Advertisement

Regulation of eNOS in Caveolae

  • Chieko Mineo
  • Philip W. Shaul
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 729)

Abstract

Caveolae are a specialized subset of lipid domains that are prevalent on the plasma membrane of endothelial cells. They compartmentalize signal transduction molecules which regulate multiple endothelial functions including the production of nitric oxide (NO) by the caveolae resident enzyme endothelial NO synthase (eNOS). eNOS is one of the three isoforms of the NOS enzyme which generates NO upon the conversion of L-arginine to L-citrulline and it is regulated by multiple mechanisms. Caveolin negatively impact eNOS activity through direct interaction with the enzyme. Circulating factors known to modify cardiovascular disease risk also influence the activity of the enzyme. In particular, high density lipoprotein cholesterol (HDL) maintains the lipid environment in caveolae, thereby promoting the retention and function of eNOS in the domain and it also causes direct activation of eNOS via scavenger receptor class B, Type I (SR-BI)-induced kinase signaling. Estrogen binding to estrogen receptors (ER) in caveolae also activates eNOS and this occurs through G protein coupling and kinase activation. Discrete domains within SR-BI and ER mediating signal initiation in caveolae have been identified. Counteracting the promodulatory actions of HDL and estrogen, C-reactive protein (CRP) antagonizes eNOS through FcγRIIB, which is the sole inhibitory receptor for IgG. Through their actions on eNOS, estrogen and CRP also regulate endothelial cell growth and migration. Thus, signaling events in caveolae invoked by known circulating cardiovascular disease risk factors have major impact on eNOS and endothelial cell phenotypes of importance to cardiovascular health and disease.

Keywords

Nitric Oxide High Density Lipoprotein Endothelial Cell Growth Scavenger Receptor Class Human Monocytic Cell Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Flavahan NA. Atherosclerosis or lipoprotein-induced endothelial dysfunction. Potential mechanisms underlying reduction in EDRF/nitric oxide activity. Circulation 1992; 85(5):1927–1938.PubMedGoogle Scholar
  2. 2.
    Harrison DG. Endothelial dysfunction in atherosclerosis. Basic Res Cardiol 1994; 89 Suppl 1:87–102.PubMedGoogle Scholar
  3. 3.
    Vane JR, Anggard EE, Botting RM. Regulatory functions of the vascular endothelium. N Engl J Med 1990; 323(1):27–36.PubMedCrossRefGoogle Scholar
  4. 4.
    Vane JR, Botting RM. Formation by the endothelium of prostacyclin, nitric oxide and endothelin. J Lipid Mediat 1993; 6(1–3):395–404.PubMedGoogle Scholar
  5. 5.
    Moncada S, Higgs A. The L-arginine-nitric oxide pathway. N Engl J Med 1993; 329(27):2002–2012.PubMedCrossRefGoogle Scholar
  6. 6.
    Nathan C, Xie QW. Regulation of biosynthesis of nitric oxide. J Biol Chem 1994; 269:13725–13728.PubMedGoogle Scholar
  7. 7.
    Bredt DS, Snyder SH. Nitric oxide: a physiologic messenger molecule. Annu Rev Biochem 1994; 63:175–195.PubMedCrossRefGoogle Scholar
  8. 8.
    Mineo C, Deguchi H, Griffin JH, Shaul PW. Endothelial and antithrombotic actions of HDL. Circ Res 2006; 98(11):1352–1364.PubMedCrossRefGoogle Scholar
  9. 9.
    Shaul PW. Regulation of endothelial nitric oxide synthase: location, location, location. Annu Rev Physiol 2002; 64:749–774.PubMedCrossRefGoogle Scholar
  10. 10.
    Fulton D, Gratton JP, Sessa WC. Post-translational control of endothelial nitric oxide synthase: why isn’t calcium/calmodulin enough? J Pharmacol Exp Ther 2001; 299(3):818–824.PubMedGoogle Scholar
  11. 11.
    Fulton D, Gratton JP, McCabe TJ et al. Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature 1999; 399(6736):597–601.PubMedCrossRefGoogle Scholar
  12. 12.
    Michel JB, Feron O, Sacks D et al. Reciprocal regulation of endothelial nitric-oxide synthase by Ca2+-calmodulin and caveolin. J Biol Chem 1997; 272:15583–15586.PubMedCrossRefGoogle Scholar
  13. 13.
    Voetsch B, Jin RC, Loscalzo J. Nitric oxide insufficiency and atherothrombosis. Histochem Cell Biol 2004; 122(4):353–367.PubMedCrossRefGoogle Scholar
  14. 14.
    Garcia-Cardena G, Oh P, Liu J et al. Targeting of nitric oxide synthase to endothelial cell caveolae via palmitoylation: implications for nitric oxide signaling. Proc Natl Acad Sci USA 1996; 93(13):6448–6453.PubMedCrossRefGoogle Scholar
  15. 15.
    Shaul PW, Smart EJ, Robinson LJ et al. Acylation targets emdothelial nitric-oxide synthase to plasmalemmal caveolae. J Biol Chem 1996; 271(11):6518–6522.PubMedCrossRefGoogle Scholar
  16. 16.
    Blair A, Shaul PW, Yuhanna IS et al. Oxidized low density lipoprotein displaces endothelial nitric-oxide synthase (eNOS) from plasmalemmal caveolae and impairs eNOS activation. J Biol Chem 1999; 274(45):32512–32519.PubMedCrossRefGoogle Scholar
  17. 17.
    Uittenbogaard A, Shaul PW, Yuhanna IS et al. High density lipoprotein prevents oxidized low density lipoprotein-induced inhibition of endothelial nitric-oxide synthase localization and activation in caveolae. J Biol Chem 2000; 275(15):11278–11283.PubMedCrossRefGoogle Scholar
  18. 18.
    Kincer JF, Uittenbogaard A, Dressman J et al. Hypercholesterolemia promotes a CD36-dependent and endothelial nitric-oxide synthase-mediated vascular dysfunction. J Biol Chem 2002; 277(26):23525–23533.PubMedCrossRefGoogle Scholar
  19. 19.
    Cohen RA. The role of nitric oxide and other endothelium-derived vasoactive substances in vascular disease. Prog Cardiovasc Dis 1995; 38(2):105–128.PubMedCrossRefGoogle Scholar
  20. 20.
    Bucci M, Gratton JP, Rudic RD et al. In vivo delivery of the caveolin-1 scaffolding domain inhibits nitric oxide synthesis and reduces inflammation. Nat Med 2000; 6(12):1362–1367.PubMedCrossRefGoogle Scholar
  21. 21.
    Cohen AW, Hnasko R, Schubert W et al. Role of caveolae and caveolins in health and disease. Physiol Rev 2004; 84(4):1341–1379.PubMedCrossRefGoogle Scholar
  22. 22.
    Gratton JP, Bernatchez P, Sessa WC. Caveolae and caveolins in the cardiovascular system. Circ Res 2004; 94(11):1408–1417.PubMedCrossRefGoogle Scholar
  23. 23.
    Feron O, Belhassen L, Kobzik L et al. Endothelial nitric oxide synthase targeting to caveolae. Specific interactions with caveolin isoforms in cardiac myocytes and endothelial cells. J Biol Chem 1996; 271(37):22810–22814.PubMedCrossRefGoogle Scholar
  24. 24.
    Ju H, Zou R, Venema VJ et al. Direct interaction of endothelial nitric-oxide synthase and caveolin-1 inhibits synthase activity. J Biol Chem 1997; 272(30):18522–18525.PubMedCrossRefGoogle Scholar
  25. 25.
    Garcia-Cardena G, Martasek P, Masters BS et al. Dissecting the interaction between nitric oxide synthase (NOS) and caveolin. Functional significance of the nos caveolin binding domain in vivo. J Biol Chem 1997; 272(41):25437–25440.CrossRefGoogle Scholar
  26. 26.
    Drab M, Verkade P, Elger M et al. Loss of caveolae, vascular dysfunction and pulmonary defects in caveolin-1 gene-disrupted mice. Science 2001; 293(5539):2449–2452.PubMedCrossRefGoogle Scholar
  27. 27.
    Razani B, Lisanti MP. Caveolin-deficient mice: insights into caveolar function human disease. J Clin Invest 2001; 108(11):1553–1561.PubMedGoogle Scholar
  28. 28.
    Fernandez-Hernando C, Yu J, Davalos A et al. Endothelial-specific overexpression of caveolin-1 accelerates atherosclerosis in apolipoprotein E-deficient mice. Am J Pathol 2010; 177(2):998–1003.PubMedCrossRefGoogle Scholar
  29. 29.
    Fernandez-Hernando C, Yu J, Suarez Y et al. Genetic evidence supporting a critical role of endothelial caveolin-1 during the progression of atherosclerosis. Cell Metab 2009; 10(1):48–54.PubMedCrossRefGoogle Scholar
  30. 30.
    Pelat M, Dessy C, Massion P et al. Rosuvastatin decreases caveolin-1 and improves nitric oxide-dependent heart rate and blood pressure variability in apolipoprotein E−/− mice in vivo. Circulation 2003; 107(19):2480–2486.PubMedCrossRefGoogle Scholar
  31. 31.
    Shah V, Toruner M, Haddad F et al. Impaired endothelial nitric oxide synthase activity associated with enhanced caveolin binding in experimental cirrhosis in the rat. Gastroenterology 1999; 117(5):1222–1228.PubMedCrossRefGoogle Scholar
  32. 32.
    Shah V, Cao S, Hendrickson H et al. Regulation of hepatic eNOS by caveolin and calmodulin after bile duct ligation in rats. Am J Physiol Gastrointest Liver Physiol 2001; 280(6):G1209–G1216.PubMedGoogle Scholar
  33. 33.
    Yokomori H, Oda M, Yoshimura K et al. Elevated expression of caveolin-1 at protein and mRNA level in human cirrhotic liver: relation with nitric oxide. J Gastroenterol 2003; 38(9):854–860.PubMedCrossRefGoogle Scholar
  34. 34.
    Yokomori H, Oda M, Ogi M et al. Endothelial nitric oxide synthase and caveolin-1 are colocalized in sinusoidal endothelial fenestrae. Liver 2001; 21(3):198–206.PubMedCrossRefGoogle Scholar
  35. 35.
    Yokomori H, Oda M, Ogi M et al. Enhanced expression of endothelial nitric oxide synthase and caveolin-1 in human cirrhosis. Liver 2002; 22(2):150–158.PubMedCrossRefGoogle Scholar
  36. 36.
    Yuhanna IS, Zhu Y, Cox BE et al. High-density lipoprotein binding to scavenger receptor-BI activates endothelial nitric oxide synthase. Nat Med 2001; 7(7):853–857.PubMedCrossRefGoogle Scholar
  37. 37.
    Mineo C, Shaul PW. HDL Stimulation of Endothelial Nitric Oxide Synthase. A Novel Mechanism of HDL Action. Trends Cardiovasc Med 2003; 13(6):226–231.PubMedCrossRefGoogle Scholar
  38. 38.
    Assanasen C, Mineo C, Seetharam D et al. Cholesterol binding, efflux and a PDZ-interacting domain of scavenger receptor-BI mediate HDL-initiated signaling. J Clin Invest 2005; 115(4):969–977.PubMedGoogle Scholar
  39. 39.
    Ikemoto M, Arai H, Feng D et al. Identification of a PDZ-domain-containing protein that interacts with the scavenger receptor class B type I. Proc Natl Acad Sci USA 2000; 97(12):6538–6543.PubMedCrossRefGoogle Scholar
  40. 40.
    Silver DL. A carboxyl-terminal PDZ-interacting domain of scavenger receptor B, type I is essential for cell surface expression in liver. J Biol Chem 2002; 277(37):34042–34047.PubMedCrossRefGoogle Scholar
  41. 41.
    Zhu W, Saddar S, Seetharam D et al. The scavenger receptor class B type I adaptor protein PDZK1 maintains endothelial monolayer integrity. Circ Res 2008; 102(4):480–487.PubMedCrossRefGoogle Scholar
  42. 42.
    Mineo C, Yuhanna IS, Quon MJ et al. High density lipoprotein-induced endothelial nitric-oxide synthase activation is mediated by Akt and MAP kinases. J Biol Chem 2003; 278(11):9142–9149.PubMedCrossRefGoogle Scholar
  43. 43.
    Mendelsohn ME. Mechanisms of estrogen action in the cardiovascular system. J Steroid Biochem Mol Biol 2000; 74(5):337–343.PubMedCrossRefGoogle Scholar
  44. 44.
    Khalil RA. Sex hormones as potential modulators of vascular function in hypertension. Hypertension 2005; 46(2):249–254.PubMedCrossRefGoogle Scholar
  45. 45.
    Mendelsohn ME, Karas RH. Molecular and cellular basis of cardiovascular gender differences. Science 2005; 308(5728):1583–1587.PubMedCrossRefGoogle Scholar
  46. 46.
    Chambliss KL, Wu Q, Oltmann S et al. Nonnuclear estrogen receptor alpha signaling promotes cardiovascular protection but not uterine or breast cancer growth in mice. J Clin Invest 2010; 120(7):2319–2330.PubMedCrossRefGoogle Scholar
  47. 47.
    Chambliss KL, Shaul PW. Estrogen modulation of endothelial nitric oxide synthase. Endo Rev 2002; 23(5):665–686.CrossRefGoogle Scholar
  48. 48.
    Chambliss KL, Yuhanna IS, Mineo C et al. Estrogen receptor alpha and endothelial nitric oxide synthase are organized into a functional signaling module in caveolae. Circ Res 2000; 87(11):E44–E52.PubMedGoogle Scholar
  49. 49.
    Chambliss KL, Shaul PW. Rapid activation of endothelial NO synthase by estrogen: evidence for a steroid receptor fast-action complex (SRFC) in caveolae. Steroids 2002; 67(6):413–419.PubMedCrossRefGoogle Scholar
  50. 50.
    Acconcia F, Ascenzi P, Fabozzi G et al. S-palmitoylation modulates human estrogen receptor-alpha functions. Biochem Biophys Res Commun 2004; 316(3):878–883.PubMedCrossRefGoogle Scholar
  51. 51.
    Li L, Haynes MP, Bender JR. Plasma membrane localization and function of the estrogen receptor alpha variant (ER46) in human endothelial cells. Proc Natl Acad Sci USA 2003; 100(8):4807–4812.PubMedCrossRefGoogle Scholar
  52. 52.
    Razandi M, Alton G, Pedram A et al. Identification of a structural determinant necessary for the localization and function of estrogen receptor alpha at the plasma membrane. Mol Cell Biol 2003; 23(5):1633–1646.PubMedCrossRefGoogle Scholar
  53. 53.
    Kumar P, Wu Q, Chambliss KL et al. Direct Interactions with G alpha i and G betagamma mediate nongenomic signaling by estrogen receptor alpha. Mol Endocrinol 2007; 21(6):1370–1380.PubMedCrossRefGoogle Scholar
  54. 54.
    Wyckoff MH, Chambliss KL, Mineo C et al. Plasma membrane estrogen receptors are coupled to endothelial nitric-oxide synthase through Galpha(i). J Biol Chem 2001; 276(29):27071–27076.PubMedCrossRefGoogle Scholar
  55. 55.
    Chen Z, Yuhanna IS, Galcheva-Gargova Z et al. Estrogen receptor alpha mediates the nongenomic activation of endothelial nitric oxide synthase by estrogen. J Clin Invest 1999; 103(3):401–406.PubMedCrossRefGoogle Scholar
  56. 56.
    Haynes MP, Sinha D, Russell KS et al. Membrane estrogen receptor engagement activates endothelial nitric oxide synthase via the PI3-kinase-Akt pathway in human endothelial cells. Circ Res 2000; 87(8):677–682.PubMedGoogle Scholar
  57. 57.
    Hisamoto K, Ohmichi M, Kurachi H et al. Estrogen induces the Akt-dependent activation of endothelial nitric-oxide synthase in vascular endothelial cells. J Biol Chem 2001; 276(5):3459–3467.PubMedCrossRefGoogle Scholar
  58. 58.
    Simoncini T, Hafezi-Moghadam A, Brazil DP et al. Interaction of oestrogen receptor with the regulatory subunit of phosphatidylinositol-3-OH kinase. Nature 2000; 407(6803):538–541.PubMedCrossRefGoogle Scholar
  59. 59.
    Danesh J, Wheeler JG, Hirschfield GM et al. C-reactive protein and other circulating markers of inflammation in the prediction of coronary heart disease. N Engl J Med 2004; 350(14):1387–1397.PubMedCrossRefGoogle Scholar
  60. 60.
    Fichtlscherer S, Rosenberger G, Walter DH et al. Elevated C-reactive protein levels and impaired endothelial vasoreactivity in patients with coronary artery disease. Circulation 2000; 102(9):1000–1006.PubMedGoogle Scholar
  61. 61.
    Jialal I, Devaraj S, Venugopal SK. C-reactive protein: risk marker or mediator in atherothrombosis? Hypertension 2004; 44(1):6–11.PubMedCrossRefGoogle Scholar
  62. 62.
    Pepys MB, Hirschfield GM. C-reactive protein: a critical update. J Clin Invest 2003; 111(12):1805–1812.PubMedGoogle Scholar
  63. 63.
    Ridker PM, Rifai N, Rose L et al. Comparison of C-reactive protein and low-density lipoprotein cholesterol levels in the prediction of first cardiovascular events. N Engl J Med 2002; 347(20):1557–1565.PubMedCrossRefGoogle Scholar
  64. 64.
    Venugopal SK, Devaraj S, Yuhanna I et al. Demonstration that C-reactive protein decreases eNOS expression and bioactivity in human aortic endothelial cells. Circulation 2002; 106(12):1439–1441.PubMedCrossRefGoogle Scholar
  65. 65.
    Verma S, Wang CH, Li SH et al. A self-fulfilling prophecy: C-reactive protein attenuates nitric oxide production and inhibits angiogenesis. Circulation 2002; 106(8):913–919.PubMedCrossRefGoogle Scholar
  66. 66.
    Verma S, Yeh ET. C-reactive protein and atherothrombosis—beyond a biomarker: an actual partaker of lesion formation. Am J Physiol Regul Integr Comp Physiol 2003; 285(5):R1253–R1256.PubMedGoogle Scholar
  67. 67.
    Mineo C, Gormley AK, Yuhanna IS et al. FcgammaRIIB mediates C-reactive protein inhibition of endothelial NO synthase. Circ Res 2005; 97(11):1124–1131.PubMedCrossRefGoogle Scholar
  68. 68.
    Schwartz R, Osborne-Lawrence S, Hahner L et al. C-reactive protein downregulates endothelial NO synthase and attenuates reendothelialization in vivo in mice. Circ Res 2007; 100(10):1452–1459.PubMedCrossRefGoogle Scholar
  69. 69.
    Vongpatanasin W, Thomas GD, Schwartz R et al. C-reactive protein causes downregulation of vascular angiotensin subtype 2 receptors and systolic hypertension in mice. Circulation 2007; 115(8):1020–1028.PubMedCrossRefGoogle Scholar
  70. 70.
    Bharadwaj D, Stein MP, Volzer M et al. The major receptor for C-reactive protein on leukocytes is fcgamma receptor II. J Exp Med 1999; 190(4):585–590.PubMedCrossRefGoogle Scholar
  71. 71.
    Black S, Kushner I, Samols D. C-reactive Protein. J Biol Chem 2004; 279(47):48487–48490.PubMedCrossRefGoogle Scholar
  72. 72.
    Crowell RE, Du Clos TW, Montoya G et al. C-reactive protein receptors on the human monocytic cell line U-937. Evidence for additional binding to Fc gamma RI. J Immunol 1991; 147(10):3445–3451.PubMedGoogle Scholar
  73. 73.
    Marnell LL, Mold C, Volzer MA et al. C-reactive protein binds to Fc gamma RI in transfected COS cells. J Immunol 1995; 155(4):2185–2193.PubMedGoogle Scholar
  74. 74.
    Stein MP, Mold C, Du Clos TW. C-reactive protein binding to murine leukocytes requires Fc gamma receptors. J Immunol 2000; 164(3):1514–1520.PubMedGoogle Scholar
  75. 75.
    Stein MP, Edberg JC, Kimberly RP et al. C-reactive protein binding to FcgammaRIIa on human monocytes and neutrophils is allele-specific. J Clin Invest 2000; 105(3):369–376.PubMedCrossRefGoogle Scholar
  76. 76.
    Tanigaki K, Mineo C, Yuhanna IS et al. C-Reactive Protein Inhibits Insulin Activation of Endothelial Nitric Oxide Synthase via the Immunoreceptor Tyrosine-Based Inhibition Motif of FcgammaRIIB and SHIP-1. Circ Res 2009.Google Scholar
  77. 77.
    Aman MJ, Tosello-Trampont AC, Ravichandran K. Fc gamma RIIB1/SHIP-mediated inhibitory signaling in B cells involves lipid rafts. J Biol Chem 2001; 276(49):46371–46378.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2012

Authors and Affiliations

  1. 1.Division of Pulmonary and Vascular Biology, Department of PediatricsUniversity of Texas Southwestern Medical CenterDallasUSA

Personalised recommendations