Trends and Perspectives in Nanoparticles Synthesis

Chapter
Part of the SpringerBriefs in Materials book series (BRIEFSMATERIALS)

Abstract

The focus of nanostructured materials is gradually shifting from the synthesis of nanocrystals with a controlled morphology and size to the organization or assembly of those nanocrystals into larger nanostructures in a natural sequence, especially in the use of nanocrystals as fundamental building blocks for the development of functional thin films and devices. In addition, the synthesis of controlled nanocrystals is still a challenge, particularly in the synthesis of transition metal oxides. In this final chapter, the trends in the synthesis of nanocrystals with controlled shapes and exposed facets will be discussed with a focus on metal oxide nanoparticles.

Keywords

TiO2 Surfactant Crystallization Toluene Recrystallization 

References

  1. 1.
    Seyed-Razavi, A., Snook, I.K., Barnard, A.S.: Origin of nanomorphology: does a complete theory of nanoparticle evolution exist? J. Mater. Chem. 20, 416 (2010)CrossRefGoogle Scholar
  2. 2.
    Liu, G., Wang, L., Yang, H.G., Cheng, H.-M., Lu, G.Q.: Titania-based photocatalysts–crystal growth, doping and heterostructuring. J. Mater. Chem. 20, 831 (2010)CrossRefGoogle Scholar
  3. 3.
    Halder, A., Kundu, P., Viswanath, B., Ravishankar, N.: Symmetry and shape issues in nanostructuregrowth. J. Mater. Chem. 20, 4763 (2010)CrossRefGoogle Scholar
  4. 4.
    Xie, X., Li, Y., Liu, Z.-Q., Haruta, M., Shen, W.: Low-temperature oxidation of CO catalysed by Co3O4nanorods. Nature 458, 746 (2009)CrossRefGoogle Scholar
  5. 5.
    Xie, X., Shen, W.: Morphology control of cobalt oxidenanocrystals for promoting their catalytic performance. Nanoscale 1, 50 (2009)CrossRefGoogle Scholar
  6. 6.
    Deng, W., Flytzani-Stephanopoulos, M.: On the issue of the deactivation of Au–ceria and Pt–ceria water–gas shift catalysts in practical fuel-cell applications. Angew. Chem. 118, 2343 (2006); Angew. Chem. Int. Ed. 45, 2285 (2006)Google Scholar
  7. 7.
    Si, R., Flytzani-Stephanopoulos, M.: Shape and crystal-plane effects of nanoscale ceria on the activity of au-CeO2 catalysts for the water–gas shift reaction. Angew. Chem. Int. Ed. 47, 2884 (2008)CrossRefGoogle Scholar
  8. 8.
    Ferroni, M., Carotta, M.C., Guidi, V., Martinelli, G., Ronconi, F., Sacerdoti, M., Traversa, E.: Preparation and characterization of nanosized titania sensing film. Sens. Actators B 77, 163 (2001)Google Scholar
  9. 9.
    Zhang, Z., Wang, C.C., Zakaria, R., Ying, J.Y.: Role of particle size in nanocrystalline TiO2-based photocatalysts. J. Phys. Chem. B 102, 10871 (1998)CrossRefGoogle Scholar
  10. 10.
    Hagfeldt, A., Graetzel, M.: Molecular photovoltaics. Acc. Chem. Res. 33, 269–277 (2000)CrossRefGoogle Scholar
  11. 11.
    Lazzeri, M., Vittadini, A., Selloni, A.: Structure and energetics of stoichiometric TiO2 anatase surfaces. Phys. Rev. B 63, 155409 (2001)CrossRefGoogle Scholar
  12. 12.
    Diebold, U.: The surface science of titanium dioxide. Surf. Sci. Rep. 48, 53 (2003)CrossRefGoogle Scholar
  13. 13.
    Yang, H.G., Sun, C.H., Qiao, S.Z., Zou, J., Liu, G., Smith, S.C., Cheng, H.M., Lu, G.Q.: Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 453, 638 (2008)CrossRefGoogle Scholar
  14. 14.
    Yang, H.G., Liu, G., Qiao, S.Z., Sun, C.H., Jin, Y.G., Smith, S.C., Zou, J., Cheng, H.M., Lu, G.Q.: Solvothermal synthesis and photoreactivity of anatase TiO2 nanosheets with dominant {001} Facets. J. Am. Chem. Soc. 131, 4078 (2009)CrossRefGoogle Scholar
  15. 15.
    Han, X., Kuang, Q., Jin, M., Xie, Z., Zheng, L.: Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties. J. Am. Chem. Soc. 131, 3152 (2009)CrossRefGoogle Scholar
  16. 16.
    Niederberger, M., Colfen, H.: Oriented attachment and mesocrystals: Non-classical crystallization mechanisms based on nanoparticle assembly. PCCP 8, 3271 (2006)CrossRefGoogle Scholar
  17. 17.
    Zhang, J., Huang, F., Lin, Z.: Progress of nanocrystalline growth kinetics based on oriented attachment. Nanoscale 2, 18 (2010)CrossRefGoogle Scholar
  18. 18.
    Polleux, J., Pinna, N., Antonietti, M., Niederberger, M.: Ligand-directed assembly of preformed titania nanocrystals into highly anisotropic nanostructures. Adv. Mater. 16, 436 (2004)CrossRefGoogle Scholar
  19. 19.
    Polleux, J., Pinna, N., Antonietti, M., Hess, C., Wild, H., Schlogl, R., Niederberger, M.: Ligand functionality as a versatile tool to control the assembly behavior of preformed titania nanocrystals. Chem. Eur. J. 11, 3541 (2005)CrossRefGoogle Scholar
  20. 20.
    Niederberger, M., Pinna, N.: Metal Oxide Nanoparticles in Organic Solvents-Synthesis, Formation, Assembly and Application. Springer, London (2009)CrossRefGoogle Scholar
  21. 21.
    Da Silva, R.O., Gonçalves, R.H., Stroppa, D.G., Ramirez, A.J., Leite, E.R.: Synthesis of recrystallized anatase TiO2 mesocrystals with Wulff shape assisted by oriented attachment. Nanoscale 3, 1910 (2011)CrossRefGoogle Scholar
  22. 22.
    Theppaleak, T., Tumcharern, G., Wichai, U., Rutnakornpituk, M.: Synthesis of water dispersible magnetite nanoparticles in the presence of hydrophilic polymers. Polym. Bull. 63, 79 (2009)CrossRefGoogle Scholar
  23. 23.
    Nath, S., Kaittanis, C., Ramachandran, V., Dalal, N.S., Perez, J.M.: Synthesis, magnetic characterization, and sensing applications of novel dextran-coated iron oxide nanorods. Chem. Mater. 21, 1761 (2009)CrossRefGoogle Scholar
  24. 24.
    Li, Z., Wei, L., Gao, M., Lei, H.: One-pot reaction to synthesize biocompatible magnetite nanoparticles. Adv. Mater. 17, 1001 (2005)CrossRefGoogle Scholar
  25. 25.
    Kyoungja Woo. Hong, J.: Surface modification of hydrophobic iron oxide nanoparticles for clinical applications. IEEE Trans. Magn. 41, 4137 (2005)CrossRefGoogle Scholar
  26. 26.
    Lu, Y., Yin, Y.D., Mayers, B.T., Xia, Y.N.: Modifying the surface properties of superparamagnetic iron oxide nanoparticles through A Sol–Gel approach. Nano Lett. 2, 183 (2002)CrossRefGoogle Scholar
  27. 27.
    Lin, C.A.J., Sperling, R.A., Li, J.K., Yang, T.Y., Li, P.Y., Zanella, M., Chang, W.H., Parak, W.G.J.: Design of an amphiphilic polymer for nanoparticle coating and functionalization. Small 4, 334 (2008)CrossRefGoogle Scholar
  28. 28.
    Talelli, M., Rijcken, C.J.F., Lammers, T., Seevinck, P.R., Storm, G., van Nostrum, C.F., Hennink, W.E.: Superparamagnetic iron oxide nanoparticles encapsulated in biodegradable thermosensitive polymeric micelles: Toward a targeted nanomedicine suitable for image-guided drug delivery. Langmuir 25, 2060 (2009)CrossRefGoogle Scholar
  29. 29.
    Kim, S.B., Cai, C., Sun, S., Sweigart, D.A.: Incorporation of Fe3O4 nanoparticles into organometallic coordination polymers by nanoparticle surface modification. Angew. Chem. Int. Ed. 48, 2907 (2009)CrossRefGoogle Scholar
  30. 30.
    Insin, N., Tracy, J.B., Lee, H., Zimmer, J.P., Westervelt, R.M., Bawendi, M.G.: Incorporation of iron oxide nanoparticles and quantum dots into silica microspheres. ACS Nano 2, 197 (2008)CrossRefGoogle Scholar
  31. 31.
    Li, X.H., Zhang, D.H., Chen, J.S.: Synthesis of amphiphilic superparamagnetic ferrite/block copolymer hollow submicrospheres. J. Am. Chem. Soc. 128, 8382 (2006)CrossRefGoogle Scholar
  32. 32.
    Park, J., Yu, M.K., Jeong, Y.Y., Kim, J.W., Lee, K., Phan, V.N., Jon, S.: Antibiofouling amphiphilic polymer-coated superparamagnetic iron oxide nanoparticles: synthesis, characterization, and use in cancer imaging in vivo. J. Mater. Chem. 19, 6412 (2009)CrossRefGoogle Scholar
  33. 33.
    Wan, S., Huang, J., Yan, H., Liu, K.: Size-controlled preparation of magnetite nanoparticles in the presence of graft copolymers. J. Mater. Chem. 16, 298 (2006)CrossRefGoogle Scholar
  34. 34.
    He, H., Zhang, Y., Gao, C., Wu, J.Y.: ‘Clicked’ magnetic nanohybrids with a soft polymer interlayer. Chem. Commun. 45, 1655 (2009)Google Scholar
  35. 35.
    Shen, L.F., Laibinis, P.E., Hatton, T.A.: Bilayer surfactant stabilized magnetic fluids:  Synthesis and interactions at interfaces. Langmuir 15, 447 (1999)CrossRefGoogle Scholar
  36. 36.
    Gonsalves, R.H., Cardoso, C.A., Leite, E.R.: Synthesis of colloidal magnetitenanocrystals using high molecular weight solvent. J. Mater. Chem. 20, 1167 (2010)CrossRefGoogle Scholar
  37. 37.
    Gonsalves, R.H., Schreiner, W.H., Leite, E.R.: Synthesis of TiO2 nanocrystals with a high affinity for amine organic compounds. Langmuir 26, 11657 (2010)CrossRefGoogle Scholar
  38. 38.
    Skorodumova, N.V., Baudin, M., Hermansson, K.: Surface properties of CeO2 from first principles. Phys. Rev. B 69, 075401 (2004)CrossRefGoogle Scholar
  39. 39.
    Yang, S., Gao, L.: Controlled synthesis and self-assembly of CeO2 nanocubes. J. Am. Chem. Soc. 128, 9330 (2006)CrossRefGoogle Scholar
  40. 40.
    Dang, F., Kato, K., Imai, H., Wada, S., Haneda, H., Kuwabara, M.: Characteristics of CeO2 nanocubes and related polyhedra prepared by using a liquid–liquid interface. Crys. Growth Des. 10, 4537 (2010)CrossRefGoogle Scholar
  41. 41.
    Zhang, J., Ohara, S., Umetsu, M., Naka, T., Hatakeyama, Y., Adschiri, T.: Colloidal ceria nanocrystals: A tailor-made crystal morphology in supercritical water. Adv. Mater. 19, 203 (2007)CrossRefGoogle Scholar
  42. 42.
    Fang, W.Q., Gong, X.-Q., Yang, H.G.: On the unusual properties of anatase TiO2 exposed by highly reactive facets. J. Phys. Chem. Lett. 2, 725–734 (2011)CrossRefGoogle Scholar
  43. 43.
    Sun, C.H., Yang, X.H., Chen, J.S., Li, Z., Lou, X.W., Li, C., Smith, S.C., Lu, G.Q., Yang, H.G.: Higher charge/discharge rates of lithium-ions across engineered TiO2 surfaces leads to enhanced battery performance. Chem. Commun. 46, 6129–6131 (2010)CrossRefGoogle Scholar

Copyright information

© Edson Roberto Leite and Caue Ribeiro 2012

Authors and Affiliations

  1. 1.Centro de Ciências Exatas e de TecnologiaUniversidade Federal de São CarlosSão CarlosBrazil
  2. 2.Agropecuária (EMBRAPA)Empresa Brasileira de PesquisaSão CarlosBrazil

Personalised recommendations