Advertisement

Combined Systems for Maximum Substrate Conversion

  • Alessandra Adessi
  • Roberto De Philippis
  • Patrick C. Hallenbeck
Chapter

Abstract

In this section, a number of chapters have discussed various microbial processes for producing hydrogen from different substrates, either water, or some carbon compounds. Fermentative hydrogen production would appear to have some advantages, at least for nearer term application. For example, high volumetric rates of hydrogen production from a number of waste streams can already be demonstrated over long periods of time on the pilot scale using mixed cultures and nonsterile conditions. This is possible since known, relatively reactor technology can be used, and since bioprocess parameters and controls are relatively well understood.

Keywords

Two-stage systems Maximum hydrogen recovery Methanogenesis Photofermentation Microbial electrolysis Hydrogen–methane mixture Waste treatment COD 

References

  1. Abo-Hashesh M, Ghosh D, Tourigny A, Taous A, Hallenbeck PC (2011) Single stage photofermentative hydrogen production from glucose: an attractive alternative to two stage photofermentation or co-culture approaches. Int J Hydrogen Energ 36:13889–13895. doi: 10.1016/j.ijhydene.2011.02.122 Google Scholar
  2. Chen CY, Yang MH, Yeh KL, Liu CH, Chang JS (2008) Biohydrogen production using sequential two stage dark and photo fermentation processes. Int J Hydrogen Energ 33:4755–4762CrossRefGoogle Scholar
  3. Cheng S, Logan BE (2007) Sustainable and efficient biohydrogen production via electrohydrogenesis. Proc Natl Acad Sci USA 104:18871–18873PubMedCrossRefGoogle Scholar
  4. Claassen PAM, Budde MAW, Van Noorden GE, Hoekema S, Hazewinkel JHO, Van Groenestijn JW, De Vrije GJ (2004) Biological hydrogen production from agro-food by-products. Total food: exploiting co-products—minimizing waste. Institute of Food Research, NorwichGoogle Scholar
  5. de Vrije T, Bakker RR, Budde MAW, Lai MH, Mars AE, Claassen PAM (2009) Efficient hydrogen production from the lignocellulosic energy crop Miscanthus by extreme thermophilic bacteria Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana. Biotechnol Biofuel 2(1):12CrossRefGoogle Scholar
  6. Giordano A, Cantu C, Spagni A (2011) Monitoring the biochemical hydrogen and methane potential of the two-stage dark-fermentative process. Bioresource Technol 102(6):4474–4479CrossRefGoogle Scholar
  7. Hallenbeck PC (2005) Fundamentals of the fermentative production of hydrogen. Water Sci Technol 52(1–2):21–29PubMedGoogle Scholar
  8. Hallenbeck PC (2009) Fermentative hydrogen production: principles, progress, and prognosis. Int J Hydrogen Energ 34(17):7379–7389CrossRefGoogle Scholar
  9. Hallenbeck PC (2011) Microbial paths to renewable hydrogen production. Biofuels 2:285–302CrossRefGoogle Scholar
  10. Hallenbeck PC, Benemann JR (2002) Biological hydrogen production; fundamentals and limiting processes. Int J Hydrogen Energ 27(11–12):1185–1193CrossRefGoogle Scholar
  11. Hallenbeck PC, Ghosh D (2009) Advances in fermentative biohydrogen production: the way forward? Trends Biotechnol 27(5):287–297PubMedCrossRefGoogle Scholar
  12. Ike A, Toda N, Murakawa T, Hirata K, Miyamoto K (1997) Hydrogen photoproduction from starch in CO2-fixing microalgal biomass by a halotolerant bacterial community. In: Zaborsky OR (ed) Biohydrogen. Hawaii, Plenum, New York and London, pp 311–318Google Scholar
  13. Keskin T, Abo-Hashesh M, Hallenbeck PC (2011) Photofermentative hydrogen production from wastes. Bioresouce Technol 102:8557–8568Google Scholar
  14. Kim M-S, Lee TJ, Yoon YS, Lee IG, Moon KW (2001) Hydrogen production from food processing wastewater and sewage sludge by anaerobic dark fermentation combined with photo-fermentation. In: Miyake J, Matsunaga T, San Pietro A (eds) Biohydrogen II: an approach to environmentally acceptable technology. Pergamon, Oxford, pp 263–272Google Scholar
  15. Kim M-S, Baek J-S, Yun Y-S, Sim SJ, Park S, Kim S-C (2006) Hydrogen production from Chlamydomonas reinhardtii biomass using a two-step conversion process: anaerobic conversion and photosynthetic fermentation. Int J Hydrogen Energ 31:812–816CrossRefGoogle Scholar
  16. Kongjan P, O-Thong S, Angelidaki I (2011) Performance and microbial community analysis of two-stage process with extreme thermophilic hydrogen and thermophilic methane production from hydrolysate in UASB reactors. Bioresource Technol 102(5):4028–4035CrossRefGoogle Scholar
  17. Lalaurette E, Thammannagowda S, Mohagheghi A, Maness P-C, Logan BE (2009) Hydrogen production from cellulose in a two-stage process combining fermentation and electrohydrogenesis. Int J Hydrogen Energ 34(15):6201–6210CrossRefGoogle Scholar
  18. Liu BF, Ren NQ, Ding FXJ, Zheng GX, Guo WQ, Xu JF, Xie GJ (2009) Hydrogen production by immobilized R. faecalis RLD-53 using soluble metabolites from ethanol fermentation bacteria. Bioresource Technol 100:2719–2723CrossRefGoogle Scholar
  19. Ljunggren M, Zacchi G (2010) Techno-economic analysis of a two-step biological process producing hydrogen and methane. Bioresource Technol 101(20):7780–7788CrossRefGoogle Scholar
  20. Lo YC, Chen SD, Chen CY, Huang TI, Lin CY, Chang JS (2008) Combining enzymatic hydrolysis and dark-photofermentation processes for hydrogen production from starch feedstock: a feasibility study. Int J Hydrogen Energ 33:5224–5233CrossRefGoogle Scholar
  21. Lu L, Ren N, Xing D, Logan BE (2009) Hydrogen production with effluent from an ethanol-H2-coproducing fermentation reactor using a single-chamber microbial electrolysis cell. Biosens Bioelectron 24(10):3055–3060PubMedCrossRefGoogle Scholar
  22. Miyake J, Mao X-Y, Kawamura S (1984) Photoproduction of hydrogen from glucose by a co-culture of a photosynthetic bacterium and Clostridium butyricum. J Ferment Technol 62(6):531–535Google Scholar
  23. Nath K, Kumar A, Das D (2005) Hydrogen production by Rhodobacter sphaeroides strain O.U.001 using spent media of Enterobacter cloacae strain DM11. Appl Microbiol Biotechnol 68:533–541PubMedCrossRefGoogle Scholar
  24. Nath K, Muthukumar M, Kumar A, Das D (2008) Kinetics of two-stage fermentation process for the production of hydrogen. Int J Hydrogen Energ 33(4):1195–1203CrossRefGoogle Scholar
  25. Oh Y-K, Seol E-H, Kim M-S, Park S (2004) Photoproduction of hydrogen from acetate by a chemoheterotrophic bacterium Rhodopseudomonas palustris P4. Int J Hydrogen Energ 29:1115–1121Google Scholar
  26. Özgür E, Afsar N, de Vrije T, Yücel M, Gündüz U, Claassen PAM, Eroğlu I (2010a) Potential use of thermophilic dark fermentation effluents in photofermentative hydrogen production by Rhodobacter capsulatus. J Clean Prod 18(1): S23–S28. doi: 10.1016/j.jclepro.2010.02.020 Google Scholar
  27. Özgür E, Mars AE, Peksel B, Louwerse A, Yücel M, Gündüz U, Claassen PAM, Eroğlu I (2010b) Biohydrogen production from beet molasses by sequential dark and photofermentation. Int J Hydrogen Energ 35:511–517CrossRefGoogle Scholar
  28. Redwood MD, Macaskie LE (2006) A two-stage, two-organism process for biohydrogen from glucose. Int J Hydrogen Energ 31(11):1514–1521CrossRefGoogle Scholar
  29. Redwood MD, Macaskie LE (2007a) Method and apparatus for biohydrogen production. British patent application no. 0705583.3, UKGoogle Scholar
  30. Redwood MD, Macaskie LE (2007b) Efficient bio-H2 and PEM-FC catalyst. In: Proceedings of the 7th hydrogen power and theoretical engineering solutions international symposium (HyPoThESIS VII), Merida. CICY ISBN: 968-6114-21-1Google Scholar
  31. Redwood MD, Paterson-Beedle M, Macaskie LE (2009) Integrating dark and light bio-hydrogen production strategies: towards the hydrogen economy. Rev Environ Sci Biotechnol 8:149–185CrossRefGoogle Scholar
  32. Shi X-Y, Yu Q-H (2006) Continuous production of hydrogen from mixed volatile fatty acids with Rhodopseudomonas capsulata. Int J Hydrogen Energ 31:1641–1647CrossRefGoogle Scholar
  33. Siddiqui Z, Horan NJ, Salter M (2011) Energy optimisation from co-digested waste using a two-phase process to generate hydrogen and methane. Int J Hydrogen Energ 36(8):4792–4799CrossRefGoogle Scholar
  34. Su H, Cheng J, Zhou J, Song W, Cen K (2009a) Combination of dark- and photo-fermentation to enhance hydrogen production and energy conversion efficiency. Int J Hydrogen Energ 34:8846–8853CrossRefGoogle Scholar
  35. Su H, Cheng J, Zhou J, Song W, Cen K (2009b) Improving hydrogen production from cassava starch by combination of dark and photo fermentation. Int J Hydrogen Energ 34:1780–1786CrossRefGoogle Scholar
  36. Tao Y, Chen Y, Wu Y, He Y, Zhou Z (2007) High hydrogen yield from a two-step process of dark and photo-fermentation of sucrose. Int J Hydrogen Energ 32:200–206CrossRefGoogle Scholar
  37. Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100–180PubMedGoogle Scholar
  38. Ueno Y, Fukui H, Goto M (2007) Operation of a two-stage fermentation process producing hydrogen and methane from organic waste. Environ Sci Tech 41:1413–1419CrossRefGoogle Scholar
  39. Uyar B, Schumacher M, Gebicki J, Modigell M (2009) Photoproduction of hydrogen by Rhodobacter capsulatus from thermophilic fermentation effluent. Bioproc Biosyst Eng 32:603–606CrossRefGoogle Scholar
  40. van Niel CB (1944) The culture, general physiology, morphology, and classification of the non-sulfur purple and brown bacteria. Bact Rev 8:1–118PubMedGoogle Scholar
  41. Vincenzini M, Marchini A, Ena A, De Philippis R (1997) H2 and poly-β-hydroxybutyrate, two alternative chemicals from purple non sulfur bacteria. Biotechnol Lett 19:759–762CrossRefGoogle Scholar
  42. Wang AJ, Sun D, Cao GL, Wang HY, Ren NQ, Wu WM, Logan BE (2011) Integrated hydrogen production process from cellulose by combining dark fermentation, microbial fuel cells, and a microbial electrolysis cell. Bioresource Technol 102(5):4137–4143CrossRefGoogle Scholar
  43. Yang H, Guo L, Liu F (2010) Enhanced bio-hydrogen production from corncob by a two-step process: dark- and photo-fermentation. Bioresource Technol 101:2049–2052CrossRefGoogle Scholar
  44. Yang ZM, Guo RB, Xu XH, Fan XL, Luo SJ (2011) Hydrogen and methane production from lipid-extracted microalgal biomass residues. Int J Hydrogen Energ 36(5):3465–3470CrossRefGoogle Scholar
  45. Yokoi H, Mori S, Hirose J, Hayashi S, Takasaki Y (1998) H2 production from starch by a mixed culture of Clostridium butyricum and Rhodobacter sp. M-19. Biotechnol Lett 20(9):895–899CrossRefGoogle Scholar
  46. Yokoi H, Maki R, Hirose J, Hayashi S (2002) Microbial production of hydrogen from starch-manufacturing wastes. Biomass Bioenerg 22:389–395CrossRefGoogle Scholar
  47. Zhu H, Wakayama T, Asada Y, Miyake J (2001) Hydrogen production by four cultures with participation by anoxygenic photosynthetic bacterium and anaerobic bacterium in the presence of NH4+. Int J Hydrogen Energ 26(11):1149–1154CrossRefGoogle Scholar
  48. Zong W, Yu R, Ahang P, Fan M, Zhou Z (2009) Efficient hydrogen gas production from cassava and foodwaste by a two-step process of dark fermentation and photo-fermentation. Biomass Bioenerg 33:1458–1463CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Alessandra Adessi
    • 1
  • Roberto De Philippis
    • 1
  • Patrick C. Hallenbeck
    • 2
  1. 1.Department of Agricultural BiotechnologyUniversity of FlorenceFlorenceItaly
  2. 2.Département de microbiologie et immunologieUniversité de MontréalMontréalCanada

Personalised recommendations