Skip to main content

Uniform estimates for primitive divisors in elliptic divisibility sequences

  • Chapter
  • First Online:
Number Theory, Analysis and Geometry

Abstract

Let P be a nontorsion rational point on an elliptic curve E, given by a minimal Weierstrass equation, and write the first coordinate of nP as A n D n 2, a fraction in lowest terms. The sequence of values D n is the elliptic divisibility sequence (EDS) associated to P. A prime p is a primitive divisor of D n if p divides D n , and p does not divide any earlier term in the sequence. The Zsigmondy set for P is the set of n such that D n has no primitive divisors. It is known that Z is finite. In the first part of the paper we prove various uniform bounds for the size of the Zsigmondy set, including (1) if the j-invariant of E is integral, then the size of the Zsigmondy set is bounded independently of E and P, and (2) if the abc Conjecture is true, then the size of the Zsigmondy set is bounded independently of E and P for all curves and points. In the second part of the paper, we derive upper bounds for the maximum element in the Zsigmondy set for points on twists of a fixed elliptic curve.

Mathematics Subject Classification (2010): 11G05; Secondary 11B37, 14G25, 14H52

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mohamed Ayad. Points S-entiers des courbes elliptiques. Manuscripta Math., 76(3-4): 305–324, 1992.

    Google Scholar 

  2. Mohamed Ayad. Périodicité (mod q) des suites elliptiques et points S-entiers sur les courbes elliptiques. Ann. Inst. Fourier (Grenoble), 43(3):585–618, 1993.

    Google Scholar 

  3. Ebru Bekyel. The density of elliptic curves having a global minimal Weierstrass equation. J. Number Theory, 109(1):41–58, 2004.

    Google Scholar 

  4. Yu. Bilu, G. Hanrot, and P. M. Voutier. Existence of primitive divisors of Lucas and Lehmer numbers. J. Reine Angew. Math., 539:75–122, 2001. With an appendix by M. Mignotte.

    Google Scholar 

  5. J. Cheon and S. Hahn. Explicit valuations of division polynomials of an elliptic curve. Manuscripta Math., 97(3):319–328, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  6. D. V. Chudnovsky and G. V. Chudnovsky. Sequences of numbers generated by addition in formal groups and new primality and factorization tests. Adv. in Appl. Math., 7(4):385–434, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  7. V. A. Dem’janenko. An estimate of the remainder term in Tate’s formula. Mat. Zametki, 3:271–278, 1968.

    Google Scholar 

  8. Manfred Einsiedler, Graham Everest, and Thomas Ward. Primes in elliptic divisibility sequences. LMS J. Comput. Math., 4:1–13 (electronic), 2001.

    Google Scholar 

  9. Graham Everest and Helen King. Prime powers in elliptic divisibility sequences. Math. Comp., 74(252):2061–2071 (electronic), 2005.

    Google Scholar 

  10. Graham Everest, Gerald Mclaren, and Thomas Ward. Primitive divisors of elliptic divisibility sequences. MR 2220263, 2005; J. Number theory, 118:1, 71–89, 2006.

    Google Scholar 

  11. Graham Everest, Victor Miller, and Nelson Stephens. Primes generated by elliptic curves. Proc. Amer. Math. Soc., 132(4):955–963 (electronic), 2004.

    Google Scholar 

  12. Graham Everest and Igor E. Shparlinski. Prime divisors of sequences associated to elliptic curves. Glasg. Math. J., 47(1):115–122, 2005.

    Google Scholar 

  13. Graham Everest, Alf van der Poorten, Igor Shparlinski, and Thomas Ward. Recurrence sequences, Volume 104, Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2003.

    Google Scholar 

  14. Robert Gross and Joseph Silverman. S-integer points on elliptic curves. Pacific J. Math., 167(2):263–288, 1995.

    Google Scholar 

  15. Marshall Hall, Jr. The Diophantine equation \({x}^{3} - {y}^{2} = k\). In Computers in number theory (Proc. Sci. Res. Council Atlas Sympos. No. 2, Oxford, 1969), pages 173–198. Academic Press, London, 1971.

    Google Scholar 

  16. M. Hindry and J. H. Silverman. The canonical height and integral points on elliptic curves. Invent. Math., 93(2):419–450, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  17. M. Hindry and J. H. Silverman. Diophantine Geometry: An introduction, Vol. 201, Graduate Texts in Mathematics. Springer-Verlag, New York, 2000.

    Google Scholar 

  18. Patrick Ingram. Elliptic divisibility sequences over certain curves. J. Number theorey, 123:2, 473–486, 2007.

    Google Scholar 

  19. Serge Lang. Elliptic curves: Diophantine analysis, volume 231 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1978.

    Google Scholar 

  20. Serge Lang. Conjectured Diophantine estimates on elliptic curves. In Arithmetic and Geometry, Vol. I, Vol. 35, Progr. Math., Birkhäuser Boston, Boston, MA, 1983, 155–171.

    Google Scholar 

  21. A. Schinzel. Primitive divisors of the expression A n − B n in algebraic number fields. J. Reine Angew. Math., 268/269:27–33, 1974. Collection of articles dedicated to Helmut Hasse on his seventy-fifth birthday, II.

    Google Scholar 

  22. Wolfgang M. Schmidt. Diophantine Approximation, Vol. 785, Lecture Notes in Mathematics. Springer, Berlin, 1980.

    MATH  Google Scholar 

  23. Rachel Shipsey. Elliptic divisibility sequences. PhD thesis, Goldsmith’s College (University of London), 2000.

    Google Scholar 

  24. T. N. Shorey and R. Tijdeman. Exponential Diophantine equations, Vol.  87 Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, 1986.

    Book  MATH  Google Scholar 

  25. Joseph H. Silverman. Lower bound for the canonical height on elliptic curves. Duke Math. J., 48(3):633–648, 1981.

    Google Scholar 

  26. Joseph H. Silverman. Weierstrass equations and the minimal discriminant of an elliptic curve. Mathematika, 31(2):245–251 (1985), 1984.

    Google Scholar 

  27. Joseph H. Silverman. The Arithmetic of Elliptic Curves, Vol. 106, Graduate Texts in Mathematics. Springer-Verlag, New York, 1986.

    Google Scholar 

  28. Joseph H. Silverman. A quantitative version of Siegel’s theorem: integral points on elliptic curves and Catalan curves. J. Reine Angew. Math., 378:60–100, 1987.

    Google Scholar 

  29. Joseph H. Silverman. Wieferich’s criterion and the abc-conjecture. J. Number Theory, 30(2):226–237, 1988.

    Google Scholar 

  30. Joseph H. Silverman. The difference between the Weil height and the canonical height on elliptic curves. Math. Comp., 55(192):723–743, 1990.

    Google Scholar 

  31. Joseph H. Silverman. Common divisors of elliptic divisibility sequences over function fields. Manuscripta Math., 114(4):431–446, 2004.

    Google Scholar 

  32. Joseph H. Silverman. p-adic properties of division polynomials and elliptic divisibility sequences. Math. Ann., 332(2):443–471, 2005. Addendum 473–474.

    Google Scholar 

  33. Christine Swart. Elliptic divisibility sequences. PhD thesis, Royal Holloway (University of London), 2003.

    Google Scholar 

  34. Morgan Ward. The law of repetition of primes in an elliptic divisibility sequence. Duke Math. J., 15:941–946, 1948.

    Google Scholar 

  35. Morgan Ward. Memoir on elliptic divisibility sequences. Amer. J. Math., 70:31–74, 1948.

    Google Scholar 

  36. Horst Günter Zimmer. On the difference of the Weil height and the Néron-Tate height. Math. Z., 147(1):35–51, 1976.

    Google Scholar 

  37. K. Zsigmondy. Zur Theorie der Potenzreste. Monatsh. Math., 3:265–284, 1892.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph H. Silverman .

Editor information

Editors and Affiliations

Additional information

Dedicated to the memory of Serge Lang

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ingram, P., Silverman, J.H. (2012). Uniform estimates for primitive divisors in elliptic divisibility sequences. In: Goldfeld, D., Jorgenson, J., Jones, P., Ramakrishnan, D., Ribet, K., Tate, J. (eds) Number Theory, Analysis and Geometry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1260-1_12

Download citation

Publish with us

Policies and ethics