Skip to main content

A Note on the Algebraic Growth Rate of Poincaré Series for Kleinian Groups

  • Conference paper
  • First Online:
Contributions in Analytic and Algebraic Number Theory

Part of the book series: Springer Proceedings in Mathematics ((PROM,volume 9))

Abstract

In this note, we employ infinite ergodic theory to derive estimates for the algebraic growth rate of the Poincaré series for a Kleinian group at its critical exponent of convergence.

Dedicated to S.J. Patterson on the occasion of his 60th birthday.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Aaronson. An introduction to infinite ergodic theory. Mathematical Surveys and Monographs 50, American Mathematical Society, 1997.

    Google Scholar 

  2. J. Aaronson, M. Denker, M. Urbański. Ergodic theory for Markov fibred systems and parabolic rational maps. Trans. Amer. Math. Soc. 337 (2): 495–548, 1993.

    Google Scholar 

  3. A. F. Beardon. The exponent of convergence of Poincaré series. Proc. London Math. Soc. (3) 18: 461–483, 1968.

    Google Scholar 

  4. R. Bowen, C. Series. Markov maps associated with Fuchsian groups. Publ. Math., Inst. Hautes Etud. Sci. 50:153–170, 1979.

    Google Scholar 

  5. M. Denker, B.O. Stratmann. Patterson measure: classics, variations and applications.

    Google Scholar 

  6. D. Epstein, C. Petronio. An exposition of Poincare’s polyhedron theorem. Enseign. Math., II. Ser. 40: 113–170, 1994.

    Google Scholar 

  7. J. Fiala, P. Kleban. Intervals between Farey fractions in the limit of infinite level. Ann. Sci. Math. Qubec 34 (1), 63–71, 2010.

    Google Scholar 

  8. M. Kesseböhmer, B.O. Stratmann. A multifractal formalism for growth rates and applications to geometrically finite Kleinian groups. Ergod. Th. & Dynam. Sys., 24 (01):141–170, 2004.

    Article  MATH  Google Scholar 

  9. M. Kesseböhmer, B.O. Stratmann. On the Lebesgue measure of sum-level sets for continued fractions. To appear in Discrete Contin. Dyn. Syst.

    Google Scholar 

  10. M. Kesseböhmer, B.O. Stratmann. A dichotomy between uniform distributions of the Stern-Brocot and the Farey sequence. To appear in Unif. Distrib. Theory. 7 (2), 2011.

    Google Scholar 

  11. P. Nicholls. The ergodic theory of discrete groups, London Math. Soc. Lecture Note Series 143, Cambr. Univ. Press, Cambridge, 1989.

    Google Scholar 

  12. S.J. Patterson. The limit set of a Fuchsian group. Acta Math. 136 (3–4): 241–273, 1976.

    Google Scholar 

  13. C. Series. The modular surface and continued fractions. J. London Math. Soc. (2) 31 (1): 69–80, 1985.

    Google Scholar 

  14. C. Series. Geometrical Markov coding of geodesics on surfaces of constant negative curvature. Ergod. Th. & Dynam. Sys. 6: 601–625, 1986.

    Google Scholar 

  15. M. Stadlbauer. The Bowen–Series map for some free groups. Dissertation 2002, University of Göttingen. Mathematica Gottingensis 5: 1–53, 2002.

    Google Scholar 

  16. M. Stadlbauer. The return sequence of the Bowen–Series map associated to punctured surfaces. Fundamenta Math. 182: 221–240, 2004.

    Google Scholar 

  17. M. Stadlbauer, B.O. Stratmann. Infinite ergodic theory for Kleinian groups. Ergod. Th. & Dynam. Sys. 25: 1305–1323, 2005.

    Google Scholar 

  18. B.O. Stratmann, S.L. Velani. The Patterson measure for geometrically finite groups with parabolic elements, new and old. Proc. London Math. Soc. (3) 71 (1): 197–220, 1995.

    Google Scholar 

  19. D. Sullivan. The density at infinity of a discrete group of hyperbolic motions. Inst. Haut. Études Sci. Publ. Math. 50: 171–202, 1979.

    Google Scholar 

  20. D. Sullivan. Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups. Acta Math. 153: 259–277, 1984.

    Google Scholar 

  21. D. Sullivan. Discrete conformal groups and measurable dynamics. Bull. Amer. Math. Soc. 6: 57–73, 1982.

    Google Scholar 

Download references

Acknowledgements

We would like to thank the Mathematische Institut der Universität Göttingen for the warm hospitality during our research visit in Summer 2009. In particular, we would like to thank P. Mihailescu and S.J. Patterson for the excellent organization of the International Conference: Patterson 60 ++, which took place during the period of our visit.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Kesseböhmer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this paper

Cite this paper

Kesseböhmer, M., Stratmann, B.O. (2012). A Note on the Algebraic Growth Rate of Poincaré Series for Kleinian Groups. In: Blomer, V., Mihăilescu, P. (eds) Contributions in Analytic and Algebraic Number Theory. Springer Proceedings in Mathematics, vol 9. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1219-9_10

Download citation

Publish with us

Policies and ethics