Skip to main content

Hydrogen Production: Photofermentation

  • Chapter
  • First Online:

Abstract

In this chapter, the production of hydrogen with purple nonsulfur (PNS) bacteria is presented, describing the main physiological features of PNS bacteria, the enzymes involved in H2 production and the technological aspects related to the process of photofermentation. In particular, the conversion yields of the substrates, both synthetic and derived from waste products, utilized for H2 production are presented, together with some considerations on the efficiency of the conversion of the light energy into hydrogen energy. The problems related with the scaling up of the process and with the use of solar light are finally discussed, presenting some of the open problems still to be solved in order to make this process economically feasible.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adessi A, De Philippis R (In press) Purple Bacteria: Electron Acceptors and Donors. In: Lennarz WJ, Lane MD (eds.) Encyclopedia of Biological Chemistry, vol. x, pp. xxx–xxx,. Elsevier

    Article  CAS  Google Scholar 

  • Akkerman I, Janssen M, Rocha J, Wijffels RH (2002) Photobiological hydrogen production: photochemical efficiency and bioreactor design. Int J Hydrogen Energy 27:1195–1208

    Article  CAS  Google Scholar 

  • Asada Y, Tokumoto M, Aihara Y, Oku M, Ishimi K, Wakayama T (2006) Hydrogen production by co-cultures of Lactobacillus and a photosynthetic bacterium, Rhodobacter sphaeroides RV. Int J hydrogen Energy 31:1509–1513

    Article  CAS  Google Scholar 

  • Barbosa MJ, Rocha JMS, Tramper J, Wijffels RH (2001) Acetate as a carbon source for hydrogen production by photosynthetic bacteria. J Biotechnol 85:25–33

    Article  PubMed  CAS  Google Scholar 

  • Basak N, Das D (2007) The prospect of purple non-sulfur (PNS) photosynthetic bacteria for hydrogen production: the present state of the art. World J Microbiol Biotechnol 23:31–42

    Article  CAS  Google Scholar 

  • Boran E, Özgür E, van der Burg J, Yücel M, Gündüz U, Eroğlu I (2010) Biological hydrogen production by Rhodobacter capsulatus in a solar tubular photo bioreactor. J Clean Prod. doi:10.1016/j.jclepro.2010.03.018

  • Carlozzi P, Sacchi A (2001) Biomass production and studies on Rhodopseudomonas palustris grown in an outdoor, temperature controlled, underwater tubular photobioreactor. J Biotechnol 88:239–249

    Article  PubMed  CAS  Google Scholar 

  • Coulbeau A, Kelley BC, Vignais PM (1980) Hydrogenase activity in Rhodopseudomonas capsulata: relationship with nitrogenase activity. J Bacteriol 141–148

    Article  CAS  Google Scholar 

  • De Philippis R, Bianchi L, Colica G, Bianchini C, Peruzzini M, Vizza F (2007) From vegetable residues to hydrogen and electric power: feasibility of a two step process operating with purple non sulfur bacteria. J Biotechnol 131S:S122–S126

    Article  Google Scholar 

  • Elsen S, Dischert W, Coulbeau A, Bauer CE (2000) Expression of uptake hydrogenase and molybdenum nitrogenase in Rhodobacter capsulatus is coregulated by the RegB–RegA two-component regulatory system. J Biotechnol 182(10):2831–2837

    CAS  Google Scholar 

  • Eroğlu E, Eroğlu I, Gündüz U, Yücel M, Türker L (2002) Biological hydrogen production from olive mill wastewater by Rhodobacter sphaeroides O.U. 001. In: Gokçekus H (ed) International conference on environmental problems of Mediterranean region in Near East University, Nicosa, Northern Cyprus, Book of Abstracts

    Google Scholar 

  • Eroğlu I, Aslan K, Gündüz U, Yücel M, Türker L (1999) Substrate consumption rates for hydrogen production by Rhodobacter sphaeroides in a column photobioreactor. J Biotechnol 70:103–113

    Article  Google Scholar 

  • Eroğlu I, Tabanoğlu A, Gündüz U, Eroğlu E, Yücel M (2008) Hydrogen production by Rhodobacter sphaeroides O.U. 001 in a flat plate solar photobioreactor. Int J Hydrogen Energy 33:531–541

    Article  Google Scholar 

  • Evans HJ, Harker AR, Papen H, Russell SA, Hanus FJ, Zuber M (1987) Physiology, biochemistry, and genetics of the uptake hydrogenase in Rhizobia. Annu Rev Microbiol 41:335–361

    Article  PubMed  CAS  Google Scholar 

  • Fascetti E, Todini O (1995) Rb. sphaeroides RV cultivation and hydrogen production in a one- and two-stage chemostat. Appl Microbiol Biotechnol 44:300–305

    Article  CAS  Google Scholar 

  • Fascetti E, D’Addario E, Todini O, Robertiello A (1998) Photosynthetic hydrogen evolution with volatile organic acids derived from the fermentation of source selected municipal solid wastes. Int J Hydrogen Energy 23(9):753–760

    Article  CAS  Google Scholar 

  • Franchi E, Tosi C, Scolla G, Penna DG, Rodriguez F, Pedroni MP (2004) Metabolically engineered Rhodobacter sphaeroides RV strains for improved biohydrogen photoproduction combined with disposal of food wastes. Mar Biotechnol 6:552–565

    Article  PubMed  CAS  Google Scholar 

  • Gebicki J, Modigell M, Schumacher M, Van Der Burg J, Roebroeck E (2009) Development of photobioreactors for anoxygenic production of hydrogen by purple bacteria. Chem Eng Trans 18:363–366. doi:10.3303/CET0918058

    Google Scholar 

  • Harwood CS (2008) Degradation of aromatic compounds by purple nonsulfur bacteria. In: Hunter CD, Daldal F, Thurnauer MC, Beatty JT (eds) Advances in photosynthesis and respiration, vol 28, The purple phototrophic bacteria. Springer, Dordrecht, pp 577–594

    Google Scholar 

  • He D, Bultel Y, Magnin JP, Roux C, Willison JC (2005) Hydrogen photosynthesis by Rhodobacter capsulatus and its coupling to a PEM fuel cell. J Power Sources 141:19–23

    Article  CAS  Google Scholar 

  • He D, Bultel Y, Magnin JP, Willison JC (2006) Kinetic analysis of photosynthetic growth and photohydrogen production of two strains of Rhodobacter capsulatus. Enzyme Microb Technol 38:253–259

    Article  CAS  Google Scholar 

  • Imhoff JF (1995) The anoxygenic phototrophic purple bacteria. In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology, 2nd edn. Springer, New York, pp 631–637

    Google Scholar 

  • Imhoff JF (2006) The phototrophic alpha-proteobacteria. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes. Springer, New York, pp 41–64

    Chapter  Google Scholar 

  • Joshi HM, Tabita FR (1996) A global two component signal transduction system that integrates the control of photosynthesis, carbon dioxide assimilation, and nitrogen fixation. Proc Natl Acad Sci USA 93:14515–14520

    Article  PubMed  CAS  Google Scholar 

  • Kapdan IK, Kargi F (2006) Bio-hydrogen production from waste material. Enzyme Microb Technol 38:569–582

    Article  CAS  Google Scholar 

  • Kars G, Gündüz U, Rakhely G, Yücel M, Eroğlu I, Kovacs LK (2008) Improved hydrogen production by hydrogenase deficient mutant strain of Rhodobacter sphaeroides O.U.001. Int J Hydrogen Energy 33(12):3056–3060

    Article  CAS  Google Scholar 

  • Kawagoshi Y, Oki Y, Nakano I, Fujimoto A, Takahashi H (2010) Biohydrogen production by isolated halotolerant photosynthetic bacteria using long-wavelength light-emitting diode (LW-LED). Int J Hydrogen Energy. doi:10.1016/j.ijhydene.2009.11.121

  • Kim MS, Baek JS, Lee JK (2006) Comparison of H2 accumulation by Rhodobacter sphaeroides KD131 and its uptake hydrogenase and PHB synthase deficient mutant. Int J Hydrogen Energy 31:121–127

    Article  CAS  Google Scholar 

  • Koku H, Eroğlu I, Gündüz U, Yücel M, Türker L (2002) Aspects of metabolism of hydrogen production by Rhodobacter sphaeroides. Int J Hydrogen Energy 27:1315–1329

    Article  CAS  Google Scholar 

  • Koku H, Eroğlu I, Gündüz U, Yücel M, Türker L (2003) Kinetics of biological hydrogen production by the photosynthetic bacterium Rhodobacter sphaeroides O.U. 001. Int J Hydrogen Energy 28:381–388

    Article  CAS  Google Scholar 

  • Larimer FW, Chain P, Hauser L, Lamerdin J, Malfatti S, Do L, Land ML, Pelletier DA, Beatty JT, Lang AS, Tabita FR, Gibson JL, Hanson TE, Bobst C, Torres y Torres JL, Peres C, Harrison FH, Gibson J, Harwood CS (2004) Complete genome sequence of the metabolic versatile photosynthetic bacterium Rhodopseudomonas palustris. Nat Biotechnol 22:55–61

    Article  PubMed  CAS  Google Scholar 

  • Li RY, Fang HHP (2008) Hydrogen production characteristics of photoheterotrophic Rubrivivax gelatinosus L31. Int J Hydrogen Energy 33:974–980

    Article  CAS  Google Scholar 

  • Li X, Wang TH, Zhang SL, Chu J, Zhang M, Huang MZ, Zhuang YP (2009) Enhancement of phototrophic hydrogen production by Rhodobacter sphaeroides ZX-5 using a novel strategy-shaking and extra-light supplementation approach. Int J Hydrogen Energy 34:9677–9685

    Article  CAS  Google Scholar 

  • Madigan MT, Jung DO (2009) An overview of purple bacteria: systematic, physiology and habitats. In: Hunter CD, Daldal F, Thurnauer MC, Beatty JT (eds) Advances in photosynthesis and respiration, vol 28, The purple phototrophic bacteria. Springer, Dordrecht

    Google Scholar 

  • Masephol B, Drepper T, Paschen A, Groß S, Pawlowski A, Raabe K, Riedel KU, Klipp W (2002) Regulation of nitrogen fixation in the photoautotrophic purple bacterium Rhodobacter capsulatus. J Mol Microbiol Biotechnol 4(3):243–248

    Google Scholar 

  • McKinlay JB, Harwood CS (2010) Photobiological production of hydrogen gas as a biofuel. Curr Opin Biotech 21:244–251

    Article  CAS  Google Scholar 

  • Miyake J, Kawamura S (1987) Efficiency of the light conversion to hydrogen by the photosynthetic bacterium Rhodobacter sphaeroides. Int J Hydrogen Energy 12(3):147–155

    Article  CAS  Google Scholar 

  • Miyake J (1998) The science of biohydrogen. In: Zaborsky OR (ed) Biohydrogen. Plenum, London, pp 7–18

    Chapter  Google Scholar 

  • Miyake J, Wakayama T, Schnackenberg J, Arai T, Asada Y (1999) Simulation of the daily sunlight illumination pattern for bacterial photo-hydrogen production. J Biosci Bioeng 88(6):659–663

    Article  PubMed  CAS  Google Scholar 

  • Nagashima KVP, Hiraishi A, Shimada K, Matsuura K (1997) Horizontal transfer of genes coding for the photosynthetic reaction centers of purple bacteria. J Mol Evol 45(2):121–136

    Article  Google Scholar 

  • Nath K, Das D (2005) Hydrogen production using Rhodobacter sphaeroides strain O.U. 001 using spent media of Enterobacter cloacae strain DM11. Appl Microbiol Biotechnol 68:533–541

    Article  PubMed  CAS  Google Scholar 

  • Ogbonna JC, Soejima T, Tanaka H (1999) An integrated solar and artificial light system for internal illumination of photobioreactors. J Biotechnol 70:289–297

    Article  PubMed  CAS  Google Scholar 

  • Ooshima H, Takakuwa S, Katsuda T, Okuda M, Shirasawa T, Azuma M, Kato J (1998) Production of hydrogen by a hydrogenase deficient mutant of Rhodobacter capsulatus. J Ferment Bioeng 85:470–475

    Article  CAS  Google Scholar 

  • Özgür E, Uyar B, Öztürk Y, Yücel M, Gündüz U, Eroğlu I (2009) Biohydrogen production by Rhodobacter capsulatus on acetate at fluctuating temperatures. Resour Conserv Recycl. doi:10.1016/j.resconrec.2009.06.002

  • Öztürk Y, Yücel M, Daldal F, Mandacı S, Gündüz U, Türker L, Eroğlu I (2006) Hydrogen production by using Rhodobacter capsulatus mutants with genetically modified electron transfer chains. Int J Hydrogen Energy 31:1545–1552

    Article  Google Scholar 

  • Redwood MD, Macaskie LE (2007) Method and apparatus for biohydrogen production. British patent application no. 0705583.3

    Google Scholar 

  • Redwood MD, Paterson-Beedle M, Macaskie LE (2009) Integrating dark and light bio-hydrogen production strategies: towards the hydrogen economy. Rev Environ Sci Biotechnol 8:149–185

    Article  CAS  Google Scholar 

  • Richardson DJ, Berks BC, Russell DA, Spiro S, Taylor CJ (2001) Functional, biochemical and genetic diversity of prokaryotic nitrate reductase. Cell Mol Life Sci 58(2):165–178

    Article  PubMed  CAS  Google Scholar 

  • Sander J, Dahl C (2008) Metabolism of inorganic sulfur compounds in purple bacteria. In: Hunter CD, Daldal F, Thurnauer MC, Beatty JT (eds) Advances in photosynthesis and respiration, vol 28, The purple phototrophic bacteria. Springer, Dordrecht, pp 595–622

    Google Scholar 

  • Sasikala K, Ramana CV, Raghuveer Rao P, Subrahmanyam M (1990) Effect of gas phase on the photoproduction of hydrogen and substrate conversion efficiency in the photosynthetic bacterium Rhodobacter sphaeroides O.U. 001. Int J Hydrogen Energy 15(7):795–797

    Article  CAS  Google Scholar 

  • Sasikala K, Ramana CV (1991) Photoproduction of hydrogen from waste water of a lactic acid fermentation plant by a purple non-sulfur photosynthetic bacterium Rhodobacter sphaeroides O.U. 001. Indian J Exp Biol 29:74–75

    CAS  Google Scholar 

  • Shapleigh JP (2008) Dissimilatory and assimilatory nitrate reduction in the purple photosynthetic bacteria. In: Hunter CD, Daldal F, Thurnauer MC, Beatty JT (eds) Advances in photosynthesis and respiration, vol 28, The purple phototrophic bacteria. Springer, Dordrecht, pp 623–642

    Google Scholar 

  • Singh SP, Srivastava SC, Pandey KD (1994) Hydrogen production by Rhodopseudomonas at the expense of vegetable starch, sugarcane juice and whey. Int J Hydrogen Energy 19(5):437–440

    Article  CAS  Google Scholar 

  • Tabita FR (1995) The biochemistry and metabolic regulation of carbon metabolism and CO2 fixation in purple bacteria. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer, Dordrecht, pp 885–914

    Google Scholar 

  • Tao Y, He Y, Wu Y, Liu F, Li X, Zong W, Zhou Z (2008) Characteristics of a new photosynthetic bacterial strain for hydrogen production and its application in wastewater treatment. Int J Hydrogen Energy 33(3):963–973

    Article  CAS  Google Scholar 

  • Türkaslan S, Yigit DÖ, Aslan K, Eroğlu I, Gündüz U (1998) Photobiological hydrogen production by Rhodobacter sphaeroides O.U. 001 by utilization of waste water from milk industry. In: Zaborsku OR (ed) Biohydrogen. Plenum, New York

    Google Scholar 

  • Ugwu CU, Aoyagi H, Uchiyama H (2007) Photobioreactors for mass cultivation of algae. Bioresour Technol 99:4021–4028

    Article  PubMed  Google Scholar 

  • Uyar B, Eroğlu I, Yücel M, Gündüz U, Türker L (2007) Effect of light intensity, wavelength and illumination protocol on hydrogen production in photobioreactors. Int J Hydrogen Energy 32:4670–4677

    Article  CAS  Google Scholar 

  • Vignais PM (2008) Regulation of hydrogenase gene expression. In: Hunter CD, Daldal F, Thurnauer MC, Beatty JT (eds) Advances in photosynthesis and respiration, vol 28, The purple phototrophic bacteria. Springer, Dordrecht, pp 743–757

    Google Scholar 

  • Vincenzini M, Marchini A, Ena A, De Philippis R (1997) H2 and poly-β-hydroxybutyrate, two alternative chemicals from purple non sulfur bacteria. Biotechnol Lett 19(8):759–762

    Article  CAS  Google Scholar 

  • Wakayama T, Miyake J (2002) Light shade bands for the improvement of solar hydrogen production efficiency by Rhodobacter sphaeroides RV. Int J Hydrogen Energy 27:1495–1500

    Article  CAS  Google Scholar 

  • Yagi K, Maeda I, Idehara K, Miura Y, Akano T, Fukatu K, Ikuta Y, Nakamura HK (1994) Removal of inhibition by ammonium ion in nitrogenase-dependent hydrogen evolution in a marine ­photosynthetic bacterium Rhodopseudomonas sp. strain W-1S. Biochem Biotech 45/46(1):429–436

    Article  CAS  Google Scholar 

  • Yetis M, Gündüz U, Eroğlu I, Yücel M, Türker L (2000) Photoproduction of hydrogen from sugar refinery wastewater by Asada Y, Miyake J O.U. 001. Int J Hydrogen Energy 25:1035–1041

    Article  CAS  Google Scholar 

  • Zannoni D, Schoepp-Cothenet B, Hosler J (2008) Respiration and respiratory complexes. In: Hunter CD, Daldal F, Thurnauer MC, Beatty JT (eds) Advances in photosynthesis and respiration, vol 28, The purple phototrophic bacteria. Springer, Dordrecht, pp 537–561

    Google Scholar 

  • Zhu H, Suzuki T, Tsygankov AA, Asada Y, Miyake J (1999a) Hydrogen production from tofu wastewater by Rhodobacter sphaeroides immobilized in agar gels. Int J Hydrogen Energy 24:305–310

    Article  CAS  Google Scholar 

  • Zhu H, Wakayama T, Suzuki T, Asada Y, Miyake J (1999b) Entrapment of Rhodobacter sphaeroides in cationic polymer/agar gels for hydrogen production in the presence of NH4+. J Biosci Bioeng 88(5):507–512

    Article  PubMed  CAS  Google Scholar 

  • Zhu H, Wakayama T, Asada Y, Miyake J (2001) Hydrogen production by four cultures with participation by anoxygenic photosynthetic bacterium and anaerobic bacterium in the presence of NH4+. Int J Hydrogen Energy 26(11):1149–1154

    Article  CAS  Google Scholar 

  • Zinchenko VV, Kopteva AV, Belavina NV, Mitronova TN, Frolova VD, Shestakov SV (1991) The study of Rhodobacter sphaeroides mutants of different type with derepressed nitrogenase. Genetika 27(6):991–999

    CAS  Google Scholar 

  • Zinchenko VV, Babykin M, Glaser V, Mekhedov S, Shestakov SV (1997) Mutation in ntrC gene leading to the derepression of nitrogenase synthesis in Rhodobacter sphaeroides. FEMS Microbiol Lett 147:57–61

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the Italian Ministry of University and Research (MIUR) (FISR, “IDROBIO” Project), Italian Ministry of Agricultural, Food and Forest Politics (MIPAAF) (“IMERA” Project), and Ente Cassa di Risparmio di Firenze (“Firenze Hydrolab” Project) that partially supported the research carried out in their laboratory and mentioned in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto De Philippis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Adessi, A., De Philippis, R. (2012). Hydrogen Production: Photofermentation. In: Hallenbeck, P. (eds) Microbial Technologies in Advanced Biofuels Production. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1208-3_4

Download citation

Publish with us

Policies and ethics