Skip to main content

Recent Developments in the Interactions Between Caveolin and Pathogens

  • Chapter
Caveolins and Caveolae

Abstract

The role of caveolin and caveolae in the pathogenesis of infection has only recently been appreciated. In this chapter, we have highlighted some important new data on the role of caveolin in infections due to bacteria, viruses and fungi but with particular emphasis on the protozoan parasites Leishmania spp., Trypanosoma cruzi and Toxoplasma gondii. This is a continuing area of research and the final chapter has not been written on this topic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Duncan MJ, Shin J-S, Abraham SN. Microbial entry through caveolae: variations on a theme. Cellular Microbiol 2002; 4:783–781.

    CAS  Google Scholar 

  2. Cohen AW, Hnasko R, Schubert W et al. Role of caveolae and caveolins in health and disease. Physiol Rev 2004; 84:1341–1379.

    PubMed  CAS  Google Scholar 

  3. Suzuki T, Suzuki Y. Viral infection and lipid rafts. Biol Pharmacol Bull 2006; 29:1538–1541.

    CAS  Google Scholar 

  4. Zaas D, Swan Z, Brown BJ et al. The expanding role of caveolin proteins in microbial pathogenesis. Commun Integr Biol 2009; 2:535–537.

    PubMed  Google Scholar 

  5. Shin JS, Abraham SN. Caveolae as portals of entry for microbes. 2001; Microbes Inf 3:755–761.

    Google Scholar 

  6. Li J, Scherl A, Medina F et al. Impaired phagocytosis in caveolin-1 deficient macrophages. Cell Cycle 2005; 4:1599–607.

    PubMed  CAS  Google Scholar 

  7. Medina FA, Williams TM, Sotgia F et al. A novel role for caveolin-1 in B lymphocyte function and the development of thymus-independent immune responses. Cell Cycle 2006; 5:1865–1871.

    PubMed  CAS  Google Scholar 

  8. Pelkmans L, Kartenbeck J, Helenius A. Caveolar endocytosis of simian virus 40 reveals a new two-step vesiculartransport pathway to the ER. Nat Cell Biol 2001; 3:473–483.

    PubMed  CAS  Google Scholar 

  9. Norkin LC, Anderson HA, Wolfrom SA et al. Caveolar endocytosis of simian virus 40 is followed by brefeldin A-sensitive transport to the endoplasmic reticulum, where the virus disassembles. J Virol 2002; 76:5156–5166.

    PubMed  CAS  Google Scholar 

  10. Hawkins BT, Davis TP. The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev 2005; 57:173–185.

    PubMed  CAS  Google Scholar 

  11. Abbott NJ, Rönnbäck L, Hansson E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rv Neurosci 2006; 7:41–53.

    CAS  Google Scholar 

  12. Weiss JM, Nath A, Major EO et al. HIV-1 Tat induces monocyte chemoattractant protein-1 mediated monocyte trans migration across a model of the human blood brain barrier and upregulates CCR5 expression on human monocytes. J Immunol 1999; 163:2953–2959.

    PubMed  CAS  Google Scholar 

  13. Zhong Y, Smaet EJ, Weksler B et al. Caveolin-1 regulates HIV-1 Tat—induced alterations of tight junction protein expression via modulation of the RAS signaling. J Neurosci 2008; 28:7788–7796.

    PubMed  CAS  Google Scholar 

  14. Munoz N, Castellsague X, de Gonzalez AB et al. Chapter 1: HPV in the etiology of human cancer. Vaccine 2006; 24S3:S1–S10.

    Google Scholar 

  15. Baker TS, Newcomb WW, Olson NH et al. Structures of bovine and human papillomaviruses. Analysis by cryoelectron microscopy and three-dimensional image reconstruction. Biophys J 1991; 60:1445–1456.

    PubMed  CAS  Google Scholar 

  16. Richards RM, Lowy DR, Schiller JT et al. Cleavage of the papillomavirus minor capsid protein, L2, at a furin consensus site is necessary for infection. Proc Natl Acad Sci USA 2006; 103:1522–1527.

    PubMed  CAS  Google Scholar 

  17. Kines RC, Thompson CD, Lowy DR et al. The initial steps leading to papillomavirus infection occur on the basement membrane prior to cell surface binding. Proc Natl Acad Sci USA 2009; 106:20458–20463.

    PubMed  CAS  Google Scholar 

  18. Bousarghin L, Touze A, Sizaret PY et al. Human papillomavirus types 16, 31 and 58 use different endocytosis pathways to enter cells. J Virol 2003; 77:3846–3850.

    PubMed  CAS  Google Scholar 

  19. Day PM, Lowy DR, Schiller JT. Papillomaviruses infect cells via a clathrin-dependent pathway. Virology 2003; 307:1–11.

    PubMed  CAS  Google Scholar 

  20. Hindmarsh PL, Laimins LA. Mechanisms regulating expression of the HPV 31 L1 and L2 capsid proteins and pseudovirion entry. Virol J 2007; 4:19.

    PubMed  Google Scholar 

  21. Selinka HC, Giroglou T, Sapp M. Analysis of the infectious entry pathway of human papillomavirus type 33 pseudovirions. Virology 2002; 299:279–287.

    PubMed  CAS  Google Scholar 

  22. Smith J L, Campos SK, Ozbun MA. Human papillomavirus type 31 uses a caveolin 1-and dynamin 2-mediated entry pathway for infection of human keratinocytes. J Virol 2007; 81:9922–9931.

    PubMed  CAS  Google Scholar 

  23. Spoden G, Freitag K, Husmann et al. Clathrin-and caveolin-interdependent entry of human papillomavirus type16-involvement of tetraspanin-enriched microdomains (TEMs). Plos One 2008; 3:e3313.

    PubMed  Google Scholar 

  24. Yan M, Peng J, Jabbar IA et al. Despitedifferences between dendritic and Langerhans cells in the mechanism of papillomavirus-like particle antigen update, both cells cross-prime T-cells. Virology 2004; 324:297–310.

    PubMed  CAS  Google Scholar 

  25. Querbes W, O’Hara BA, Williams G et al. Invasion of host cells by JC virus identifies a novel role for caveolae in endosomal sorting of noncaveolar ligands. J Virol 2006; 80:9402–9413.

    PubMed  CAS  Google Scholar 

  26. Laniosz V, Dabydeen SA, Havens MA et al. Human papillomavirus type 16 infection of human keratinocytes requires clathrin and caveolin-1 and is brefeldin a sensitive. J Virol 2009; 83:8221–32.

    PubMed  CAS  Google Scholar 

  27. Laniosz V, Holthusen KA, Meneses PI. Bovine papillomavirus type 1: from clathrin to caveolin. J Virol 2008; 82:6288–6298.

    PubMed  CAS  Google Scholar 

  28. Smith JL, Campos SK, Wandinger-Ness A. Ozbun. Caveolin-1-dependent infectious entry of human papillomavirus type 31 in human keratinocytes proceeds to the endosomal pathway for pH-dependent uncoating. J Virol 2008; 82:9505–9512.

    PubMed  CAS  Google Scholar 

  29. Duncan MJ, Li G, Shin JS et al. Bacterial penetration of bladder epithelium through lipid rafts. J Biol Chem 2004; 279:18944–18951.

    PubMed  CAS  Google Scholar 

  30. Watson RO, Galán JE. Campylobacter jejuni survives within epithelial cells by avoiding delivery to lysosomes. PLoS Pathog 2008; 4:e14.

    PubMed  Google Scholar 

  31. Garrean S, Gao XP, Brovkovych V et al. Caveolin-1 regulates NF-kappaB activation and lung inflammatory response to sepsis induced by lipopolysaccharide. J Immunol 2006; 177:4853–4860.

    PubMed  CAS  Google Scholar 

  32. Medina FA, de Almeida CJ, Dew E et al. Caveolin-1-deficient mice show defects in innate immunity and inflammatory immune response during Salmonella enterica serovar Typhimurium infection. Infect Immun 2006; 74:6665–6674.

    PubMed  CAS  Google Scholar 

  33. Lyczak JB, Cannon CL, Pier GB et al. Lung infections associated with cystic fibrosis. Clin Microbiol rev 2002; 15:194–222.

    PubMed  CAS  Google Scholar 

  34. Zeitlin PI. Pseudomonas aeruginosa: can studies in engineered cells tell us why is it such a problem in people with cystic fibrosis? Focus on “Cystic fibrosis transmembrane conductance regulator and caveolin-1 regulate epithelial cell internalization of Pseudomonas aeruginosa” Am J Physiol Cell Physiol 2009; 297:C235–C237.

    PubMed  CAS  Google Scholar 

  35. Kowalski MP, Pier G. Localization of cystic fibrosis transmembrane conductance regulator to lipid rafts of epithelial cells is required for Pseudomonas aeruginosa-induced cellular activation. J Immunol 2004; 172:418–425.

    PubMed  CAS  Google Scholar 

  36. Grassmé H, Becker KA, Zhang Y et al. Ceramide in bacterial infections and cystic fibrosis. Biol Chem 2008; 389:1371–1379.

    PubMed  Google Scholar 

  37. Grassmé H, Becker KA, Zhang Y et al. Ceramide in Pseudomonas aeruginosa infections and cystic fibrosis. Cell Physiol Biochem 2010; 26:57–66.

    PubMed  Google Scholar 

  38. Pier GB, Grout M, Zaidi TS. Cystic fibrosis transmembrane conductance regulator is an epithelial cell receptor for clearance of Pseudomonas aeruginosa from the lung. Proc Natl Acad Sci USA 1997; 94:12088–12093.

    PubMed  CAS  Google Scholar 

  39. Abraham SN, Duncan MJ, Li G et al. Bacterial penetration of the mucosal barrier by targeting lipid rafts. J Investig Med 2005; 53:318–321.

    PubMed  CAS  Google Scholar 

  40. Bajmoczi M, Gadjeva M, Alper SL et al. Cystic fibrosis transmembrane conductance regulator and caveolin-1 regulate epithelial cell internalization of Pseudomonas aeruginosa. Am J Physiol Cell Physiol 2009; 297:C263–277.

    PubMed  CAS  Google Scholar 

  41. Gadjeva M, Paradis-Bleau C, Priebe GP et al. Caveolin-1 modifies the immunity to Pseudomonas aeruginosa. J Immunol 2010; 184:296–302.

    PubMed  CAS  Google Scholar 

  42. Alvar J, Aparicio P, Aseffa A et al. The relationship between Leishmaniasis and AIDS: the second 10 years. Clin microbial Rev 2008; 21:334–359.

    CAS  Google Scholar 

  43. McConville M J, Turco SJ, Ferguson MA et al. Developmental modification of lipophosphoglycan during the differentiation of Leishmania major promastigotes to an infectious stage. EMBO J 1992; 11:3593–3600.

    PubMed  CAS  Google Scholar 

  44. Sacks DL, Pimenta PF, McConville MJ et al. Stage-specific binding of Leishmania donovani to the sand fly vector midgut is regulated by conformational changes in the abundant surface lipophosphoglycan. J Exp Med 1995; 181:685–697.

    PubMed  CAS  Google Scholar 

  45. Yao C, Chen Y, Sudan B et al. Leishmania chagasi: homogenous metacyclic promastigotes isolated by buoyant density are highly virulent in a mouse model. Exp Parasitol 2008; 118:129–133.

    PubMed  CAS  Google Scholar 

  46. Bogdan C, Rollinghoff M. How do protozoan parasites survive inside macrophages? Parasitol Today 1999; 15:22–28.

    PubMed  CAS  Google Scholar 

  47. Galvao-Quintao L, Alfieri SC, Ryter A. Intracellular differentiation of Leishmania amazonensis promastigotes to amastigotes: presence of megasomes, cysteine proteinase activity and susceptibility to leucine-methyl ester. Parasitology 1990; 101 Pt 1:7–13.

    PubMed  CAS  Google Scholar 

  48. Wilson M E, Innes DJ, Sousa AD. Early histopathology of experimental infection with Leishmania donovani in hamsters. J Parasitol 1987; 73:55–63.

    PubMed  CAS  Google Scholar 

  49. Barral A, Barral-Netto M, Yong EC et al. Transforming growth factor β as a virulence mechanism for Leishmania braziliensis. Proc Natl Acad Sci USA 1993; 90:3442–3446.

    PubMed  CAS  Google Scholar 

  50. Channon JY, Roberts MB, Blackwell JM. A study of the differential respiratory burst activity elicited by promastigotes and amastigotes of Leishmania donovani in murine resident peritoneal macrophages. Immunology 1984; 53:345–355.

    PubMed  CAS  Google Scholar 

  51. Gantt KR, Schultz-Cherry S, Rodriguez N et al. Activation of TGF-β by Leishmania chagasi: importance for parasite survival in macrophages. J Immunol 2003; 70:2613–2620.

    Google Scholar 

  52. Meier CL, Svensson M, Kaye PM. Leishmania-induced inhibition of macrophage antigen presentation analyzed at the single-cell level. J Immunol 2003; 171:6706–6713.

    PubMed  CAS  Google Scholar 

  53. Nandan D, Lo R, Reiner NE. Activation of phosphotyrosine phosphatase activity attenuates mitogen-activated protein kinase signaling and inhibits c-FOS and nitric oxide synthase expression in macrophages infected with Leishmania donovani. Infect Immun 1999; 67:4055–4063.

    PubMed  CAS  Google Scholar 

  54. Pearson RD, Harcus JL, Roberts D et al. Differential survival of Leishmania donovani amastigotes in human monocytes. J Immunol 1983; 131:1994–1999.

    PubMed  CAS  Google Scholar 

  55. Gordon S. Alternative activation of macrophages. Nat Rev Immunol 2003; 3:23–35.

    PubMed  CAS  Google Scholar 

  56. Martinez FO, Sica A, Mantovani A et al. Macrophage activation and polarization. Front Biosci 2008; 13:453–461.

    PubMed  CAS  Google Scholar 

  57. Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol 2008; 8:958–969.

    PubMed  CAS  Google Scholar 

  58. Rodriguez NE, Chang HK, Wilson ME. Novel program of macrophage gene expression induced by phagocytosis of Leishmania chagasi. Infect Immun 2004; 72:2111–2122.

    PubMed  CAS  Google Scholar 

  59. Rodriguez NE, Gaur U, Wilson ME. Role of caveolae in Leishmania chagasi phagocytosis and intracellular survival in macrophages. Cell Microbiol 2006; 8:1106–1120.

    PubMed  CAS  Google Scholar 

  60. Naroeni A, Porte F. Role of cholesterol and the ganglioside GM(1) in entry and short-term survival of Brucella suis in murine macrophages. Infect Immun 2002; 70:1640–1644.

    PubMed  CAS  Google Scholar 

  61. Rohde M, Muller E, Chhatwal GS et al. Host cell caveolae act as an entry-port for group A streptococci. Cell Microbiol 2003; 5:323–342.

    PubMed  CAS  Google Scholar 

  62. Brittingham A, Chen G, McGwire BS et al. Interaction of Leishmania gp63 with cellular receptors for fibronectin. Infect Immun 1999; 67:4477–4484.

    PubMed  CAS  Google Scholar 

  63. Harris J, Werling D, Hope JC et al. Caveolae and caveolin in immune cells: distribution and functions. Trends Immunol 2002; 23:158–164.

    PubMed  CAS  Google Scholar 

  64. Wilson ME, Pearson RD. Roles of CR3 and mannose receptors in the attachment and ingestion of Leishmania donovani by human mononuclear phagocytes. Infect Immun 1988; 56:363–369.

    PubMed  CAS  Google Scholar 

  65. Wozencraft AO, Blackwell JM. Increased infectivity of stationary-phase promastigotes of Leishmania donovani: correlation with enhanced C3 binding capacity and CR3-mediated attachment to host macrophages. Immunology 1987; 60:559–563.

    PubMed  CAS  Google Scholar 

  66. Ueno N, Bratt CL, Rodriguez NE et al. Differences in human macrophage receptor usage, lysosomal fusion kinetics and survival between logarithmic and metacyclic Leishmania infantum chagasi promastigotes. Cell Microbiol 2009; 11:1827–1841.

    PubMed  CAS  Google Scholar 

  67. Kima PE. The amastigote forms of Leishmania are experts at exploiting host cell processes to establish infection and persist. Int J Parasitol 2007; 37:1087–1096.

    PubMed  CAS  Google Scholar 

  68. McConville MJ, de Souza D, Saunders E et al. Living in a phagolysosome; metabolism of Leishmania amastigotes. Trends Parasitol 2007; 23:368–375.

    PubMed  CAS  Google Scholar 

  69. Naderer T, McConville MJ. The Leishmania-macrophage interaction: a metabolic perspective. Cell Microbiol 2008; 10:301–308.

    PubMed  CAS  Google Scholar 

  70. Tanowitz HB, Machado FS, Jelicks LA et al. Perspectives on Trypanosoma cruzi-induced heart disease (Chagas disease). Prog Cardiovasc Dis 2009; 51:524–539.

    PubMed  Google Scholar 

  71. Vaidian AK, Weiss LM, Tanowitz HB. Chagas’ disease and AIDS. Kinetoplastid Biol Dis 2004; 13;3(1):2.

    PubMed  Google Scholar 

  72. Sartori AM, Ibrahim KY, Nunes Westphalen EV et al. Manifestations of Chagas disease (American trypanosomiasis) in patients with HIV/AIDS. Ann Trop Med Parasitol 2007; 101(1):31–50.

    PubMed  CAS  Google Scholar 

  73. Huang H, Chan J, Wittner M et al. Expression of cardiac cytokines and inducible form of nitric oxide synthase (NOS2) in Trypanosoma cruzi-infected mice. J Mol Cell Cardiol 1999; 31:75–88.

    PubMed  CAS  Google Scholar 

  74. Machado FS, Souto JT, Rossi MA et al. Nitric oxide synthase-2 modulates chemokine production by Trypanosoma cruzi-infected cardiac myocytes. Microbes Infect 2008; 10:1558–1566.

    PubMed  CAS  Google Scholar 

  75. Hulit J, Bash T, Fu M et al. The cyclin D1 gene is transcriptionally repressed by caveolin-1. J Biol Chem 2000; 275:21203–21209.

    PubMed  CAS  Google Scholar 

  76. Cohen AW, Park DS, Woodman SE et al. Caveolin-1 null mice develop cardiac hypertrophy with hyperactivation of p42/44 MAP kinase in cardiac fibroblasts. Am J Physiol Cell Physiol 2003; 284:C457–474.

    Google Scholar 

  77. Park DA, Woodman SE, Schubert W et al. Caveoilin-1/3 double knockout mice are viable, but lack both muscle and nonmuscle caveolae and develop a severe cardiomyopathic phenotype. Am J Pathol 2002; 160:2207–2217.

    PubMed  CAS  Google Scholar 

  78. Woodman, SE, Park DS, Cohen AW et al. Caveolin-3 Knock-out Mice Develop a Progressive Cardiomyopathy and Show Hyper-activation of the p42/44 MAP kinase cascade. J Biol Chem 2002; 277:38988–38997.

    PubMed  CAS  Google Scholar 

  79. Nagajyothi F, Desruisseaux M, Bouzahzah B et al. Cyclin and caveolin expression in an acute model of murine Chagasic myocarditis. Cell Cycle 2006; 5:107–112.

    PubMed  CAS  Google Scholar 

  80. Huang H, Petkova SB, Cohen AW et al. Activation of Transcription factors (AP-1 and NF-κB) in Murine Chagasic Myocarditis. Activation of transcription factors AP-1 and NF-κB in murine Chagasic myocarditis. Infect Immun 2003;71:2859–2567.

    PubMed  CAS  Google Scholar 

  81. Adesse D, Lisanti MP, Spray DC et al. Trypanosoma cruzi infection results in the reduced expression of caveolin-3 in the heart. Cell Cycle 2010; 9:1639–1649.

    PubMed  CAS  Google Scholar 

  82. Hassan GS, Mukherjee S, Nagajyothi F et al. Trypanosoma cruzi infection induces proliferation of vascular smooth muscle cells. Infect Immun 2006; 74:152–159.

    PubMed  CAS  Google Scholar 

  83. Mukherjee S, Huang H, Petkova SB et al. Trypanosoma cruzi infection activates extracellular signal-regulated kinase in cultured endothelial and smooth muscle cells. Infect Immun 2004; 72:5274–5282.

    PubMed  CAS  Google Scholar 

  84. Medina FA, Cohen AW, de Almeida CJ et al. Immune dysfunction in caveolin-1 null mice following infection with Trypanosoma cruzi (Tulahuen strain). Microbes Infect 2007; 9:325–333.

    PubMed  CAS  Google Scholar 

  85. Barrias ES, Dutra JM, De Souza W et al. Participation of macrophage membrane rafts in Trypanosoma cruzi invasion process. Biochem Biophys Res Commun 2007; 363:828–834.

    PubMed  CAS  Google Scholar 

  86. Toxoplasma gondii. The Model Apicomplexan: Perspectives and Methods. Weiss LM, Kim K, eds. London: Academic Press, 2007.

    Google Scholar 

  87. Wong SY, Remington JS. Biology of Toxoplasma gondii. AIDS 1993; 7(3):299–316.

    PubMed  CAS  Google Scholar 

  88. Luft BJ, Hafner R, Korzun AH et al. Toxoplasmic encephalitis in patients with the acquired immunodeficiency syndrome. N Engl J Med 1993; 329:995–1000.

    PubMed  CAS  Google Scholar 

  89. Frenkel JK, Escajadillo A. Cyst ruptureas a pathogenic mechanismof toxoplasmic encephalitis. Am J Trop Med Hyg 1987; 36:517–522.

    PubMed  CAS  Google Scholar 

  90. Ferguson DJ, Hutchison WM, Pettersen E. Tissue cyst rupture in mice chronically infected with Toxoplasma gondii. An immunocytochemical and ultrastructural study. Parasitol Res 1989; 75:599–603.

    PubMed  CAS  Google Scholar 

  91. Weiss LM, Kim K. The development and biology of bradyzoites of Toxoplasma gondii. Front Biosci 2000; 5:D391–405.

    Google Scholar 

  92. Dubey JP. Advances in the life cycle of Toxoplasma gondii. Int J Parasitol 1998; 28:1019–1024.

    PubMed  CAS  Google Scholar 

  93. Dubey JP, Lindsay DS, Speer CA. Structures of Toxoplasma gondii tachyzoites, bradyzoites and sporozoites and biology and development of tissue cysts. Clin Microbiol Rev 1998; 11:267–99.

    PubMed  CAS  Google Scholar 

  94. Joiner KA, Fuhrman SA, Mietinnen H et al. Toxoplasma gondii: fusion competence of parasitophorous vacuoles in Fc receptor transfected fibroblasts. Science 1990; 249:641–646.

    PubMed  CAS  Google Scholar 

  95. Dobrowolski JM, Sibley LD. Toxoplasma invasion of mammalian cells is powered by the actin cytoskeleton of the parasite. Cell 1996; 84:933–939.

    PubMed  CAS  Google Scholar 

  96. Dobrowolsk, JM, Carruthers VB, Sibley LD. Participation of myosin in gliding motility and host cell invasion by Toxoplasma gondii. Mol Microbiol 1997; 26:163–173.

    Google Scholar 

  97. Dubremetz JF, Achbarou A, Bermudes D et al. Kinetics and pattern of organelle exocytosis during Toxoplasma gondii/host-cell interaction. Parasitol Res 1993; 79:402–408.

    PubMed  CAS  Google Scholar 

  98. Carruthers VB, Sibley LD. Sequential protein secretion from three distinct organelles of Toxoplasma gondii accompanies invasion of human fibroblasts. Eur J Cell Bio 1997; 73:114–123.

    CAS  Google Scholar 

  99. Norkin LC. Caveolae in the uptake and targeting of infectious agents and secreted toxins. Adv Drug Deliv Rev 2001; 49:301–315.

    PubMed  CAS  Google Scholar 

  100. Samuel BU, Mohandas N, Harrison T et al. The role of cholesterol and glycosylphosphatidylinositolanchored proteins of erythrocyte rafts in regulating raft protein content and malarial infection. J Biol Chem 2001; 276, 29319–29329.

    PubMed  CAS  Google Scholar 

  101. Coppens I, Sinai AP, Joiner KA. Toxoplasma gondii exploits host lowdensity lipoprotein receptor-mediated endocytosis for cholesterol acquisition. J Cell Biol 2000; 149:167–180.

    PubMed  CAS  Google Scholar 

  102. Charron AJ, Sibley LD. Host cells: mobilizable lipid resources for the intracellular parasite Toxoplasma gondii. J Cell Sci 2002; 115:3049–3059.

    PubMed  CAS  Google Scholar 

  103. Chang WJ, Rothberg KG, Kamen BA et al. Lowering the cholesterol content of MA104 cells inhibits receptor-mediated transport of folate. J Cell Biol 1992; 118:63–69.

    PubMed  CAS  Google Scholar 

  104. Sleat DE, Wiseman JA, El-Banna M et al. Genetic evidence for nonredundant functional cooperativity between NPC1 and NPC2 in lipid transport. Proc Natl Acad Sci USA 2004; 101:5886–5891.

    PubMed  CAS  Google Scholar 

  105. Ikonen E, Heino S, Lusa S. Caveolins and membrane cholesterol. Biochem Soc Trans 2004; 32:121–123.

    PubMed  CAS  Google Scholar 

  106. Coppens I, Vielemeyer O. Insights into unique physiological features of neutral lipids in Apicomplexa: from storage to potential mediation in parasite metabolic activities. Int J Parasitol 2005; 35:5.

    Google Scholar 

  107. Sehgal A, Bettio S, Pypaert M et al. Peculiarities of host cholesterol transport to the unique intracellular vacuole containing Toxoplasma. Traffic 2005; 6:1125–1141. 97–615.

    PubMed  CAS  Google Scholar 

  108. Que X, Ngo H, Lawton J et al. The cathepsin B of Toxoplasma gondii, toxopain-1, is critical for parasite invasion and rhoptry protein processing. J Biol Chem 2002; 277:25791–25797.

    PubMed  CAS  Google Scholar 

  109. Hoppe H, Ngo HM, Yang M. Targeting to rhoptry organelles of Toxoplasma gondii involves evolutionarily plconserved mechanisms. Nat Cell Biol 2001; 2:449–456.

    Google Scholar 

  110. Nichols BA, Chiappino ML, O’Connor GR. Secretion from the rhoptries of Toxoplasma gondii during host-cell invasion. J Ultrastruct Res 1983; 83:85–98.

    PubMed  CAS  Google Scholar 

  111. Porchet-Hennere E, Torpier G. Relations entre Toxoplasma et sa cellule-hote. Protistologica 1983; 19:357–370.

    Google Scholar 

  112. Foussard F, Leriche MA, Dubremetz JF. Characterization of the lipid content of Toxoplasma gondii rhoptries. Parasitology 1992; 102;367–370.

    Google Scholar 

  113. Coppens I, Joiner KA. Host but not parasite cholesterol controls Toxoplasma cell entry by modulating organelle discharge. Mol Biol Cell 2003; 14:3804–3820.

    PubMed  CAS  Google Scholar 

  114. Suss-Toby E, Zimmerberg J, Ward GE. Toxoplasma invasion: the parasitophorous vacuole is formed from host cell plasma membrane and pinches off via a fission pore. Proc Natl Acad Sci USA 1996; 93:8413–8418.

    PubMed  CAS  Google Scholar 

  115. Mordue DG, Desai N, Dustin M et al. Invasion by Toxoplasma gondii establishes a moving junction that selectively excludes host cell plasma membrane proteins on the basis of their membrane anchoring. J Exp Med 1999; 190:1783–1792.

    PubMed  CAS  Google Scholar 

  116. Mordue DG, Hakansson S Niesman I et al. Toxoplasma gondii resides in a vacuole that avoids fusion with host cell endocytic and exocytic vesicular trafficking pathways. Exp Parasitol 1999; 92:87–99.

    PubMed  CAS  Google Scholar 

  117. Ward GE, Miller LH, Dvorak JA. The origin of parasitophorous vacuole membrane lipids in malaria-infected erythrocytes. J Cell Sci 1993;106:237–248.

    PubMed  CAS  Google Scholar 

  118. Aikawa M, Komata Y, Asai T et al. Transmission and scanning electron microscopy of host cell entry by Toxoplasma gondii. Am J Pathol 1977; 87:285–296.

    PubMed  CAS  Google Scholar 

  119. Bannister LH, Mitchell GH, Butcher GA et al. Lamellar membranes associated with rhoptries in erythrocytic merozoites of Plasmodium knowlesi: a clue to the mechanism of invasion. Parasitology 1986; 92:291–303.

    PubMed  Google Scholar 

  120. Beckers CJ, Dubremetz JF, Mercereau-Puijalon O et al. The Toxoplasma gondii rhoptry protein ROP 2 is inserted into the parasitophorous vacuole membrane, surrounding the intracellular parasite and is exposed to the host cell cytoplasm. J Cell Biol 1984; 127:947–961.

    Google Scholar 

  121. Hakansson S, Charron AJ, Sibley LD. Toxoplasma vacuoles: a two-step process of secretion and fusion forms the parasitophorous vacuole. EMBO J 2001; 20:3132–3144.

    Google Scholar 

  122. Lisanti MP, Scherer PE, Vidugiriene J et al. Characterization of caveolin-rich membrane domains isolated from an endothelial-rich source: implications for human disease. J Cell Bio 1994; 126:111–126.

    CAS  Google Scholar 

  123. Sargiacomo M, Sudol M, Tang ZL et al. Signal transducing molecules and GPI-linked proteins form a caveolin-rich insoluble complex in MDCK cells. J Cell Biol 1993; 122:789–807.

    PubMed  CAS  Google Scholar 

  124. Li S, Okamoto T, Chun M et al. Evidence for a regulated interaction of hetero-trimeric G proteins with caveolin. J Biol Chem 1995; 270:15693–15701.

    PubMed  CAS  Google Scholar 

  125. Wachtler V, Balasubramanian MK.Yeast lipid rafts?—an emerging view. Rends Cell Biol 2006; 6:1–4.

    Google Scholar 

  126. Aliberti J, Reis e Sousa C, Schito M et al. CCR5 provides a signal for microbial induced production of IL-12 by CD8α+ dendritic cells. Nat Immunol 2000; 1:83–87.

    PubMed  CAS  Google Scholar 

  127. Mazza PK, Straus AH, Toledo MS et al. Interaction of epithelial cell membrane rafts with Paracoccidioides brasiliensis leads to fungal adhesion and Src-family kinase activation. Microbes Infect 2008; 10:540–547.

    Google Scholar 

  128. Settnes OP, Nielsen MJ. Host-parasite relationship in Pneumocystis carinii infection: activation of the plasmalemmal vesicular system in type I alveolar epithelial cells. J Protozool 1991; 38:174S–176S.

    PubMed  CAS  Google Scholar 

  129. Iwabuchi K, Prinetti A, Sonnino S et al. Involvement of very long fatty acid-containing lactosylceramide in lactosylceramide-mediated superoxide generation and migration in neutrophils. Glycoconj J 2008; 25:357–374.

    PubMed  CAS  Google Scholar 

  130. Sato T, Iwabuchi K, Nagaoka I et al. Induction of human neutrophil chemotaxis by Candida albicans-derived β-1,6-long glycoside side-chain-branched β-glucan. J Leukoc Biol 2006; 80:204–211.

    PubMed  CAS  Google Scholar 

  131. Beck MR, Dekoster GT, Cistola DP et al. NMR structure of a fungal virulence factor reveals structural homology with mammalian saposin B. Mol Microbiol 2009; 72:344–353.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fabiana S. Machado or Herbert B. Tanowitz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Machado, F.S. et al. (2012). Recent Developments in the Interactions Between Caveolin and Pathogens. In: Jasmin, JF., Frank, P.G., Lisanti, M.P. (eds) Caveolins and Caveolae. Advances in Experimental Medicine and Biology, vol 729. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1222-9_5

Download citation

Publish with us

Policies and ethics