Skip to main content

Equidistribution and generalized Mahler measures

  • Chapter
  • First Online:
Number Theory, Analysis and Geometry

Abstract

If K is a number field and \(\varphi: {\mathcal{P}}_{K}^{1}\rightarrow {\mathcal{P}}_{K}^{1}\) is a rational map of degree d > 1, then at each place v of K, one can associate to φ a generalized Mahler measure for polynomials FK[t]. These Mahler measures give rise to a formula for the canonical height h φ(β) of an element \(\beta\in \overline{K}\); this formula generalizes Mahler’s formula for the usual Weil height h(β). In this paper, we use Diophantine approximation to show that the generalized Mahler measure of a polynomial F at a place v can be computed by averaging log | F | v over the periodic points of φ.

Mathematics Subject Classification (2010): Primary 37P30; Secondary 11J68

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P. Autissier, Points entiers sur les surfaces arithmétiques, J. Reine. Angew. Math 531 (2001), 201–235.

    MathSciNet  MATH  Google Scholar 

  2. P. Autissier, Sur une question d’équirépartition de nombres algébriques, C. R. Math. Acad. Sci. Paris 342 (2006), no. 9, 639–641.

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Baker, Transcendental Number Theory, Cambridge University Press, Cambridge, 1975.

    Book  MATH  Google Scholar 

  4. M. Baker, S.-I. Ih, and R. Rumely, A finiteness property of torsion points, Algebra Number Theory 2 (2008), no. 2, 217–248.

    Article  MathSciNet  MATH  Google Scholar 

  5. M. Baker and R. Rumely, Equidistribution of small points, rational dynamics, and potential theory, Ann. Inst. Fourier (Grenoble) 56 (2006), 625–688.

    Article  MathSciNet  MATH  Google Scholar 

  6. to3em____________ , Potential theory and dynamics on the Berkovich projective line, Mathemetical Surveys and Monographs, 159, AMS, 2010.

    Google Scholar 

  7. A. F. Beardon, Iteration of rational functions, Springer-Verlag, New York, 1991.

    Book  MATH  Google Scholar 

  8. V. G. Berkovich, Spectral theory and analytic geometry over nonarchimedean fields, AMS Mathematical Surveys and Monographs, American Mathematical Society, Providence, 1990.

    Google Scholar 

  9. Y. Bilu, Limit distribution of small points on algebraic tori, Duke Math. J. 89 (1997), 465–476.

    Article  MathSciNet  MATH  Google Scholar 

  10. E. Brieskorn and H. Knörrer, Plane algebraic curves, Birkhäuser, Basel, 1986, Translated by J. Stillwell.

    Google Scholar 

  11. H. Brolin, Invariant sets under iteration of rational functions, Ark. Mat. 6 (1965), 103–144.

    Article  MathSciNet  MATH  Google Scholar 

  12. G. S. Call and S. Goldstine, Canonical heights on projective space, J. Number Theory 63 (1997), 211–243.

    Article  MathSciNet  MATH  Google Scholar 

  13. A. Chambert-Loir, Mesures et équidistribution sur les espaces de Berkovich, J. Reine Angew. Math. 595, (2006), 215–235.

    Article  MathSciNet  MATH  Google Scholar 

  14. A. Chambert-Loir and A. Thuillier, Mesures de Mahler et équidistribution logarithmique, Ann. Inst. Fourier (Grenoble) 59 (2009), no. 3, 977–1014.

    Article  MathSciNet  MATH  Google Scholar 

  15. G. S. Call and J. Silverman, Canonical heights on varieties with morphisms, Compositio Math. 89 (1993), 163–205.

    MathSciNet  MATH  Google Scholar 

  16. S. David, Minorations de formes linéaires de logarithmes elliptiques, Mém. Soc. Math. France 62 (1995), 143 pp.

    Google Scholar 

  17. L. DeMarco, Dynamics of rational maps: Lyapunov exponents, bifurcations, and capacity, Math. Ann. 203 (2003), 43–73.

    Article  MathSciNet  Google Scholar 

  18. G. Everest and Bríd Ní Fhlathúin, The elliptic Mahler measure, Math. Proc. Cambridge Philos. Soc. 120 (1996), 13–25.

    Article  MathSciNet  MATH  Google Scholar 

  19. G. Everest and T. Ward, Heights of Polynomials and Entropy in Algebraic Dynamics, Springer-Verlag, New York, 1999.

    MATH  Google Scholar 

  20. A. Freire, A. Lopes, and R. Mañé, An invariant measure for rational maps, Bol. Soc. Brasil. Mat. 14 (1983), no. 1, 45–62.

    Article  MathSciNet  MATH  Google Scholar 

  21. C. Favre and J. Rivera-Letelier, Théorème d’équidistribution de Brolin en dynamique p-adique, C. R. Math. Acad. Sci. Paris 339 (2004), no. 4, 271–276.

    Article  MathSciNet  MATH  Google Scholar 

  22. to3em____________________________________________________ , Équidistribution quantitative des points de petite hauteur sur la droite projective, Math. Ann. 335 (2006), no. 2, 311–361.

    Google Scholar 

  23. S. Lang, Fundamentals of Diophantine geometry, Springer-Verlag, New York, 1983.

    MATH  Google Scholar 

  24. M. Lyubich, Entropy properties of rational endomorphisms of the Riemann sphere, Ergodic Theory Dynam. Systems 3 (1983), 351–385.

    MathSciNet  MATH  Google Scholar 

  25. K. Mahler, An application of Jensen’s formula to polynomials, Mathematika 7 (1960), 98–100.

    Article  MathSciNet  MATH  Google Scholar 

  26. R. Mañé, On the uniqueness of the maximizing measure for rational maps, Bol. Soc. Brasil. Mat. 14 (1983), no. 1, 27–43.

    Article  MathSciNet  MATH  Google Scholar 

  27. R. Mañé, The Hausdorff dimension of invariant probabilities of rational maps, Dynamical Systems, Valparaiso 1986 (R. Bamon, R. Labarca, and J. Palis, eds.), Springer-Verlag, 1988, pp. 86–117.

    Google Scholar 

  28. J. Milnor, Dynamics in one complex variable, Vieweg, Braunschweig, 1999.

    MATH  Google Scholar 

  29. P. Morton and J. H. Silverman, Periodic points, multiplicities, and dynamical units, J. Reine Angew. Math. 461 (1995), 81–122.

    MathSciNet  MATH  Google Scholar 

  30. J. Piñeiro, Mahler formula for morphisms on \({\mathbb{P}}^{n}\), Ph.D. thesis, City University of New York, 2005.

    Google Scholar 

  31. J. Piñeiro, L. Szpiro, and T. Tucker, Mahler measure for dynamical systems on ℙ 1 and intersection theory on a singular arithmetic surface, Geometric methods in algebra and number theory (F. Bogomolov and Y. Tschinkel, eds.), Progress in Mathematics 235, Birkhäuser, 2004, pp. 219–250.

    Google Scholar 

  32. K. F. Roth, Rational approximations to algebraic numbers, Mathematika 2 (1955), 1–20, corrigendum, ibid. 2 (1955), 168.

    Google Scholar 

  33. A. Schinzel, Primitive divisors of the expression a n − b n in algebraic number fields, J. Reine Angew. 268/269 (1974), 27–33, Collection of articles dedicated to Helmut Hasse on his seventy-fifth birthday, II.

    Google Scholar 

  34. C. L. Siegel, Über einige Anwendungen diophantische Approximationen, Abh. Preuss. Akad. Wiss. Phys. Math. Kl. (1929), 41–69.

    Google Scholar 

  35. J. H. Silverman, Integer points, Diophantine approximation, and iteration of rational maps, Duke Math. J. 71 (1993), no. 3, 793–829.

    Article  MathSciNet  MATH  Google Scholar 

  36. L. Szpiro, E. Ullmo, and S. Zhang, Equirépartition des petits points, Invent. Math. 127 (1997), 337–347.

    Article  MathSciNet  MATH  Google Scholar 

  37. A. Thuillier, Théorie de potential sur les courbes en géométrie non archimédienne, applications à la théorie d’arakelov, Ph.D. thesis, Université de Rennes 1, 2006.

    Google Scholar 

Download references

Acknowledgements

We would like to thank M. Baker, A. Chambert-Loir, L. DeMarco, C. Petsche, R. Rumely, and S. Zhang for many helpful conversations. In particular, we thank M. Baker, L. DeMarco, and R. Rumely for suggesting some of the applications mentioned in Section 7. The first author was partially supported by NSF Grant 0071921. The second author was partially supported by NSF Grant 0101636.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Szpiro .

Editor information

Editors and Affiliations

Additional information

Dedicated to the memory of Serge Lang, who taught the world number theory for more than fifty years, through his research, lectures, and books

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Szpiro, L., Tucker, T.J. (2012). Equidistribution and generalized Mahler measures. In: Goldfeld, D., Jorgenson, J., Jones, P., Ramakrishnan, D., Ribet, K., Tate, J. (eds) Number Theory, Analysis and Geometry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1260-1_26

Download citation

Publish with us

Policies and ethics