Skip to main content

Lipid Rafts, Caveolae and GPI-Linked Proteins

  • Chapter
Caveolins and Caveolae

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 729))

Abstract

Lipid rafts and caveolae are specialized membrane microdomains enriched in sphingolipids and cholesterol. They function in a variety of cellular processes including but not limited to endocytosis, transcytosis, signal transduction and receptor recycling. Here, we outline the similarities and differences between lipid rafts and caveolae as well as discuss important components and functions of each.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brown RE. Sphingolipid organization in biomembranes: what physical studies of model membranes reveal. J Cell Sci 1998; 111 (Pt 1):1–9.

    PubMed  CAS  Google Scholar 

  2. Simons K, Ikonen E. Functional rafts in cell membranes. Nature 1997; 387(6633):569–572.

    Article  PubMed  CAS  Google Scholar 

  3. Brown DA, London E. Structure of detergent-resistant membrane domains: does phase separation occur in biological membranes? Biochem Biophys Res Commun 1997; 240(1):1–7.

    Article  PubMed  CAS  Google Scholar 

  4. Brown DA, London E. Functions of lipid rafts in biological membranes. Annu Rev Cell Dev Biol 1998; 14:111–136.

    Article  PubMed  CAS  Google Scholar 

  5. Brown DA, London E. Structure and origin of ordered lipid domains in biological membranes. J Membr Biol 1998; 164(2):103–114.

    Article  PubMed  CAS  Google Scholar 

  6. Rietveld A, Simons K. The differential miscibility of lipids as the basis for the formation of functional membrane rafts. Biochim Biophys Acta 1998; 1376(3):467–479.

    PubMed  CAS  Google Scholar 

  7. Rajendran L, Simons K. Lipid rafts and membrane dynamics. J Cell Sci 2005; 118(Pt 6):1099–1102.

    Article  PubMed  CAS  Google Scholar 

  8. Wang TY, Silvius JR. Cholesterol does not induce segregation of liquid-ordered domains in bilayers modeling the inner leaflet of the plasma membrane. Biophys J 2001; 81(5):2762–2773.

    Article  PubMed  CAS  Google Scholar 

  9. Zacharias DA, Violin JD, Newton AC et al. Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science, New York, NY 2002; 296(5569):913–916.

    Article  CAS  Google Scholar 

  10. Parton RG, Hancock JF. Lipid rafts and plasma membrane microorganization: insights from Ras. Trends in Cell Biology 2004; 14(3):141–147.

    Article  PubMed  CAS  Google Scholar 

  11. Simons K, Wandinger-Ness A. Polarized sorting in epithelia. Cell 1990; 62(2):207–210.

    Article  PubMed  CAS  Google Scholar 

  12. Swamy MJ, Ciani L, Ge M et al. Coexisting domains in the plasma membranes of live cells characterized by spin-label ESR spectroscopy. Biophys J 2006; 90(12):4452–4465.

    Article  PubMed  CAS  Google Scholar 

  13. Harder T, Engelhardt KR. Membrane domains in lymphocytes—from lipid rafts to protein scaffolds. Traffic (Copenhagen, Denmark) 2004; 5(4):265–275.

    Article  CAS  Google Scholar 

  14. Marguet D, Lenne PF, Rigneault H et al. Dynamics in the plasma membrane: how to combine fluidity and order. EMBO 2006; 25(15):3446–3457.

    Article  CAS  Google Scholar 

  15. Schuck S, Simons K. Polarized sorting in epithelial cells: raft clustering and the biogenesis of the apical membrane. J Cell Sci 2004; 117(Pt 25):5955–5964.

    Article  PubMed  CAS  Google Scholar 

  16. Hooper NM. Detergent-insoluble glycosphingolipid/cholesterol-rich membrane domains, lipid rafts and caveolae (review). Mol Membr Biol 1999; 16(2):145–156.

    Article  PubMed  CAS  Google Scholar 

  17. Resh MD. Fatty acylation of proteins: new insights into membrane targeting of myristoylated and palmitoylated proteins. Biochim Biophys Acta 1999; 1451(1):1–16.

    Article  PubMed  CAS  Google Scholar 

  18. Babiychuk EB, Monastyrskaya K, Burkhard FC et al. Modulating signaling events in smooth muscle: cleavage of annexin 2 abolishes its binding to lipid rafts. FASEB J 2002; 16(10):1177–1184.

    Article  PubMed  CAS  Google Scholar 

  19. Palade GE. An electron microscope study of the mitochondrial structure. J Histochem Cytochem 1953; 1(4):188–211.

    Article  PubMed  CAS  Google Scholar 

  20. Yamada E. The fine structure of the gall bladder epithelium of the mouse. J Biophys Biochem Cytol 1955; 1(5):445–458.

    Article  PubMed  CAS  Google Scholar 

  21. Palade GE. Blood capillaries of the heart and other organs. Circulation 1961; 24:368–388.

    PubMed  CAS  Google Scholar 

  22. Melkonian KA, Ostermeyer AG, Chen JZ et al. Role of lipid modifications in targeting proteins to detergent-resistant membrane rafts. Many raft proteins are acylated, while few are prenylated. J Biol Chem 1999; 274(6):3910–3917.

    Article  PubMed  CAS  Google Scholar 

  23. Pyenta PS, Holowka D, Baird B. Cross-correlation analysis of inner-leaflet-anchored green fluorescent protein coredistributed with IgE receptors and outer leaflet lipid raft components. Biophys J 2001; 80(5):2120–2132.bl]

    Article  PubMed  CAS  Google Scholar 

  24. Simons K, Toomre D. Lipid rafts and signal transduction. Nature Reviews 2000; 1(1):31–39.

    PubMed  CAS  Google Scholar 

  25. Cross GA. Glycolipid anchoring of plasma membrane proteins. Annu Rev Cell Biol 1990; 6:1–39.

    Article  PubMed  CAS  Google Scholar 

  26. Anderson RG. The caveolae membrane system. Annu Rev Biochem 1998; 67:199–225.

    Article  PubMed  CAS  Google Scholar 

  27. Parton RG. Caveolae and caveolins. Curr Opin Cell Biol 1996; 8(4):542–548.

    Article  PubMed  CAS  Google Scholar 

  28. Schnitzer JE, Oh P, Pinney E et al. Filipin-sensitive caveolae-mediated transport in endothelium: reduced transcytosis, scavenger endocytosis and capillary permeability of select macromolecules. J Cell Biol 1994; 127(5):1217–1232.

    Article  PubMed  CAS  Google Scholar 

  29. Yao Q, Chen J, Cao H et al. Caveolin-1 interacts directly with dynamin-2. J Mol Biol 2005; 348(2):491–501.

    Article  PubMed  CAS  Google Scholar 

  30. Pelkmans L, Helenius A. Endocytosis via caveolae. Traffic (Copenhagen, Denmark) 2002; 3(5):311–320.

    Article  CAS  Google Scholar 

  31. Cohen AW, Razani B, Wang XB et al. Caveolin-1-deficient mice show insulin resistance and defective insulin receptor protein expression in adipose tissue. Am J Physiol Cell Physiol 2003; 285(1):C222–235.

    Google Scholar 

  32. Simons K, Vaz WL. Model systems, lipid rafts and cell membranes. Annu Rev Biophys Biomol Struct 2004; 33:269–295.

    Article  PubMed  CAS  Google Scholar 

  33. Liu P, Anderson RG. Compartmentalized production of ceramide at the cell surface. J Biol Chem 1995; 270(45):27179–27185.

    Article  PubMed  CAS  Google Scholar 

  34. Sciorra VA, Morris AJ. Sequential actions of phospholipase D and phosphatidic acid phosphohydrolase 2b generate diglyceride in mammalian cells. Mol Biol Cell 1999; 10(11):3863–3876.

    PubMed  CAS  Google Scholar 

  35. Rizzo V, Sung A, Oh P et al. Rapid mechanotransduction in situ at the luminal cell surface of vascular endothelium and its caveolae. J Biol Chem 1998; 273(41):26323–26329.

    Article  PubMed  CAS  Google Scholar 

  36. Schroeder R, London E, Brown D. Interactions between saturated acyl chains confer detergent resistance on lipids and glycosylphosphatidylinositol (GPI)-anchored proteins: GPI-anchored proteins in liposomes and cells show similar behavior. Proc Natl Acad Sci USA 1994; 91(25):12130–12134.

    Article  PubMed  CAS  Google Scholar 

  37. Brown DA, Rose JK. Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 1992; 68(3):533–544.

    Article  PubMed  CAS  Google Scholar 

  38. Munro S. Lipid rafts: elusive or illusive? Cell 2003; 115(4):377–388.

    Article  PubMed  CAS  Google Scholar 

  39. Smart EJ, Ying YS, Mineo C et al. A detergent-free method for purifying caveolae membrane from tissue culture cells. Proc Natl Acad Sci USA 1995; 92(22):10104–10108.

    Article  PubMed  CAS  Google Scholar 

  40. Smart EJ, Ying Y, Donzell WC et al. A role for caveolin in transport of cholesterol from endoplasmic reticulum to plasma membrane. J Biol Chem 1996; 271(46):29427–29435.

    Article  PubMed  CAS  Google Scholar 

  41. Chang WJ, Rothberg KG, Kamen BA et al. Lowering the cholesterol content of MA104 cells inhibits receptor-mediated transport of folate. J Cell Biol 1992; 118(1):63–69.

    Article  PubMed  CAS  Google Scholar 

  42. Rothberg KG, Heuser JE, Donzell WC et al. Caveolin, a protein component of caveolae membrane coats. Cell 1992; 68(4):673–682.

    Article  PubMed  CAS  Google Scholar 

  43. Smart EJ, Foster DC, Ying YS et al. Protein kinase C activators inhibit receptor-mediated potocytosis by preventing internalization of caveolae. J Cell Biol 1994; 124(3):307–313.

    Article  PubMed  CAS  Google Scholar 

  44. Graf GA, Connell PM, van der Westhuyzen DR et al. The class B, type I scavenger receptor promotes the selective uptake of high density lipoprotein cholesterol ethers into caveolae. J Biol Chem 1999; 274(17):12043–12048.

    Article  PubMed  CAS  Google Scholar 

  45. Izumi T, Shibata Y, Yamamoto T. The cytoplasmic surface structures of uncoated vesicles in various tissues of rat as revealed by quick-freeze, deep-etching replicas. J Electron Microsc (Tokyo) 1989; 38(1):47–53.

    CAS  Google Scholar 

  46. Mahaffey DT, Peeler JS, Brodsky FM et al. Clathrin-coated pits contain an integral membrane protein that binds the AP-2 subunit with high affinity. J Biol Chem 1990; 265(27):16514–16520.

    PubMed  CAS  Google Scholar 

  47. Glenney JRJr. Tyrosine phosphorylation of a 22-kDa protein is correlated with transformation by Rous sarcoma virus. J Biol Chem 1989; 264(34):20163–20166.

    PubMed  CAS  Google Scholar 

  48. Glenney JRJr. The sequence of human caveolin reveals identity with VIP21, a component of transport vesicles. FEBS Letters 1992; 314(1):45–48.

    Article  PubMed  CAS  Google Scholar 

  49. Couet J, Li S, Okamoto T et al. Identification of peptide and protein ligands for the caveolin-scaffolding domain. Implications for the interaction of caveolin with caveolae-associated proteins. J Biol Chem 1997; 272(10):6525–6533.

    Article  PubMed  CAS  Google Scholar 

  50. Feron O, Michel JB, Sase K et al. Dynamic regulation of endothelial nitric oxide synthase: complementary roles of dual acylation and caveolin interactions. Biochemistry 1998; 37(1):193–200.

    Article  PubMed  CAS  Google Scholar 

  51. Yamamoto M, Toya Y, Schwencke C et al. Caveolin is an activator of insulin receptor signaling. J Biol Chem 1998; 273(41):26962–26968.

    Article  PubMed  CAS  Google Scholar 

  52. Wary KK, Mariotti A, Zurzolo C et al. A requirement for caveolin-1 and associated kinase Fyn in integrin signaling and anchorage-dependent cell growth. Cell 1998; 94(5):625–634.

    Article  PubMed  CAS  Google Scholar 

  53. Murata M, Peranen J, Schreiner R et al. VIP21/caveolin is a cholesterol-binding protein. Proc Natl Acad Sci USA 1995; 92(22):10339–10343.

    Article  PubMed  CAS  Google Scholar 

  54. Fra AM, Masserini M, Palestini P et al. A photo-reactive derivative of ganglioside GM1 specifically cross-links VIP21-caveolin on the cell surface. FEBS Letters 1995; 375(1–2):11–14.

    Article  PubMed  CAS  Google Scholar 

  55. Parton RG, Simons K. Digging into caveolae. Science, New York, NY 1995; 269(5229):1398–1399.

    Article  PubMed  CAS  Google Scholar 

  56. Pohl J, Ring A, Stremmel W. Uptake of long-chain fatty acids in HepG2 cells involves caveolae: analysis of a novel pathway. J Lipid Res 2002; 43(9):1390–1399.

    Article  PubMed  CAS  Google Scholar 

  57. Trigatti BL, Anderson RG, Gerber GE. Identification of caveolin-1 as a fatty acid binding protein. Biochem Biophys Res Commun 1999; 255(1):34–39.

    Article  PubMed  CAS  Google Scholar 

  58. Thiele C, Hannah MJ, Fahrenholz F et al. Cholesterol binds to synaptophysin and is required for biogenesis of synaptic vesicles. Nat Cell Biol 2000; 2(1):42–49.

    Article  PubMed  CAS  Google Scholar 

  59. Uittenbogaard A, Everson WV, Matveev SV et al. Cholesteryl ester is transported from caveolae to internal membranes as part of a caveolin-annexin II lipid-protein complex. J Biol Chem 2002; 277(7):4925–4931.

    Article  PubMed  CAS  Google Scholar 

  60. Uittenbogaard A, Ying Y, Smart EJ. Characterization of a cytosolic heat-shock protein-caveolin chaperone complex. Involvement in cholesterol trafficking. J Biol Chem 1998; 273(11):6525–6532.

    Article  PubMed  CAS  Google Scholar 

  61. Matveev S, van der Westhuyzen DR, Smart EJ. Co-expression of scavenger receptor-BI and caveolin-1 is associated with enhanced selective cholesteryl ester uptake in THP-1 macrophages. J Lipid Res 1999; 40(9):1647–1654.

    PubMed  CAS  Google Scholar 

  62. Dobbins RL, Chester MW, Stevenson BE et al. A fatty acid-dependent step is critically important for both glucose-and nonglucose-stimulated insulin secretion. J Clin Invest 1998; 101(11):2370–2376.

    Article  PubMed  CAS  Google Scholar 

  63. Smart EJ, Graf GA, McNiven MA et al. Caveolins, liquid-ordered domains and signal transduction. Mol Cell Biol 1999; 19(11):7289–7304.

    PubMed  CAS  Google Scholar 

  64. Xia F, Gao X, Kwan E et al. Disruption of pancreatic beta-cell lipid rafts modifies Kv2.1 channel gating and insulin exocytosis. J Biol Chem 2004; 279(23):24685–24691.

    Article  PubMed  CAS  Google Scholar 

  65. Nevins AK, Thurmond DC. A direct interaction between Cdc42 and vesicle-associated membrane protein 2 regulates SNARE-dependent insulin exocytosis. J Biol Chem 2005; 280(3):1944–1952.

    Article  PubMed  CAS  Google Scholar 

  66. Nevins AK, Thurmond DC. Caveolin-1 functions as a novel Cdc42 guanine nucleotide dissociation inhibitor in pancreatic beta-cells. J Biol Chem 2006; 281(28):18961–18972.

    Article  PubMed  CAS  Google Scholar 

  67. Schnitzer JE. Caveolae: from basic trafficking mechanisms to targeting transcytosis for tissue-specific drug and gene delivery in vivo. Adv Drug Deliv Rev 2001; 49(3):265–280.

    Article  PubMed  CAS  Google Scholar 

  68. Gustavsson J, Parpal S, Karlsson M et al. Localization of the insulin receptor in caveolae of adipocyte plasma membrane. FASEB J 1999; 13(14):1961–1971.

    PubMed  CAS  Google Scholar 

  69. Razani B, Combs TP, Wang XB et al. Caveolin-1-deficient mice are lean, resistant to diet-induced obesity and show hypertriglyceridemia with adipocyte abnormalities. J Biol Chem 2002; 277(10):8635–8647.

    Article  PubMed  CAS  Google Scholar 

  70. Park DS, Cohen AW, Frank PG et al. Caveolin-1 null (−/−) mice show dramatic reductions in life span. Biochemistry 2003; 42(51):15124–15131.

    Article  PubMed  CAS  Google Scholar 

  71. Zhao YY, Liu Y, Stan RV et al. Defects in caveolin-1 cause dilated cardiomyopathy and pulmonary hypertension in knockout mice. Proc Natl Acad Sci USA 2002; 99(17):11375–11380.

    Article  PubMed  CAS  Google Scholar 

  72. Koleske AJ, Baltimore D, Lisanti MP. Reduction of caveolin and caveolae in oncogenically transformed cells. Proc Natl Acad Sci USA 1995; 92(5):1381–1385.

    Article  PubMed  CAS  Google Scholar 

  73. Hayashi K, Matsuda S, Machida K et al. Invasion activating caveolin-1 mutation in human scirrhous breast cancers. Cancer Res 2001; 61(6):2361–2364.

    PubMed  CAS  Google Scholar 

  74. Chambliss KL, Yuhanna IS, Mineo C et al. Estrogen receptor alpha and endothelial nitric oxide synthase are organized into a functional signaling module in caveolae. Circ Res 2000; 87(11):E44–52.

    PubMed  CAS  Google Scholar 

  75. Bundred NJ. Prognostic and predictive factors in breast cancer. Cancer Treat Rev 2001; 27(3):137–142.

    Article  PubMed  CAS  Google Scholar 

  76. Shoker BS, Jarvis C, Clarke RB et al. Estrogen receptor-positive proliferating cells in the normal and precancerous breast. Am J Pathol 1999; 155(6):1811–1815.

    Article  PubMed  CAS  Google Scholar 

  77. Sotgia F, Rui H, Bonuccelli G et al. Caveolin-1, mammary stem cells and estrogen-dependent breast cancers. Cancer Res 2006; 66(22):10647–10651.

    Article  PubMed  CAS  Google Scholar 

  78. Williams TM, Hassan GS, Li J et al. Caveolin-1 promotes tumor progression in an autochthonous mouse model of prostate cancer: genetic ablation of Cav-1 delays advanced prostate tumor development in tramp mice. J Biol Chem 2005; 280(26):25134–25145.

    Article  PubMed  CAS  Google Scholar 

  79. Scherer PE, Okamoto T, Chun M et al. Identification, sequence and expression of caveolin-2 defines a caveolin gene family. Proc Natl Acad Sci USA 1996; 93(1):131–135.

    Article  PubMed  CAS  Google Scholar 

  80. Scherer PE, Lewis RY, Volonte D et al. Cell-type and tissue-specific expression of caveolin-2. Caveolins 1 and 2 colocalize and form a stable hetero-oligomeric complex in vivo. J Biol Chem 1997; 272(46):29337–29346.

    Article  PubMed  CAS  Google Scholar 

  81. Parolini I, Sargiacomo M, Galbiati F et al. Expression of caveolin-1 is required for the transport of caveolin-2 to the plasma membrane. Retention of caveolin-2 at the level of the golgi complex. J Biol Chem 1999; 274(36):25718–25725.

    Article  PubMed  CAS  Google Scholar 

  82. Mora R, Bonilha VL, Marmorstein A et al. Caveolin-2 localizes to the golgi complex but redistributes to plasma membrane, caveolae and rafts when co-expressed with caveolin-1. J Biol Chem 1999; 274(36):25708–25717.

    Article  PubMed  CAS  Google Scholar 

  83. Razani B, Wang XB, Engelman JA et al. Caveolin-2-deficient mice show evidence of severe pulmonary dysfunction without disruption of caveolae. Mol Cell Biol 2002; 22(7):2329–2344.

    Article  PubMed  CAS  Google Scholar 

  84. Tang Z, Scherer PE, Okamoto T et al. Molecular cloning of caveolin-3, a novel member of the caveolin gene family expressed predominantly in muscle. J Biol Chem 1996; 271(4):2255–2261.

    Article  PubMed  CAS  Google Scholar 

  85. Way M, Parton RG. M-caveolin, a muscle-specific caveolin-related protein. Febs Letters 1995; 376(1–2):108–112.

    Article  PubMed  CAS  Google Scholar 

  86. Hagiwara Y, Sasaoka T, Araishi K et al. Caveolin-3 deficiency causes muscle degeneration in mice. Hum Mol Genet 2000; 9(20):3047–3054.

    Article  PubMed  CAS  Google Scholar 

  87. Woodman SE, Park DS, Cohen AW et al. Caveolin-3 knock-out mice develop a progressive cardiomyopathy and show hyperactivation of the p42/44 MAPK cascade. J Biol Chem 2002; 277(41):38988–38997.

    Article  PubMed  CAS  Google Scholar 

  88. Steinberg SF. beta(2)-Adrenergic receptor signaling complexes in cardiomyocyte caveolae/lipid rafts. J Mol Cell Cardiol 2004; 37(2):407–415.

    Article  PubMed  CAS  Google Scholar 

  89. Ostrom RS, Gregorian C, Drenan RM et al. Receptor number and caveolar colocalization determine receptor coupling efficiency to adenylyl cyclase. J Biol Chem 2001; 276(45):42063–42069.

    Article  PubMed  CAS  Google Scholar 

  90. Steinberg SF, Brunton LL. Compartmentation of G protein-coupled signaling pathways in cardiac myocytes. Annu Rev Pharmacol Toxicol 2001; 41:751–773.

    Article  PubMed  CAS  Google Scholar 

  91. Insel PA, Head BP, Ostrom RS et al. Caveolae and lipid rafts: G protein-coupled receptor signaling microdomains in cardiac myocytes. Ann N Y Acad Sci 2005; 1047:166–172.

    Article  PubMed  CAS  Google Scholar 

  92. Calaghan S, Kozera L, White E. Compartmentalisation of cAMP-dependent signalling by caveolae in the adult cardiac myocyte. J Mol Cell Cardiol 2008; 45(1):88–92.

    Article  PubMed  CAS  Google Scholar 

  93. Liu L, Brown D, McKee M et al. Deletion of Cavin/PTRF causes global loss of caveolae, dyslipidemia and glucose intolerance. Cell Metab 2008; 8(4):310–317.

    Article  PubMed  Google Scholar 

  94. Jansa P, Mason SW, Hoffmann-Rohrer U et al. Cloning and functional characterization of PTRF, a novel protein which induces dissociation of paused ternary transcription complexes. EMBO 1998; 17(10):2855–2864.

    Article  CAS  Google Scholar 

  95. Aboulaich N, Ortegren U, Vener AV et al. Association and insulin regulated translocation of hormone-sensitive lipase with PTRF. Biochem Biophys Res Commun 2006; 350(3):657–661.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric J. Smart .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Reeves, V.L., Thomas, C.M., Smart, E.J. (2012). Lipid Rafts, Caveolae and GPI-Linked Proteins. In: Jasmin, JF., Frank, P.G., Lisanti, M.P. (eds) Caveolins and Caveolae. Advances in Experimental Medicine and Biology, vol 729. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1222-9_1

Download citation

Publish with us

Policies and ethics