lett. 530, 57 (2000)CrossRefADSGoogle Scholar
  13. 13.
    M.H. Pinsonneault, G. Steigman, T.P. Walker, and V.K. Narayanan, Stellar Mixing and the Primordial Lithium Abundance. Astrophys. J. 574, 398 (2002)CrossRefADSGoogle Scholar
  14. 14.
    B.D. Fields and S. Sarker, Big Bang Nucleosynthesis. Phys. Lett. B 592, 1 (2004)CrossRefADSGoogle Scholar
  15. 15.
    R.N. Boyd, C. Brune, G.M. Fuller, and C.J. Smith, New Nuclear Physics for Big Bang Nucleosynthesis, Phys. Rev. D 82, 105005 (2010).CrossRefADSGoogle Scholar
  16. 16.
    N. Chakraborty, B.D. Fields, and K.A. Olive, Resonant Destruction as a Possible Solution to the Cosmological Lithium Problem, arXiv: 1011.0722Google Scholar
  17. 17.
    R.H. Cyburt and M. Pospelov, Resonant Enhancement of Nuclear Reactions as a Possible Solution to the Cosmological Lithium Problem, arXiv:0906.4373 (2009)Google Scholar
  18. 18.
    P.D. O’Malley, D.W. Bardayan, K.Y. Chae, S.H. Ahn, W.A. Peters, M.E. Howard, K.L. Jones, R.L. Kozub, M. Matos, S.T. Pittman, J.A. Cizewski, and M.S. Smith, Phys. Rev. C 84, 042801(R) (2011)Google Scholar
  19. 19.
    C. Bird, K. Koopmans, and M. Pospelov, Primordial Lithium Abundance in Catalyzed Big Bang Nucleosynthesis, Phys. Rev. D 78, 083010 (2008)CrossRefADSGoogle Scholar
  20. 20.
    M. Kusakabe, T. Kajino, R.N. Boyd, T. Yoshida, and G.J. Mathews, Simultaneous Solution to the 6LI and 7Li Big Bang Nucleosynthesis Problems from a Long-Lived Negatively Charged Leptonic Particle, Phys. Rev. D 76, 121301(R) (2007)CrossRefADSGoogle Scholar
  21. 21.
    M. Pospelov and J. Pradler, Big Bang Nucleosynthesis as a Probe of New Physics, Ann. Rev., Nucl. Part. Sci. 60, 539 (2010)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Ohio State University (Emeritus)WindsorUSA

Personalised recommendations