Skip to main content

Options for Advanced Mechanical Support for Cardiogenic Shock Complicating Cardiac Reoperations

  • Chapter
  • First Online:
Redo Cardiac Surgery in Adults

Abstract

Mechanical cardiac support has had a fascinating development over the past 4 decades. With the widespread application of cardiopulmonary bypass (CPB) for cardiac interventions, since its first use in 1953 by Dr. Gibbon (AM J Cardiol 12: 399, 1963), and the ability to understand the potential and complications of circulatory support, efforts were soon initiated to mechanically replace the heart and to simply support the failing myocardium to allow recovery. Because of the concerns and scrutiny of the initial use of a totally artificial heart (TAH) in 1969 by Dr. Cooley (Am J Cardiol 24(5): 723–30, 1969), it was not until the mid-1980s, with the first report of the use of a ventricular assist device (VAD) as bridge to transplant by Dr. Portner (Artif Organs 9: 36, 1985), that mechanical support became a popular method to assist patients with advanced heart failure. Since then, there has been a rapid rise in the number of VADs implanted each year, with more than 800 VAD implantations – including left ventricular assist devices (LVADs), biventricular assist devices (BiVADs), and TAHs – performed for different indications in the United States in 2009 (Interagency Registry for Mechanically assisted circulatory support, 2011). The experience in patient selection and management of individual centers has contributed to this explosive increase in VAD use but the biggest factor contributing to increased VAD use has likely been the improvements in VAD technology, from the original reports of pulsatile pump use, to the more sophisticated axial flow pumps, and lately centrifugal flow pumps.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liotta D, Hall C, Henly W, et al. Prolonged assisted circulation during and after cardiac or aortic surgery. Prolonged partial left ventricular bypass by means of intracorporeal circulation. Am J Cardiol. 1963;12:399.

    Article  PubMed  CAS  Google Scholar 

  2. Cooley DA, Liotta D, Hallman GL, et al. Orthotopic cardiac prothesis for two – staged cardiac replacement. Am J Cardiol. 1969;24(5):723–30.

    Article  PubMed  CAS  Google Scholar 

  3. Portner P, Oyer P, McGregor CGA. First human use of an electrically powered implantable ventricular assist system. Artif Organs. 1985;9:36.

    Google Scholar 

  4. Interagency Registry for Mechanically assisted circulatory support. http://www.intermacs.org (2011). Accessed 14 Feb 2011.

  5. Aggarwal S, Slaughter MS. Acute myocardial infarction complicated by cardiogenic shock: role of mechanical circulatory support. Expert Rev Cardiovasc Ther. 2008;6:1223–35.

    Article  PubMed  Google Scholar 

  6. Kirklin JK, Naftel DC, Kormos RL, Stevenson LW, Pagani FD, Miller MA, et al. Second intermacs annual report: more than 1,000 primary left ventricular assist device implants. J Heart Lung Transplant. 2010;29:1–10.

    Article  PubMed  Google Scholar 

  7. John R, Liao K, Lietz K, Kamdar F, Colvin-Adams M, Boyle A, et al. Experience with the Levitronix CentriMag circulatory support system as a bridge to decision in patients with refractory acute cardiogenic shock and multisystem organ failure. J Thorac Cardiovasc Surg. 2007;134:351–8.

    Article  PubMed  Google Scholar 

  8. Gregoric ID, Jacob LP, La Francesca S, Bruckner BA, Cohn WE, Loyalka P, et al. The TandemHeart as a bridge to a long-term axial-flow left ventricular assist device (bridge to bridge). Tex Heart Inst J. 2008;35:125–9.

    PubMed  Google Scholar 

  9. Garatti A, Russo C, Lanfranconi M, et al. Mechanical circulatory support for cardiogenic shock complicating acute myocardial infarction: an experimental and clinical review. ASAIO J. 2007;53:278–87.

    Article  PubMed  Google Scholar 

  10. Pagani F, Lynch W, Swaniker F, et al. Extracorporeal life support to left ventricular assist device bridge to heart transplant: a strategy to optimize survival and resource utilization. Circulation. 1999;100:II206–10.

    PubMed  CAS  Google Scholar 

  11. Pagani F et al. Extended mechanical circulatory support with a continuous-flow rotary left ventricular assist device. J Am Coll Cardiol. 2009;54:312–21.

    Article  PubMed  Google Scholar 

  12. Edwards F, Grover F, Shroyer L, et al. The society of thoracic Surgeons cardiac surgery database: current risk assessment. Ann Thorac Surg. 1997;63:903–8.

    Article  PubMed  CAS  Google Scholar 

  13. Lee W, Gillinov A, Cameron D, et al. Centrifugal ventricular assist device for support of the failing heart after cardiac surgery. Crit Care Med. 1993;21:1186–91.

    Article  PubMed  CAS  Google Scholar 

  14. Sjauw K, Engström M, Vis M, et al. A systematic review and meta-analysis of intra-aortic balloon pump therapy in ST-elevation myocardial infarction: should we change guidelines? Eur Heart J. 2009;30:459–68.

    Article  PubMed  Google Scholar 

  15. Levin H, Burkoff D, Oz M, et al. Reversal of chronic ventricular dilatation in patients with end-stage cardiomyopathy by prolonged mechanical unloading. Circulation. 1995;91:2717–20.

    PubMed  CAS  Google Scholar 

  16. Richenbacher WE, Dash H, Bulck MK, Pierce WS. Utilization of left ventricular assistance in patients with acute myocardial infarction and cardiogenic shock. ASAIO J. 1984;7:32–40.

    Google Scholar 

  17. Torre-Amione G et al. Decreased expression of tumor necrosis factor-alpha in failing human myocardium after mechanical circulatory support: a potential mechanism for cardiac recovery. Circulation. 1999;100:1189–93.

    PubMed  CAS  Google Scholar 

  18. Ogletree-Hughes M, Stull L, Sweet W, et al. Mechanical unloading restores beta-adrenergic responsiveness and reverses receptor downregulation in the failing human heart. Circulation. 2001;104:881–6.

    Article  PubMed  CAS  Google Scholar 

  19. Samuel L, Holmes E, Thomas M, et al. Management of acute cardiac failure with mechanical assist: experience with the ABIOMED BVS 500. Ann Thorac Surg. 2001;71:S67–72.

    Article  Google Scholar 

  20. Kantrowitz A, Tjonneland S, Freed PS, Phillips SJ, Butner AN, Sherman Jr JL. Initial clinical experience with intraaortic balloon pumping in cardiogenic shock. JAMA. 1968;203:113–8.

    Article  PubMed  CAS  Google Scholar 

  21. Kozak LJ, Owings MF, Hall MJ: 2005. National Hospital Discharge Survey: 2002 annual summary with detailed diagnosis and procedure data. Vital Health Stat 13:1–199.

    Google Scholar 

  22. Sarnoff SJ, Braunwald E, Welch Jr GH, Case RB, Stainsby WN, Macruz R. Hemodynamic determinants of oxygen consumption of the heart with special reference to the tension-time index. Am J Physiol. 1958;192:148–56.

    PubMed  CAS  Google Scholar 

  23. Gutterman DD, Cowley Jr AW. Relating cardiac performance with oxygen consumption: historical observations continue to spawn scientific discovery. Am J Physiol Heart Circ Physiol. 2006;291:H2555–6.

    Article  PubMed  CAS  Google Scholar 

  24. Cohen M, Urban P, Christenson JT, Joseph DL, Freedman Jr RJ, Miller MF, et al. Intra-aortic balloon counterpulsation in US and non-US centres: results of the benchmark registry. Eur Heart J. 2003;24:1763–70.

    Article  PubMed  Google Scholar 

  25. Ferguson 3rd JJ, Cohen M, Freedman Jr RJ, Stone GW, Miller MF, Joseph DL, et al. The current practice of intra-aortic balloon counterpulsation: results from the benchmark registry. J Am Coll Cardiol. 2001;38:1456–62.

    Article  PubMed  Google Scholar 

  26. Smith C, Bellomo R, Raman JS, Matalanis G, Rosalion A, Buckmaster J, et al. An extracorporeal membrane oxygenation-based approach to cardiogenic shock in an older population. Ann Thorac Surg. 2001;71:1421–7.

    Article  PubMed  CAS  Google Scholar 

  27. Tayara W, Starling R, Yamani M, et al. Improved survival after acute myocardial infarction complicated by cardiogenic shock with circulatory support and transplantation: comparing aggressive intervention with conservative treatment. J Heart Lung Transplant. 2006;25:504–9.

    Article  PubMed  Google Scholar 

  28. Haller I, Kofler A, Lederer W, et al. Acute pulmonary artery embolism during transcatheter embolization: successful resuscitation with veno-arterial extracorporeal membrane oxygenation. Anesth Analg. 2008;107:945–7.

    Article  PubMed  Google Scholar 

  29. Chen J, Ko W, Yu H, et al. Analysis of outcome for patients experiencing myocardial infarction and cardiopulmonary resuscitation refractory to conventional therapies necessitating extracorporeal life support ­rescue. Crit Care Med. 2006;34:950–7.

    Article  PubMed  Google Scholar 

  30. Smedira N, Moazami N, Golding C, et al. Clinical experience with 202 adults receiving extracorporeal membrane oxygenation for cardiac failure: survival at five years. J Thorac Cardiovasc Surg. 2001;122:92–102.

    Article  PubMed  CAS  Google Scholar 

  31. Doll N, Kiaii B, Borger M, et al. Five-year results of 210 consecutive patients treated with extracorporeal membrane oxygenation for refractory postoperative cardiogenic shock. Ann Thorac Surg. 2004;77:151–7.

    Article  PubMed  Google Scholar 

  32. Rastan A, Dege A, Mohr M, et al. Early and late outcomes of 517 consecutive patients treated with extracorporeal membrane oxygenation for refractory post­­cardiotomy cardiogenic shock. J Thorac Car­diovasc Surg. 2010;139:302–11.

    Article  PubMed  Google Scholar 

  33. Bermudez C, Toyoda Y, Avila F, et al. Use of extracorporeal membrane oxygenation (ECMO) in patients with chronic cardiomyopathy: a word of caution. J Heart Lung Transplant. 2010;29:S179.

    Article  Google Scholar 

  34. Hill J, Farrar D, Naka Y, et al. Positive displacement ventricular assist devices. In: Frazier OH, Kirklin JK, editors. ISHLT Monograph Series 1. Elsevier: New York; 2006. p. 53–75.

    Google Scholar 

  35. Guyton R, Schonberger J, Everts P, et al. Postcardiotomy shock: clinical evaluation for the BVS 5000 biventricular support system. Ann Thorac Surg. 1993;56:346–56.

    Article  PubMed  CAS  Google Scholar 

  36. Anderson M, et al. Mechanical circulatory support improves recovery outcomes in profound cardiogenic shock post AMI. Presented at Transcatheter Therapeutics Oct. 17. Washington; 2006.

    Google Scholar 

  37. Shuhaiber J, Jenkins D, Berman M, et al. The Papworth experience with Levitronix CentriMag ventricular assist device. J Heart Lung Transplant. 2008;27:158–64.

    Article  PubMed  Google Scholar 

  38. John R, Liao K, Lietz K, et al. Experience with the Levitronix CentriMag circulatory support system as a bridge to decision in patients with refractory acute cardiogenic shock and multisystem organ failure. J Thorac Cardiovasc Surg. 2007;134:351–8.

    Article  PubMed  Google Scholar 

  39. Bhama J, Kormos R, Toyoda Y, et al. Clinical experience using the Levitronix CentriMag system for temporary right ventricular mechanical circulatory support. J Heart Lung Transplant. 2009;28:971–6.

    Article  PubMed  Google Scholar 

  40. Tsukui H, Teuteberg JJ, Murali S, et al. Biventricular assist device utilization for patients with morbid congestive heart failure: a justifiable strategy. Circulation. 2005;112:165–72.

    Google Scholar 

  41. Zhang L, Kapetanakis EI, Cooke RH, et al. Bi-ventricular circulatory support with the Abiomed AB5000 in a patient with idiopathic refractory ventricular fibrillation. Ann Thorac Surg. 2007;83:298–300.

    Article  PubMed  Google Scholar 

  42. Kormos RL, Gasior T, Antaki J, et al. Evaluation of right ventricular function during clinical left ventricular assistance. ASAIO Trans. 1989;35:547–50.

    Article  PubMed  CAS  Google Scholar 

  43. Thiele H, Lauer B, Hambrecht R, et al. Reversal cardiogenic shock by percutaneous left-atrial-to-femoral arterial bypass assistance. Circulation. 2001;104:2917–22.

    Article  PubMed  CAS  Google Scholar 

  44. Thiele H, Sick P, Boudriot E, et al. Randomized comparison of intra-aortic balloon support with a percutaneous left ventricular assist device in patients with revascularized acute myocardial infarction complicated by cardiogenic shock. Eur Heart J. 2005;26:1276–83.

    Article  PubMed  Google Scholar 

  45. Burkhoff D, O’Neill W, Brunckhorst C, et al. Feasibility study of the TandemHeart percutaneous ventricular assist device for treatment of cardiogenic shock. Catheter Cardiovasc Interv. 2006;68:211–7.

    Article  PubMed  Google Scholar 

  46. Burkhoff D, Cohen H, Brunkhorst C, et al. A randomized multicenter clinical study to evaluate the safety and efficacy of the TandemHeart percutaneous ventricular assist device versus conventional therapy with intra-aortic balloon pumping for treatment of cardiogenic shock. Am Heart J. 2006;152:469.

    Article  PubMed  Google Scholar 

  47. Pitsis A, Visouli A, Burkhoff D, et al. Feasibility study of a temporary percutaneous left ventricular assist device in cardiac surgery. Ann Thoac Surg. 2007;84:1993–9.

    Article  Google Scholar 

  48. Cheng J, den Uil C, Hoeks S, et al. Percutaneous left ventricular assist device versus intra-aortic balloon pump counterpulsation for treatment of cardiogenic shock: a meta-analysis of controlled trials. Eur Heart J. 2009;30:2102–8.

    Article  PubMed  Google Scholar 

  49. Siegenthaler M, Brehm K, Strecker T, et al. The impella recover microaxial left ventricular assist device reduces mortality for postcardiotomy failure: a three-center experience. J Thorac Cardiovas Surg. 2004;127:812–22.

    Article  CAS  Google Scholar 

  50. Garatti A, Colombo T, Russo C, et al. Left ventricular mechanical support with the Impella Recover left direct microaxial blood pump: a single-center experience. Artif Organs. 2006;30:523–8.

    Article  PubMed  Google Scholar 

  51. Goldstein D, Oz M. Mechanical support for postcardiotomy cardiogenic shock. Semin Thorac Cardiovasc Surg. 2000;12:220–8.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Bermudez MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bermudez, C., Minakata, K., Kormos, R.L. (2012). Options for Advanced Mechanical Support for Cardiogenic Shock Complicating Cardiac Reoperations. In: Machiraju, V., Schaff, H., Svensson, L. (eds) Redo Cardiac Surgery in Adults. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1326-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-1326-4_9

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-1325-7

  • Online ISBN: 978-1-4614-1326-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics