Skip to main content

Elliptic Eisenstein series for \({PSL}_{2}(\mathbb{Z})\)

  • Chapter
  • First Online:
Number Theory, Analysis and Geometry

Abstract

Let \(\Gamma\subset \mathrm{{ PSL}}_{2}(\mathbb{R})\)be a Fuchsian subgroup of the first kind acting by fractional linear transformations on the upper half-plane \(\mathbb{H}\), and let \(\Gamma \setminus \mathbb{H}\)be the associated finite volume hyperbolic Riemann surface. Associated to any cusp of \(\Gamma \setminus \mathbb{H}\), there is the classically studied non-holomorphic (parabolic) Eisenstein series. In [11], Kudla and Millson studied non-holomorphic (hyperbolic) Eisenstein series associated to any closed geodesic on \(\Gamma \setminus \mathbb{H}\). Finally, in [9], Jorgenson and the first named author introduced so-called elliptic Eisenstein series associated to any elliptic fixed point of \(\Gamma \setminus \mathbb{H}\). In this article, we study elliptic Eisenstein series for the full modular group \(\mathrm{{PSL}}_{2}(\mathbb{Z})\). We explicitly compute the Fourier expansion of the elliptic Eisenstein series and derive from this its meromorphic continuation.

Mathematics Subject Classification (2010): 11F03, 11F30, 11M36, 30F35

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions, Volume I, McGraw-Hill, 1965.

    Google Scholar 

  2. A.F. Beardon, The Geometry of Discrete Groups, Graduate Texts in Mathematics, Springer-Verlag, 1995.

    Google Scholar 

  3. Y. Colin de Verdière, Une nouvelle démonstration du prolongement méromorphe des séries d’Eisenstein, C. R. Acad. Sci. Paris Sér. I Math. 293 (1981), 361–363.

    MATH  Google Scholar 

  4. I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series, and Products, Academic Press, 1980.

    Google Scholar 

  5. H. Huber, Über eine neue Klasse automorpher Funktionen und ein Gitterpunktproblem in der hyperbolischen Ebene. I, Comment. Math. Helv. 30 (1956), 20–62.

    Google Scholar 

  6. H. Iwaniec, Spectral Methods of Automorphic Forms, Graduate Studies in Mathematics, Vol. 53, Amer. Math. Soc., 2002.

    Google Scholar 

  7. J. Jorgenson, J. Kramer, Bounding the sup-norm for automorphic forms, Geom. Funct. Anal. 14 (2004), 1267–1277.

    Article  MathSciNet  Google Scholar 

  8. J. Jorgenson, J. Kramer, Canonical metrics, hyperbolic metrics and Eisenstein series for \({\mathrm{PSL}}_{2}(\mathbb{R})\), unpublished preprint.

    Google Scholar 

  9. J. Jorgenson, J. Kramer, Sup-norm bounds for automorphic forms and Eisenstein series, in Arithmetic Geometry and Automorphic Forms, J. Cogdell et al. (eds.), ALM 19, 407–444, Higher Education Press and International Press, Beijing-Boston, 2011.

    Google Scholar 

  10. J. Jorgenson, C. O’Sullivan, Convolution Dirichlet series and a Kronecker limit formula for second-order Eisenstein series, Nagoya Math. J. 179 (2005), 47–102.

    MathSciNet  MATH  Google Scholar 

  11. S.S. Kudla, J.J. Millson, Harmonic Differentials and Closed Geodesics on a Riemann Surface, Invent. Math. 54 (1979), 193–211.

    Article  MathSciNet  MATH  Google Scholar 

  12. H. Neunhöffer, Über die analytische Fortsetzung von Poincaréreihen, S.-B. Heidelberger Akad. Wiss. Math.-Natur. Kl. (1973), 33–90.

    Google Scholar 

  13. A.-M. v. Pippich, The arithmetic of elliptic Eisenstein series, Ph.D. thesis, Humboldt-Universität zu Berlin (2010).

    Google Scholar 

  14. P. Sarnak, Estimates for Rankin–Selberg L-functions and quantum unique ergodicity, J. Funct. Anal. 184 (2001), 419–453.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to express our thanks to J. Jorgenson for his valuable advice in the course of the write-up of this article. Furthermore, we would like to thank J. Funke, O. Imamoglu, and U. Kühn for helpful discussions. Both authors acknowledge support from the DFG Graduate School Berlin Mathematical Schooland the DFG Research Training Group Arithmetic and Geometry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürg Kramer .

Editor information

Editors and Affiliations

Additional information

To the memory of Serge Lang

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kramer, J., von Pippich, AM. (2012). Elliptic Eisenstein series for \({PSL}_{2}(\mathbb{Z})\) . In: Goldfeld, D., Jorgenson, J., Jones, P., Ramakrishnan, D., Ribet, K., Tate, J. (eds) Number Theory, Analysis and Geometry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1260-1_19

Download citation

Publish with us

Policies and ethics