Skip to main content

Acute Kidney Injury Associated with Cardiac Surgery

  • Chapter
  • First Online:
Redo Cardiac Surgery in Adults

Abstract

Acute renal failure (ARF) or acute kidney injury (AKI), depending on the specific definition, occurs in up to 30% of patients undergoing cardiac surgery. ARF that requires dialysis (ARF-D) occurs in approximately 1% of patients undergoing cardiac surgery (Nephrol Dial Transplant 14:1158–62, 1999; Ann Intern Med 128:194–203, 1998; J Thorac Cardiovasc Surg 71:323–33, 1976, 79:241–3, 1980; Intensive Care Med 26:565–71, 2000; J Thorac Cardiovasc Surg 41:237–41, 1993, 107:1489–95, 1994; Aust N Z J Med 25:284–9, 1995; Eur J Cardiothorac Surg 25:597–604, 2004; Br Med J 1:415–8, 1972; Ann Int Med 84:677–82, 1976; J Thorac Cardiovasc Surg 77:880–8, 1979, 98:1107–12, 1989; Contrib Nephrol 93:98–104, 1991; Am J Med 104:34–8, 1998). The development of kidney injury is associated with a high mortality, a more complicated hospital course, and a higher risk of infectious complications (Nephrol Dial Transplant 14:1158–62, 1999; Ann Intern Med 128:194–203, 1998; J Thorac Cardiovasc Surg 71:323–33, 1976, 79:241–3, 1980; Intensive Care Med 26:565–71, 2000; J Thorac Cardiovasc Surg 41:237–41, 1993, 107:1489–95, 1994; Aust N Z J Med 25:284–9, 1995; Eur J Cardiothorac Surg 25:597–604, 2004; Br Med J 1:415–8, 1972; Ann Int Med 84:677–82, 1976; J Thorac Cardiovasc Surg 77:880–8, 1979, 98:1107–12, 1989; Contrib Nephrol 93:98–104, 1991; Am J Med 104:34–8, 1998). Even minimal changes in serum creatinine during the postoperative period are associated with a substantial decrease in survival (J Am Soc Nephrol 15:1597-–605, 2004). Furthermore, the majority of patients who develop ARF-D remain dialysis dependent, leading to significant long-term morbidity and mortality (Am J Cardiol 93:353–6, 2004).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Conlon PJ, Stafford-Smith M, White WD, et al. Acute renal failure following cardiac surgery. Nephrol Dial Transplant. 1999;14:1158–62.

    PubMed  CAS  Google Scholar 

  2. Mangano CM, Diamondstone LS, Ramsay JG, Aggarwal A, Herskowitz A, Mangano DT. Renal dysfunction after myocardial revascularization: risk factors, adverse outcomes and hospital resource utilization. Ann Intern Med. 1998;128:194–203.

    PubMed  CAS  Google Scholar 

  3. Abel RM, Buckley MJ, Austen WG, Barnett GO, Beck Jr CH, Fischer JE. Etiology, incidence and prognosis of renal failure following cardiac operations. Results of a prospective analysis of 500 consecutive patients. J Thorac Cardiovasc Surg. 1976;71:323–33.

    PubMed  CAS  Google Scholar 

  4. Gailiunas Jr P, Chawla R, Lazarus JM, Cohn L, Merrill JP, Sanders J. Acute renal failure following cardiac operations. J Thorac Cardiovasc Surg. 1980;79:241–3.

    PubMed  Google Scholar 

  5. Ostermann ME, Taube D, Morgan CJ, Evans TW. Acute renal failure following cardiopulmonary bypass: a changing picture. Intensive Care Med. 2000;26:565–71.

    PubMed  CAS  Google Scholar 

  6. Andersson LG, Ekroth R, Bratteby LE, et al. Acute renal failure after coronary surgery: a study of incidence and risk factors in 2009 consecutive patients. J Thorac Cardiovasc Surg. 1993;41:237–41.

    CAS  Google Scholar 

  7. Zanardo G, Michielon P, Paccagnella A, et al. Acute renal failure in the patient undergoing cardiac operation: prevalence, mortality rate, and main risk factors. J Thorac Cardiovasc Surg. 1994;107:1489–95.

    PubMed  CAS  Google Scholar 

  8. Mangos GJ, Brown MA, Chan YA, et al. Acute renal failure following cardiac surgery: incidente, outcomes and risk factors. Aust N Z J Med. 1995;25:284–9.

    PubMed  CAS  Google Scholar 

  9. Antunes PE, Prieto D, Ferrao de Oliveira J, Antunes MJ. Renal dysfunction alter myocardial revascularization. Eur J Cardiothorac Surg. 2004;25:597–604.

    PubMed  Google Scholar 

  10. Yeboah ED, Petrie A, Pead JL. Acute renal failure and open heart surgery. Br Med J. 1972;1:415–8.

    PubMed  CAS  Google Scholar 

  11. Bhat JG, Gluck MC, Lowenstein J, Baldwin DS. Renal failure after open heart surgery. Ann Int Med. 1976;84:677–82.

    PubMed  CAS  Google Scholar 

  12. Hilberman M, Myers BD, Carrie BJ, Derby G, Jamison RL, Stinson EB. Acute renal failure following cardiac surgery. J Thorac Cardiovasc Surg. 1979;77:880–8.

    PubMed  CAS  Google Scholar 

  13. Corwin HL, Sprague SM, DeLaria GA, Norusis MJ. Acute renal failure associated with cardiac operations. A case-control study. J Thorac Cardiovasc Surg. 1989;98:1107–12.

    PubMed  CAS  Google Scholar 

  14. Schmitt H, Riehl J, Boseilla A, et al. Acute renal failure following cardiac surgery: pre- and perioperative clinical features. Contrib Nephrol. 1991;93:98–104.

    PubMed  CAS  Google Scholar 

  15. Chertow GM, Levy EM, Hammermeister KE, Grover F, Daley J. Independent association between acute renal failure and mortality following cardiac surgery. Am J Med. 1998;104:343–8.

    PubMed  CAS  Google Scholar 

  16. Lassnigg A, Schmidlin D, Mouhieddine M, Bachmann LM, et al. Minimal changes of serum creatinine predict prognosis in patients after cardiothoracic surgery: a prospective cohort study. J Am Soc Nephrol. 2004;15:1597–605.

    PubMed  CAS  Google Scholar 

  17. Leacche M, Rawn JD, Mihaljevic T, et al. Outcomes in patients with normal serum creatinine and with artificial renal support for acute renal failure developing after coronary artery bypass grafting. Am J Cardiol. 2004;93:353–6.

    PubMed  Google Scholar 

  18. Abraham VS, Swain JA. Cardiopulmonary bypass and the kidney. In: Kurusz M, Utley JR, Davis RF, editors. Cardiopulmonary bypass: principles and practice. 2nd ed. Philadelphia: Lippincott Williams and Wilkins; 2000. p. 382–91.

    Google Scholar 

  19. Grayson AD, Khater M, Jackson M, Fox MA. Valvular heart operation is an independent risk factor for acute renal failure. Ann Thorac Surg. 2003;75:1829–35.

    PubMed  Google Scholar 

  20. Thakar CV, Worley S, Arrigain S, Yared J-P, Paganini EP. Influence of renal dysfunction on mortality after cardiac surgery: modifying effect of preoperative renal function. Kidney Int. 2005;67:1112–9.

    PubMed  Google Scholar 

  21. Loef BG, Epema AH, Smilde TB, et al. Immediate postoperative renal function deterioration in cardiac surgical patients predicts in-hospital mortality and long-term survival. J Am Soc Nephrol. 2005;16:195–200.

    PubMed  Google Scholar 

  22. Lok CE, Austin PC, Wanh H, Tu JV. Impact of renal insufficiency on short- and long-term outcomes after cardiac surgery. Am Heart J. 2004;148:430–8.

    PubMed  Google Scholar 

  23. Liano F, Pascual J. Epidemiology of acute renal failure: a prospective, multicenter, community-based study. Madrid Acute Renal Failure Study Group. Kidney Int. 1996;50:811–8.

    PubMed  CAS  Google Scholar 

  24. Thakar CV, Yared JP, Worley S, Cotman K, Paganini EP. Renal dysfunction and serious infections after open-heart surgery. Kidney Int. 2003;64:239–46.

    PubMed  Google Scholar 

  25. Chertow GM, Lazarus JM, Christiansen CL, Cook EF, Hammermeister KE, Grover F, et al. Preoperative renal risk stratification. Circulation. 1997;95:878–84.

    PubMed  CAS  Google Scholar 

  26. Fortescue EB, Bates DW, Chertow GM. Predicting acute renal failure after coronary bypass surgery: cross-validation of two risk-stratification algorithms. Kidney Int. 2000;57:2594–602.

    PubMed  CAS  Google Scholar 

  27. Frost L, Pedersen RS, Lund O, Hansen OK, Hansen HE. Prognosis and risk factors in acute, dialysis-requiring renal failure after open-heart surgery. Scand J Thorac Cardiovasc Surg. 1991;25:161–6.

    PubMed  CAS  Google Scholar 

  28. Thakar CV, Liangos O, Yared JP, Nelson D, et al. ARF after open-heart surgery: influence of gender and race. Am J Kidney Dis. 2003;41:742–51.

    PubMed  Google Scholar 

  29. Thakar CV, Liangos O, Yared J-P, Nelson DA, Hariachar S, Paganini EP. Predicting acute renal failure after cardiac surgery: validation and re-definition of a risk stratification algorithm. Hemodial Int. 2003;7:143–7.

    PubMed  Google Scholar 

  30. Thakar CV, Arrigain S, Worley S, Yared J-P, Paganini EP. A clinical score to predict acute renal failure after cardiac surgery. J Am Soc Nephrol. 2005;16:162–8.

    PubMed  Google Scholar 

  31. Slogoff S, Reul GJ, Keats AS, et al. Role of perfusion pressure and flow in major organ dysfunction after cardiopulmonary bypass. Ann Thorac Surg. 1990;50:911–8.

    PubMed  CAS  Google Scholar 

  32. Tuttle KR, Worrall NK, Dahlstrom LR, Nandagopal R, Kausz AT, Davis CL. Predictors of ARF after cardiac surgical procedures. Am J Kidney Dis. 2003;41:76–83.

    PubMed  Google Scholar 

  33. Fischer UM, Weissenberger WK, Warters RD, Geissler HJ, Allen SJ, Mehlhorn U. Impact of cardiopulmonary bypass management on postcardiac surgery renal function. Perfusion. 2002;17:401–6.

    PubMed  Google Scholar 

  34. Abramov D, Tamariz M, Serrick CI, et al. The influence of cardiopulmonary bypass flow characteristics on the clinical outcome of 1820 coronary bypass patients. Can J Cardiol. 2003;19:237–43.

    PubMed  Google Scholar 

  35. Urzua J, Troncoso S, Bugedo G, et al. Renal function and cardiopulmonary bypass: effect of perfusion pressure. J Cardiothorac Vasc Anesth. 1992;6:299–303.

    PubMed  CAS  Google Scholar 

  36. Provenchere S, Plantefeve G, Hufnagel G, et al. Renal dysfunction after cardiac surgery with normothermic cardiopulmonary bypass: incidence, risk factors and effect on clinical outcome. Anesth Analg. 2003;96:1258–64.

    PubMed  Google Scholar 

  37. The Warm Heart Investigators. Randomized trial of normothermic versus hypothermic coronary artery bypass surgery. Lancet. 1994;343:559–63.

    Google Scholar 

  38. Cook DJ. Changing temperature management for cardiopulmonary bypass. Anesth Analg. 1999;88:1254–71.

    PubMed  CAS  Google Scholar 

  39. Magee MJ, Edgerton JR. Beating heart coronary artery bypass: operative strategy and technique. Sem Thorac Cardiovasc Surg. 2003;15:83–91.

    Google Scholar 

  40. Loef BG, Epema AH, Navis G, Ebels T, van Oeveren W, Henning RH. Off-pump coronary revascularization attenuates transient renal damage compared with on-pump coronary revascularization. Chest. 2002;121:1190–4.

    PubMed  Google Scholar 

  41. Ascione R, Lloyd CT, Underwood MJ, et al. On-pump versus off-pump coronary revascularization: evaluation of renal function. Ann Thorac Surg. 1999;68:493–8.

    PubMed  CAS  Google Scholar 

  42. Schwann NM, Horrow JC, Strong MD, Chamchad D, Guerraty A, Wechsler AS. Does off-pump coronary artery bypass reduce the incidence of clinically evident renal dysfunction after multivessel myocardial revascularization? Anesth Analg. 2004;99:959–64.

    PubMed  Google Scholar 

  43. Beauford RB, Saunders CR, Niemeier LA, et al. Is off-pump revascularization better for patients with non-dialysis-dependent renal insufficiency? Heart Surg Forum. 2004;7:E141–6.

    PubMed  Google Scholar 

  44. Gamboso MG, Phillips-Bute B, Landolfo KP, Newman MF, Stafford-Smith M. Off-pump versus on-pump coronary artery bypass surgery and postoperative renal dysfunction. Anesth Analg. 2000;91:1080–4.

    Google Scholar 

  45. Stallwood MI, Grayson AD, Mills K, Scawn ND. Acute renal failure in coronary artery bypass surgery: Independent effect of cardiopulmonary bypass. Ann Thorac Surg. 2004;77:968–72.

    PubMed  Google Scholar 

  46. Fransen E, Maessen J, Dentener M, Senden N, Geskes G, Buurman W. Systemic inflammation present in patients undergoing CABP without extracorporeal circulation. Chest. 1998;113:1290–5.

    PubMed  CAS  Google Scholar 

  47. Dybdahl B, Wahba A, Haaverstad R, et al. On-pump versus off-pump coronary artery bypass grafting: more heat-shock protein 70 is released after on-pump surgery. Eur J Cardiothorac Surg. 2004;25:985–92.

    PubMed  Google Scholar 

  48. Wright G. Hemolysis during cardiopulmonary bypass: update. Perfusion. 2001;16:345–51.

    PubMed  CAS  Google Scholar 

  49. Baliga R, Ueda N, Waler PD, Shah SV. Oxidant mechanisms in toxic acute renal failure. Am J Kidney Dis. 1997;29:465–77.

    PubMed  CAS  Google Scholar 

  50. Davis CL, Kausz AT, Zager RA, Kharasch ED, Cochran RP. Acute renal failure after cardiopulmonary bypass is related to decreased serum ferritin levels. J Am Soc Nephrol. 1999;10:2396–402.

    PubMed  CAS  Google Scholar 

  51. Messmer K. Hemodilution. Surg Clin North Am. 1975;55:659–78.

    PubMed  CAS  Google Scholar 

  52. Shah D, Corson J, Karmody A, Leather R. Effects of isovolemic hemodilution on abdominal aortic aneurysmectomy in high risk patients. Ann Vasc Surg. 1986;1:50–4.

    PubMed  CAS  Google Scholar 

  53. Swaminathan M, Phillips-Bute BG, Conlon PJ, Smith PK, Newman MF, Stafford-Smith M. The association of lowest hematocrit during cardiopulmonary bypass with acute renal injury after coronary artery bypass surgery. Ann Thorac Surg. 2003;76:784–92.

    PubMed  Google Scholar 

  54. Karkouti K, Beattie WS, Wijeysundera DN, et al. Hemodilution during cardiopulmonary bypass is an independent risk factor for acute renal failure in adult cardiac surgery. J Thorac Cardiovasc Surg. 2005;129:391–400.

    PubMed  CAS  Google Scholar 

  55. Chertow GM, Lazarus JM, Christiansen CL, et al. Preoperative renal risk stratification. Circulation. 1997;95:878–84.

    PubMed  CAS  Google Scholar 

  56. Eriksen BO, Hoff KRS, Solberg S. Prediction of acute renal failure after cardiac surgery: retrospective cross-validation of a clinical algorithm. Nephrol Dial Transplant. 2003;18:77–81.

    PubMed  Google Scholar 

  57. Moran SM, Myers BD. Pathophysiology of protracted acute renal failure in man. J Clin Invest. 1985;76:1440–8.

    PubMed  CAS  Google Scholar 

  58. Heinzelmann M, Mercer-Jones MA, Passmore JC. Neutrophils and renal failure. Am J Kidney Dis. 1999;34:384–99.

    PubMed  CAS  Google Scholar 

  59. Sheridan AM, Bonventre JV. Cell biology and molecular mechanisms of injury in ischemic acute renal failure. Curr Opin Nephrol Hypertens. 2000;9:427–34.

    PubMed  CAS  Google Scholar 

  60. Molitoris BA. Transitioning to therapy in ischemic acute renal failure. J Am Soc Nephrol. 2003;14:265–7.

    PubMed  Google Scholar 

  61. Sutton TA, Fisher CJ, Molitoris BA. Microvascular endothelial injury and dysfunction during ischemic acute renal failure. Kidney Int. 2002;62:1539–49.

    PubMed  CAS  Google Scholar 

  62. Conger JD. Vascular alterations in acute renal failure: roles in initiation and maintenance. In: Molitoris BA, Finn WF, editors. Acute renal failure – a companion to Brenner and Rector’s the kidney. Philadelphia: Saunders; 2001. p. 13–29.

    Google Scholar 

  63. Okusa MD. The inflammatory cascade in acute ischemic renal failure. Nephron. 2002;90:133–8.

    PubMed  CAS  Google Scholar 

  64. Goligorsky MS, Noiri E, Tsukahara H, et al. A pivotal role of nitric oxide in endothelial cell dysfunction. Acta Physiol Scand. 2000;168:33–40.

    PubMed  CAS  Google Scholar 

  65. Caramelo C, Espinoza G, Manzarbeitia F, et al. Role of endothelium-related mechanisms in the patho­physiology of renal ischemia/reperfusion in normal rabbits. Circ Res. 1996;79:1031–8.

    PubMed  CAS  Google Scholar 

  66. Kohan DE. Endothelins in the kidney: physiology and pathophysiology. Am J Kidney Dis. 1993;22:493–510.

    PubMed  CAS  Google Scholar 

  67. Brezis M, Rosen S. Hypoxia of the renal medulla-its implications for disease. N Engl J Med. 1995;332:647–55.

    PubMed  CAS  Google Scholar 

  68. Chou SY, Porush JG, Faubert PF. Renal medullary circulation: hormonal control. Kidney Int. 1990;37:1–13.

    PubMed  CAS  Google Scholar 

  69. Lequier LL, Nikaidoh H, Leonard SR, et al. Preoperative and postoperative endotoxemia in ­children with congenital heart disease. Chest. 2000;117:1706–12.

    PubMed  CAS  Google Scholar 

  70. Bennet-Guerrero E, Ayuso L, Hamilton-Davies C, et al. Relationship of preoperative anti-endotoxin core antibodies and adverse outcomes following cardiac surgery. JAMA. 1997;277:646–50.

    Google Scholar 

  71. Nilsson L, Kulander L, Nystrom SO, et al. Endotoxins in cardiopulmonary bypass. J Thorac Cardiovasc Surg. 1990;100:777–80.

    PubMed  CAS  Google Scholar 

  72. Riddington DW, Venkatesh B, Boivin CM, et al. Intestinal permeability, gastric intramucosal pH, and systemic endotoxemia in patients undergoing cardiopulmonary bypass. JAMA. 1996;275:1007–12.

    PubMed  CAS  Google Scholar 

  73. Levine B, Kalman J, Mayer L, et al. Elevated circulating levels of tumor necrosis factor in severe chronic heart failure. N Engl J Med. 1990;323:236–41.

    PubMed  CAS  Google Scholar 

  74. Torre-Amione G, Kapadia S, Benedict C, et al. Proinflammatory cytokine levels in patients with depressed left ventricular ejection fraction: a report from the studies of left ventricular dysfunction (SOLVD). J Am Coll Cardiol. 1996;27:1201–6.

    PubMed  CAS  Google Scholar 

  75. Parolari A, Alamanni F, Gherli T, et al. Cardiopulmonary bypass and oxygen consumption: oxygen delivery and hemodynamics. Ann Thorac Surg. 1999;67:1320–7.

    PubMed  CAS  Google Scholar 

  76. Kirklin JW, Barratt-Boyes BG. Cardiac Surgery. 2nd ed. New York: Churchill Livingstone; 1993. p. 80.

    Google Scholar 

  77. Kurusz M, Davis RF, Conti VR. Conduct of cardiopulmonary bypass. In: Gravlee GP, Davis RF, Kurusz M, Utley JR, editors. Cardiopulmonary bypass: principles and practice. Philadelphia: Lippincott Williams and Wilkins; 2000. p. 549–78.

    Google Scholar 

  78. Rudy LW, Heymann MA, Edmunds H. Distribution of systemic blood flow during cardiopulmonary bypass. J Appl Physiol. 1973;34:194–200.

    PubMed  Google Scholar 

  79. Harris EA, Seelye ER, Barratt-Boyes BG. On the availability of oxygen to the body during cardiopulmonary bypass in man. Br J Anaesth. 1974;46:425–31.

    PubMed  CAS  Google Scholar 

  80. Urzua J, Troncoso S, Bugedo G, et al. Renal function and cardiopulmonary bypass: effect of perfusion pressure. J Cardiovasc Vasc Anesth. 1992;6:299–303.

    CAS  Google Scholar 

  81. Palmer BF. Renal dysfunction complicating the treatment of hypertension. N Engl J Med. 2002;347:1256–61.

    PubMed  Google Scholar 

  82. Kelleher SP, Robinette JB, Conger JD. Sympathetic nervous system in the loss of autoregulation in acute renal failure. Am J Physiol. 1984;246:F379–86.

    PubMed  CAS  Google Scholar 

  83. Gold JP, Charlson ME, Williams-Russo P, et al. Improvement of outcomes after coronary artery bypass; a randomized trial comparing intraoperative high versus low mean arterial pressure. J Thorac Cardiovasc Surg. 1995;110:1302–14.

    PubMed  CAS  Google Scholar 

  84. Cremer J, Martin M, Redl H, et al. Systemic inflammatory response after cardiac operations. Ann Thorac Surg. 1996;61:1714–20.

    PubMed  CAS  Google Scholar 

  85. Taylor K. SIRS – the systemic inflammatory response syndrome after cardiac operations. Ann Thorac Surg. 1996;61:1607–8.

    PubMed  CAS  Google Scholar 

  86. Hornick P, Taylor K. Pulsatile and non-pulsatile perfusion: the continuing controversy. J Cardiothorac Vasc Anesth. 1997;11:310–5.

    PubMed  CAS  Google Scholar 

  87. Kirklin JK, Blackstone EH, Kirklin JW. Cardiopulmonary bypass: studies on its damaging effects. Blood Purif. 1987;5:168–78.

    PubMed  CAS  Google Scholar 

  88. Czerny M, Baumer H, Kilo J, et al. Inflammatory response and myocardial injury following coronary artery bypass grafting with or without cardiopulmonary bypass. Eur J Cardiothorac Surg. 2000;17:737–42.

    PubMed  CAS  Google Scholar 

  89. Fransen E, Maessen J, Dentener M, et al. Systemic inflammation present in patients undergoing CABG without extracorporeal circulation. Chest. 1998;113:1290–5.

    PubMed  CAS  Google Scholar 

  90. Hornick P, Taylor KM. Immune and inflammatory responses after cardiopulmonary bypass. In: Gravlee GP, Davis RF, Kurusz M, Utley JR, editors. Cardiopulmonary bypass: principles and practice. Philadelphia: Lippincott Williams Wilkins; 2000. p. 303–20.

    Google Scholar 

  91. Asimakopoulos G, Taylor KM. Effects of cardio­pulmonary bypass on leukocyte and endothelial adhesion molecules. Ann Thorac Surg. 1998;66:2135–44.

    PubMed  CAS  Google Scholar 

  92. Galinanes M, Watson C, Trivedi U, et al. Differential patterns of neutrophil adhesion molecules during cardiopulmonary bypass in humans. Circulation. 1996;94 Suppl 2:364–9.

    Google Scholar 

  93. Zilla P, Fasol R, Groscurth P, et al. Blood platelets in cardiopulmonary bypass operations. J Thorac Cardiovasc Surg. 1989;97:379–88.

    PubMed  CAS  Google Scholar 

  94. Haga Y, Hatori N, Yoshizu H, et al. Granulocyte superoxide anion and elastase release during cardiopulmonary bypass. Artif Organs. 1993;17:837–42.

    PubMed  CAS  Google Scholar 

  95. Faymonville ME, Pincemail J, Duchateau J, et al. Myeloperoxidase and elastase as markers of leukocyte activation during cardiopulmonary bypass. J Thorac Cardiovasc Surg. 1991;102:309–17.

    PubMed  CAS  Google Scholar 

  96. Frering B, Philip I, Dehous M, et al. Circulating cytokines in patients undergoing normothermic cardiopulmonary bypass. J Thorac Cardiovasc Surg. 1994;108:642–7.

    Google Scholar 

  97. Paparella D, Yau TM, Young E. Cardiopulmonary bypass induced inflammation: pathophysiology and treatment. An update. Eur J Cardiothorac Surg. 2002;21:232–44.

    PubMed  CAS  Google Scholar 

  98. Musial J, Niewiarowski S, Hershock D, et al. Loss of fibrinogen receptors from the platelet surface during simulated extracorporeal circulation. J Lab Clin Med. 1985;105:514–26.

    PubMed  CAS  Google Scholar 

  99. Kirklin JK, Westaby S, Blackstone EH, et al. Complement and the damaging effects of cardiopulmonary bypass. J Thorac Cardiovasc Surg. 1983;86:845–57.

    PubMed  CAS  Google Scholar 

  100. Burne-Taney MJ, Rabb H. The role of adhesion molecules and T cells in ischemic renal injury. Curr Opin Nephrol Hypertens. 2003;12:85–90.

    PubMed  CAS  Google Scholar 

  101. Donnahoo KK, Meng X, Ayala A, et al. Early kidney TNF-expression mediates neutrophil infiltration and injury after renal ischemia–reperfusion. Am J Physiol. 1999;277:R922–9.

    PubMed  CAS  Google Scholar 

  102. McCoy RN, Hill KE, Ayon MA, et al. Oxidant stress following renal ischemia: changes in the glutathione redox ratio. Kidney Int. 1988;33:812–7.

    PubMed  CAS  Google Scholar 

  103. Tennenberg SD, Clardy CW, Bailey WW, et al. Complement activation and lung permeability during cardiopulmonary bypass. Ann Thorac Surg. 1990;50:597–601.

    PubMed  CAS  Google Scholar 

  104. Jansen NJ, van-Oeveren W, Gu YJ, et al. Endotoxin release and tumor necrosis factor formation during cardiopulmonary bypass. Ann Thorac Surg. 1992;54:744–7.

    PubMed  CAS  Google Scholar 

  105. Blauth J. Macroemboli and microemboli during cardiopulmonary bypass. Ann Thorac Surg. 1995;59:1300–3.

    PubMed  CAS  Google Scholar 

  106. van der Linden J, Casimir-Ahn H. When do cerebral emboli appear during open heart operations? A transcranial Doppler study. Ann Thorac Surg. 1991;51:237–41.

    PubMed  Google Scholar 

  107. Barbut D, Hinton RB, Szatrowski TP, et al. Cerebral emboli detected during bypass surgery are associated with clamp removal. Stroke. 1994;25:2398–402.

    PubMed  CAS  Google Scholar 

  108. Sreeram GM, Grocott HP, White WD, Newman MF, Stafford-Smith M. Transcranial Doppler emboli count predicts rise in creatinine after coronary artery bypass graft surgery. J Cardiovasc Vasc Anesth. 2004;18:548–51.

    Google Scholar 

  109. Moat NE, Evans TE, Quinlan GJ, et al. Chelatable iron and copper can be released from extracorporeally circulated blood during cardiopulmonary bypass. Fed Eur Biochem Soc. 1993;328:103–6.

    CAS  Google Scholar 

  110. Gutteridge JMC. Iron promoters of the Fenton reaction and lipid peroxidation can be released from hemoglobin by peroxides. Fed Eur Biochem Soc Lett. 1986;201:291–5.

    CAS  Google Scholar 

  111. Flaherty JT, Weisfeldt ML. Reperfusion injury. Free Radic Biol Med. 1988;5:409–19.

    PubMed  CAS  Google Scholar 

  112. Gutteridge JMC, Quinlan GJ. Antioxidant protection against organic and inorganic oxygen radicals by normal human plasma: the important primary role for iron-binding and iron-oxidizing proteins. Biochim Biophys Acta. 1992;1159:248–54.

    PubMed  CAS  Google Scholar 

  113. Pepper JR, Mumby S, Gutteridge JMC. Sequential oxidative damage and changes in iron-binding and iron-oxidizing plasma antioxidants during cardiopulmonary bypass surgery. Free Radic Res. 1994;21:377–85.

    PubMed  CAS  Google Scholar 

  114. Pepper JR, Mumby S, Gutteridge JMC. Blood ­cardioplegia increases plasma iron overload and thiol levels during cardiopulmonary bypass. Ann Thorac Surg. 1995;60:1735–40.

    PubMed  CAS  Google Scholar 

  115. Menasche P, Antebi H, Alcindor LG, et al. Iron chelation by deferoxamine inhibits lipid peroxidation during cardiopulmonary bypass in humans. Circulation. 1990;82:IV390–6.

    PubMed  CAS  Google Scholar 

  116. Lazar HL. The use of angiotensin-converting enzyme inhibitors in patients undergoing coronary artery bypass graft surgery. Vascul Pharmacol. 2005;42:119–23.

    PubMed  CAS  Google Scholar 

  117. Devbhandari MP, Balasubramanian SK, Codispoti M, et al. Preoperative angiotensin-converting enzyme inhibition can cause severe post CPB vasodilation – current UK opinion. Asian Cardiovasc Thorac Ann. 2004;12:346–9.

    PubMed  Google Scholar 

  118. Kwapisz MM, Muller M, Schindler E, et al. The effect of intravenous quinaprilat on plasma cytokines and hemodynamic variables during cardiac surgery. J Cardiothorac Vasc Anesth. 2004;18:53–8.

    PubMed  CAS  Google Scholar 

  119. Aspelin P, Aubry P, Fransson SG, et al. Nephrotoxicity in High-Risk Patients Study of Iso-Osmolar and Low-Osmolar Non-Ionic Contrast Media Study Investigators. Nephrotoxic effects in high-risk patients undergoing angiography. N Engl J Med. 2003;348:491–9.

    PubMed  CAS  Google Scholar 

  120. Woo EB, Tang AT, el-Gamel A, et al. Dopamine therapy for patients at risk of renal dysfunction following cardiac surgery: science or fiction? Eur J Cardiothorac Surg. 2002;22:106–11.

    PubMed  Google Scholar 

  121. Tang AT, El-Gamel A, Keevil B, et al. The effect of ‘renal-dose’ dopamine on renal tubular function following cardiac surgery: assessed by measuring retinol binding protein (RBP). Eur J Cardiothorac Surg. 1999;15:717–21.

    PubMed  CAS  Google Scholar 

  122. Denton MD, Chertow GM, Brady HR. “Renal-dose” dopamine for the treatment of acute renal failure: scientific rationale, experimental studies and clinical trials. Kidney Int. 1996;50:4–14.

    PubMed  CAS  Google Scholar 

  123. Stone GW, McCullough PA, Tumlin JA, et al.; for the CONTRAST Investigators. Fenoldopam mesylate for the prevention of contrast-induced nephropathy: a randomized controlled trial. JAMA 2003;290:2284–91.

    Google Scholar 

  124. Ranucci M, Soro G, Barzaghi N, et al. Fenoldopam prophylaxis of postoperative acute renal failure in high-risk cardiac surgery patients. Ann Thorac Surg. 2004;78:1332–7.

    PubMed  Google Scholar 

  125. Caimmi PP, Pagani L, Micalizzi E, et al. Fenoldopam for renal protection in patients undergoing cardiopulmonary bypass. J Cardiothorac Vasc Anesth. 2003;17:491–4.

    PubMed  Google Scholar 

  126. Garwood S, Swamidoss CP, Davis EA, Samson L, Hines RL. A case series of low-dose fenoldopam in seventy cardiac surgical patients at increased risk of renal dysfunction. J Cardiothorac Vasc Anesth. 2003;17:17–21.

    PubMed  Google Scholar 

  127. http://www.angiodynamics.com/products/benephit. Accessed 4/6/2011.

  128. Kramer BK, Preuner J, Ebenburger A, et al. Lack of renoprotective effect of theophylline during aortocoronary bypass surgery. Nephrol Dial Transplant. 2002;17:910–5.

    PubMed  CAS  Google Scholar 

  129. Light DB, Schwiebert EM, Karlson KH, Stanton BA. Atrial natriuretic peptide inhibits a cation channel in renal inner medullary collecting duct cells. Science. 1989;243:383–5.

    PubMed  CAS  Google Scholar 

  130. Allgren RL, Marbury TC, Rahman SN, et al. Anaritide in acute tubular necrosis: Auriculin Anaritide Acute Renal Failure Study Group. N Engl J Med. 1997;336:828–34.

    PubMed  CAS  Google Scholar 

  131. Lewis J, Salem MM, Chertow GM, et al. Atrial natriuretic factor in oliguric renal failure. Anaritide Acute Renal Failure Study Group. Am J Kidney Dis. 2000;36:767–74.

    PubMed  CAS  Google Scholar 

  132. Sward K, Valsson F, Odencrants P, et al. Recombinant human atrial natriuretic peptide in ischemic acute renal failure. A randomized placebo controlled trial. Crit Care Med. 2004;32:1310–5.

    PubMed  Google Scholar 

  133. Jarnberg PO. Renal protection strategies in the perioperative period. Best Pract Res Clin Anaesthesiol. 2004;18:645–60.

    PubMed  Google Scholar 

  134. Lassnigg A, Donner E, Grubhofer G, et al. Lack of renoprotective effects of dopamine and furosemide during cardiac surgery. J Am Soc Nephrol. 2000;11:97–104.

    PubMed  CAS  Google Scholar 

  135. Lombardi R, Ferreiro A, Servetto C. Renal function after cardiac surgery: adverse effect of furosemide. Ren Fail. 2003;25:775–86.

    PubMed  CAS  Google Scholar 

  136. Engelman RM, Gouge TH, Smith SJ, et al. The effect of diuretics on renal hemodynamics during cardiopulmonary bypass. J Surg Res. 1974;16:268–76.

    PubMed  CAS  Google Scholar 

  137. Cooper JR, Giesecke NM. Hemodilution and priming solutions. In: Gravlee GP, Davis RF, Kurusz M, Utley JR, editors. Cardiopulmonary bypass: principles and practice. Philadelphia: Lippincott Williams Wilkins; 2000. p. 186–96.

    Google Scholar 

  138. Rigden SP, Dillon MJ, Kind PR, et al. The beneficial effect of mannitol on postoperative renal function in children undergoing cardiopulmonary bypass ­surgery. Clin Nephrol. 1984;21:148–51.

    PubMed  CAS  Google Scholar 

  139. Fisher AR, Jones P, Barlow P, et al. The influence of mannitol on renal function during and after open-heart surgery. Perfusion. 1998;13:181–6.

    PubMed  CAS  Google Scholar 

  140. Ip-Yam PC, Murphy S, Baines M, Fox MA, Desmond MJ, Innes PA. Renal function and proteinuria after cardiopulmonary bypass: the effects of temperature and mannitol. Anesth Analg. 1994;78:842–7.

    PubMed  CAS  Google Scholar 

  141. Carcoana OV, Mathew JP, Davis E, et al. Mannitol and dopamine in patients undergoing cardiopulmonary bypass: a randomized clinical trial. Anesth Analg. 2003;97:1222–9.

    PubMed  CAS  Google Scholar 

  142. Sullivan GW, Carper HT, Novick Jr WJ, Mandell GL. Inhibition of the inflammatory action of interleukin-1 and tumor necrosis factor (alpha) on neutrophil function by pentoxifylline. Infect Immun. 1988;56:1722–9.

    PubMed  CAS  Google Scholar 

  143. Cagli K, Ulas MM, Ozisik K, et al. The intraoperative effect of pentoxifylline on the inflammatory process and leukocytes in cardiac surgery patients undergoing cardiopulmonary bypass. Perfusion. 2005;20:45–51.

    PubMed  Google Scholar 

  144. Zhang M, Xu YJ, Saini HK, Turan B, Liu PP, Dhalla NS. Pentoxifylline attenuates cardiac dysfunction and reduces TNF-{alpha}level in the ischemic-­reperfused heart. Am J Physiol Heart Circ Physiol 2005 Aug;289(2):H832–9.

    Google Scholar 

  145. Boldt J, Brosch C, Piper SN, Suttner S, Lehmann A, Werling C. Influence of prophylactic use of pentoxifylline on postoperative organ function in elderly cardiac surgery patients. Crit Care Med. 2001;29:952–8.

    PubMed  CAS  Google Scholar 

  146. Loef BG, Henning RH, Epema AH, et al. Effect of dexamethasone on perioperative renal function impairment during cardiac surgery with cardiopulmonary bypass. Br J Anaesth. 2004;93:793–8.

    PubMed  CAS  Google Scholar 

  147. Sucu N, Cinel I, Unlu A, et al. N-acetylcysteine for preventing pump-induced oxidoinflammatory response during cardiopulmonary bypass. Surg Today. 2004;34:237–42.

    PubMed  CAS  Google Scholar 

  148. Tossios P, Bloch W, Huebner A, et al. N-acetylcysteine prevents reactive oxygen species-mediated myocardial stress in patients undergoing cardiac surgery: results of a randomized, double-blind, placebo-­controlled clinical trial. Thorac Cardiovasc Surg. 2003;126:1513–20.

    CAS  Google Scholar 

  149. Myles PS, Hunt JO, Holdgaard HO, et al. Clonidine and cardiac surgery: haemodynamic and metabolic effects, myocardial ischaemia and recovery. Anaesth Intensive Care. 1999;27:137–47.

    PubMed  CAS  Google Scholar 

  150. Kulka PJ, Tryba M, Zenz M. Preoperative alpha2-adrenergic receptor agonists prevent the deterioration of renal function after cardiac surgery: results of a randomized, controlled trial. Crit Care Med. 1996;24:947–52.

    PubMed  CAS  Google Scholar 

  151. Fansa I, Gol M, Nisanoglu V, et al. Does diltiazem inhibit the inflammatory response in cardiopulmonary bypass? Med Sci Monit. 2003;9:PI30–6.

    PubMed  CAS  Google Scholar 

  152. Chanda J, Canver CC. Reversal of preexisting vasospasm in coronary artery conduits. Ann Thorac Surg. 2001;72:476–80.

    PubMed  CAS  Google Scholar 

  153. Bergman AS, Odar-Cederlof I, Westman L, et al. Diltiazem infusion for renal protection in cardiac surgical patients with preexisting renal dysfunction. J Cardiothorac Vasc Anesth. 2002;16:294–9.

    PubMed  Google Scholar 

  154. Piper SN, Kumle B, Maleck WH, et al. Diltiazem may preserve renal tubular integrity after cardiac surgery. Can J Anaesth. 2003;50:285–92.

    PubMed  Google Scholar 

  155. Young EW, Diab A, Kirsh MM. Intravenous diltiazem and acute renal failure after cardiac operations. Ann Thorac Surg. 1998;65:1316–9.

    PubMed  CAS  Google Scholar 

  156. Amar D, Fleisher M. Diltiazem treatment does not alter renal function after thoracic surgery. Chest. 2001;119:1476–9.

    PubMed  CAS  Google Scholar 

Download references

Copyright Acknowledgement

This material was previously published in The Clinical Journal of the American Society of Nephrology and is reproduced with the kind permission of the American Society of Nephrology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitchell H. Rosner MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Rosner, M.H. (2012). Acute Kidney Injury Associated with Cardiac Surgery. In: Machiraju, V., Schaff, H., Svensson, L. (eds) Redo Cardiac Surgery in Adults. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1326-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-1326-4_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-1325-7

  • Online ISBN: 978-1-4614-1326-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics