Skip to main content

Towards the Trace Formula for Convex-Cocompact Groups

  • Conference paper
  • First Online:
Contributions in Analytic and Algebraic Number Theory

Part of the book series: Springer Proceedings in Mathematics ((PROM,volume 9))

  • 1127 Accesses

Abstract

We develop a general representation theoretic framework for trace formulas for quotients of rank one simple Lie groups by convex-cocompact discrete subgroups. We further discuss regularized traces of resolvents with applications to Selberg-type zeta functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The problem cannot be solved by just looking at a space of functions f having not necessarily compact support to which Ψ can be applied such that Lemma 1 remains valid. If the critical exponent of Γ is positive, any reasonable space of this kind is contained in some L p(G) for p < 2. The only L p-functions f on G (p < 2) with compactly supported Fourier transform are linear combinations of matrix coefficients of certain discrete series representations. They satisfy Ψ(f) = 0, compare Proposition 3.

  2. 2.

    The notion of measurability is part of the structure of the direct integral, see e.g. [22], Chap. 14. In our case it just amounts to the measurable dependence on the inducing parameters discussed in the previous section.

  3. 3.

    Compare the footnote on page 5.

  4. 4.

    Except for some minor corrections and additions including more recent references.

References

  1. M. Atiyah and W. Schmid. A geometric construction of the discrete series for semisimple Lie groups. Invent. Math., 42(1977), 1–62.

    Article  MathSciNet  MATH  Google Scholar 

  2. J. N. Bernstein. On the support of Plancherel measure. J. of Geom. and Phys., 5(1988), 663–710.

    Article  MATH  Google Scholar 

  3. U. Bunke and M. Olbrich. Selberg Zeta and Theta Functions. Akademie Verlag, 1995.

    Google Scholar 

  4. U. Bunke and M. Olbrich. The spectrum of Kleinian manifolds. J. Funct. Anal., 172(2000), 76–164.

    Article  MathSciNet  MATH  Google Scholar 

  5. U. Bunke and M. Olbrich. Group cohomology and the singularities of the Selberg zeta function associated to a Kleinian group. Annals. of. Math., 149 (1999), 627–689.

    Article  MathSciNet  MATH  Google Scholar 

  6. J. Cheeger, M. Gromov, and and M. Taylor. Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds. J. Differential Geom., 17, (1982), 15–53.

    Google Scholar 

  7. D. Fried. The zeta functions of Ruelle and Selberg I. Ann. scient. éc. norm. sup. 4 e Série, 19 (1986), 491–517.

    Google Scholar 

  8. C. Guillarmou. Generalized Krein formula, determinants, and Selberg zeta function in even dimension. Amer. J. Math., 131(2009), 1359–1417.

    Article  MathSciNet  MATH  Google Scholar 

  9. C. Guillarmou and F. Naud. Wave 0-trace and length spectrum on convex co-compact hyperbolic manifolds. Comm. Anal. Geom., 14(2006), 945–967.

    MathSciNet  MATH  Google Scholar 

  10. C. Guillarmou, S. Moroianu and J. Park. Eta invariant and Selberg Zeta function of odd type over convex co-compact hyperbolic manifolds Adv. Math. 225(2010), 2464–2516.

    Google Scholar 

  11. L. Guillopé. Fonctions zéta de Selberg et surface de géométrie finie. Adv. Stud. Pure Math., 21(1992), 33–70.

    Google Scholar 

  12. L. Guillopé, K. K. Lin, and M. Zworski. The Selberg zeta function for convex co-compact Schottky groups. Comm. Math. Phys., 245(2004), 149–176.

    Article  MathSciNet  MATH  Google Scholar 

  13. Harish-Chandra. Harmonic analysis on real reductive groups III. The Maass-Selberg relations and the Plancherel formula. Ann. of Math., 104 (1976), 117–201.

    Google Scholar 

  14. A. Juhl, Cohomological theory of dynamical Zeta functions. Progress in Mathematics 194, Birkhäuser, Basel, 2001.

    Google Scholar 

  15. M. Kashiwara and T. Oshima. Systems of differential equations with regular singularities and their boundary value problems. Ann. Math., 106(1977), 145–200.

    Article  MathSciNet  MATH  Google Scholar 

  16. R. J. Miatello and J. A. Vargas. On the distribution of the principal series in L 2(Γ ∖ G). Trans. AMS, 279 (1983), 63–75.

    MathSciNet  MATH  Google Scholar 

  17. M. Olbrich. Cohomology of convex cocompact subgroups and invariant distributions on limit sets. arXiv:math/0207301.

    Google Scholar 

  18. T. Oshima and J. Sekiguchi. Eigenspaces of invariant differential operators on an affine symmetric space. Invent. math., 57(1980), 1–81.

    Article  MathSciNet  MATH  Google Scholar 

  19. S. J. Patterson. Two conjectures on Kleinian groups. Handwritten notes, Talk at Warwick 1993.

    Google Scholar 

  20. S. J. Patterson and P. A. Perry. The Divisor of Selberg’s zeta function for Kleinian groups. Duke Math. J., 106 (2001)

    Google Scholar 

  21. N. R. Wallach, Real reductive groups. I. Pure and Applied Mathematics 132, Academic Press Inc., Boston, MA, 1988.

    Google Scholar 

  22. N. R. Wallach, Real reductive groups. II. Pure and Applied Mathematics 132-II, Academic Press Inc., Boston, MA, 1992.

    Google Scholar 

Download references

Acknowledgements

This paper has been writtenFootnote 4 in the years 1999/2000. It is an outcome of the exciting research environment of the Göttingen Mathematical Institute which was heavily stimulated by the interests and mathematical influence of Samuel J. Patterson.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Bunke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this paper

Cite this paper

Bunke, U., Olbrich, M. (2012). Towards the Trace Formula for Convex-Cocompact Groups. In: Blomer, V., Mihăilescu, P. (eds) Contributions in Analytic and Algebraic Number Theory. Springer Proceedings in Mathematics, vol 9. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1219-9_5

Download citation

Publish with us

Policies and ethics