Skip to main content

Novel Strategies for Production of Medium and High Chain Length Alcohols

  • Chapter
  • First Online:
Microbial Technologies in Advanced Biofuels Production

Abstract

Fermentation-derived ethanol is currently widely used as transport fuel, both as such or as a blending component in gasoline (Antoni et al. 2007; Mielenz 2001). However, longer chain alcohols have higher energy densities and are less soluble in water than ethanol, which are important advantages for their use as liquid transport fuels (Zhang et al. 2008). Butanol, a linear four-carbon-long alcohol, is one of the longest chain alcohols (together with 2,3-butanediol) found as natural major end product of microbial fermentation. It represents an important bulk chemical widely used in industry as solvent (e.g., in lacquers and paints), or as intermediate in chemical syntheses (see Sect. 11.2). The annual production of butanol has been estimated at approximately 2.8 million tons in 2006, with increasing demand and capacity in the coming years (Shao et al. 2007).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ali MA, Halim H (2004) Properties of MTBE and other oxigenates. In: Halim H, Ali MA (eds) Handbook of MTBE and other gasoline oxigenates. CRC press, Boca Raton, FL

    Google Scholar 

  • Allcock ER, Reid SJ, Jones DT, Woods DR (1981) Autolytic activity of an autolysin-deficient mutant of Clostridium acetobutylicum. Appl Environ Microbiol 42:929–935

    PubMed  CAS  Google Scholar 

  • Andrade JC, Vasconcelos I (2003) Continuous cultures of Clostridium acetobutylicum: culture stability and low-grade glycerol utilization. Biotechnol Lett 25:121–125

    PubMed  CAS  Google Scholar 

  • Andreesen JR, Bahl H, Gottschalk G (1989) Introduction to the physiology and biochemistry of the Genus Clostridium. In: Minton NP, Clark DJ (eds) Biotechnology handbooks, vol 3. Plenum press, New York

    Google Scholar 

  • Anonymous (2006) BP-DuPont biofuels fact sheet. vol 2009. BP-Dupont

    Google Scholar 

  • Antoni D, Zverlov VV, Schwarz WH (2007) Biofuels from microbes. Appl Microbiol Biotechnol 77:23–35

    PubMed  CAS  Google Scholar 

  • Atsumi S, Liao JC (2008a) Directed evolution of Methanococcus jannaschii citramalate synthase for biosynthesis of 1-propanol and 1-butanol by Escherichia coli. Appl Environ Microbiol 74:7802–7808

    PubMed  CAS  Google Scholar 

  • Atsumi S, Liao JC (2008b) Metabolic engineering for advanced biofuels production from Escherichia coli. Curr Opin Biotechnol 19:414–419

    PubMed  CAS  Google Scholar 

  • Atsumi S, Cann AF, Connor MR, Shen CR, Smith KM, Brynildsen MP, Chou KJY, Hanai T, Liao JC (2008a) Metabolic engineering of Escherichia coli for 1-butanol production. Metab Eng 10:305–311

    PubMed  CAS  Google Scholar 

  • Atsumi S, Hanai T, Liao JC (2008b) Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451:86–89

    PubMed  CAS  Google Scholar 

  • Atsumi S, Wu T-Y, Eckl E-M, Hawkins S, Buelter T, Liao J (2010) Engineering the isobutanol biosynthetic pathway in Escherichia coli by comparison of three aldehyde reductase/alcohol dehydrogenase genes. Appl Microbiol Biotechnol 85:651–657

    PubMed  CAS  Google Scholar 

  • Baer SH, Blaschek HP, Smith TL (1987) Effect of butanol challenge and temperature on lipid composition and membrane fluidity of butanol-tolerant Clostridium acetobutylicum. Appl Environ Microbiol 53:2854–2861

    PubMed  CAS  Google Scholar 

  • Bahl H, Gottwald M, Kuhn A, Rale V, Andersch W, Gottschalk G (1986) Nutritional factors affecting the ratio of solvents produced by Clostridium acetobutylicum. Appl Environ Microbiol 52:169–172

    PubMed  CAS  Google Scholar 

  • Bao G, Wang R, Zhu Y, Dong H, Mao S, Zhang Y, Chen Z, Li Y, Ma Y (2011) Complete genome sequence of Clostridium acetobutylicum DSM 1731, a solvent-producing strain with multi­replicon genome architecture. J Bacteriol 193:5007–5008

    PubMed  CAS  Google Scholar 

  • Barton WE, Daugulis AJ (1992) Evaluation of solvents for extractive fermentation with Clostridium acetobutylicum and the use of poly(propylene glycol) 1200. Appl Microbiol Biotechnol 36:632–639

    CAS  Google Scholar 

  • Beesch SC (1952) Acetone-butanol fermentation of sugars. Ind Eng Chem 44:1677–1682

    CAS  Google Scholar 

  • Beesch SC (1953) Acetone-butanol fermentation of starches. Appl Microbiol 1:85–95

    PubMed  CAS  Google Scholar 

  • Beijerinck MW (1893) Über die butylalkoholgärung und das butyl ferment. Verhandel Akad Wetenschappen Amsterdam: 3–51

    Google Scholar 

  • Bermejo LL, Welker NE, Papoutsakis ET (1998) Expression of Clostridium acetobutylicum ATCC 824 genes in Escherichia coli for acetone production and acetate detoxification. Appl Environ Microbiol 64:1079–1085

    PubMed  CAS  Google Scholar 

  • Biebl H (2001) Fermentation of glycerol by Clostridium pasteurianum – batch and continuous culture studies. J Ind Microbiol Biotechnol 27:18–26

    PubMed  CAS  Google Scholar 

  • Borden JR, Papoutsakis ET (2007) Dynamics of genomic-library enrichment and identification of solvent tolerance genes for Clostridium acetobutylicum. Appl Environ Microbiol 73:3061–3068

    PubMed  CAS  Google Scholar 

  • Borden JR, Jones SW, Indurthi D, Chen Y, Terry Papoutsakis E (2010) A genomic-library based discovery of a novel, possibly synthetic, acid-tolerance mechanism in Clostridium acetobutylicum involving non-coding RNAs and ribosomal RNA processing. Metab Eng 12:268–281

    PubMed  CAS  Google Scholar 

  • Bowring SN, Morris JG (1985) Mutagenesis of Clostridium acetobutylicum. J Appl Bacteriol 58:577–584

    PubMed  CAS  Google Scholar 

  • Cann AF, Liao JC (2008) Production of 2-methyl-1-butanol in engineered Escherichia coli. Appl Microbiol Biotechnol 81:89–98

    PubMed  CAS  Google Scholar 

  • Cann AF, Liao JC (2010) Pentanol isomer synthesis in engineered microorganisms. Appl Microbiol Biotechnol 85:893–899

    PubMed  CAS  Google Scholar 

  • Chen CK, Blaschek HP (1999) Effect of acetate on molecular and physiological aspects of Clostridium beijerinckii NCIMB 8052 solvent production and strain degeneration. Appl Environ Microbiol 65:499–505

    PubMed  CAS  Google Scholar 

  • Chiao J-s, Sun Z-h (2007) History of the acetone-butanol-ethanol fermentation industry in China: development of continuous production technology. J Mol Microbiol Biotechnol 13:12–14

    PubMed  CAS  Google Scholar 

  • Claassen PAM, Budde MAW, Buitelaar RM, Tan GBN (1998) Production of acetone butanol and ethanol (ABE) from agricultural residues or domestic organic waste (DOW) and long-term fermentation on glucose. In: Kopetz H, Weber T, Palz W, Chartier P, Ferrero GL (eds) 10th European conference and technology exhibition “Biomass for Energy and Industry”. C.A.R.M.E.N, Rimpar, Germany, Würzburg, Germany, pp 138–141

    Google Scholar 

  • Connor MR, Liao JC (2008) Engineering Escherichia coli for the production of 3-methyl-1-butanol. Appl Environ Microbiol 74:5769–5775

    PubMed  CAS  Google Scholar 

  • Cornillot E, Croux C, Soucaille P (1997) Physical and genetic map of the Clostridium acetobutylicum ATCC 824 chromosome. J Bacteriol 179:7426–7434

    PubMed  CAS  Google Scholar 

  • Crabbe E, Nolasco-Hipolito C, Kobayashi G, Sonomoto K, Ishizaki A (2001) Biodiesel production from crude palm oil and evaluation of butanol extraction and fuel properties. Process Biochem 37:65–71

    CAS  Google Scholar 

  • de Graaf AJ, Kooijman M, Hennink WE, Mastrobattista E (2009) Nonnatural amino acids for site-specific protein conjugation. Bioconjug Chem 20:1281–1295

    PubMed  Google Scholar 

  • Desai RP, Harris LM, Welker NE, Papoutsakis ET (1999) Metabolic flux analysis elucidates the importance of the acid-formation pathways in regulating solvent production by Clostridium acetobutylicum. Metab Eng 1:206–213

    PubMed  CAS  Google Scholar 

  • Dürre P (1998) New insights and novel developments in clostridial acetone/butanol/isopropanol fermentation. Appl Microbiol Biotechnol 49:639–648

    Google Scholar 

  • Dürre P (2007) Biobutanol: an attractive biofuel. Biotechnol J 2:1525–1534

    PubMed  Google Scholar 

  • Dürre P (2008) Fermentative butanol production. Bulk chemical and biofuel. Ann N Y Acad Sci 1125:353–362

    PubMed  Google Scholar 

  • Dürre P, Bahl H (1996) Microbial production of acetone/butanol/isopropanol. Products of primary metabolism. VCH Publisher, Weinheim, Germany, pp 229–268

    Google Scholar 

  • Ennis BM, Gutierrez NA, Maddox IS (1986) The acetone-butanol-ethanol fermentation: a current assessment. Process Biochem 21:131–147

    CAS  Google Scholar 

  • Evans PJ, Wang HY (1988) Enhancement of butanol formation by Clostridium acetobutylicum in the presence of decanol-oleyl mixed extractants. Appl Environ Microbiol 54:1662–1667

    PubMed  CAS  Google Scholar 

  • Ezeji T, Blaschek HP (2008) Fermentation of dried distillers’ grains and solubles (DDGS) hydrolysates to solvents and value-added products by solventogenic clostridia. Bioresour Technol 99:5232–5242

    PubMed  CAS  Google Scholar 

  • Ezeji TC, Qureshi N, Blaschek HP (2004a) Acetone butanol ethanol (ABE) production from concentrated substrate: reduction in substrate inhibition by fed-batch technique and product inhibition by gas stripping. Appl Microbiol Biotechnol 63:653–658

    PubMed  CAS  Google Scholar 

  • Ezeji TC, Qureshi N, Blaschek HP (2004b) Butanol fermentation research: upstream and downstream manipulations. Chem Rec 4:305–314

    PubMed  CAS  Google Scholar 

  • Fabret C, Ehrlich SD, Noirot P (2002) A new mutation delivery system for genome-scale approaches in Bacillus subtilis. Mol Microbiol 46:25–36

    PubMed  CAS  Google Scholar 

  • Fayolle F, Vandecasteele J-P, Monot F (2001) Microbial degradation and fate in the environment of methyl tert-butyl ether and related fuel oxygenates. Appl Microbiol Biotechnol 56:339–349

    PubMed  CAS  Google Scholar 

  • Friedl A, Qureshi N, Maddox IS (1991) Continuous acetone-butanol-ethanol (ABE) fermentation using immobilized cells of Clostridium acetobutylicum in a packed bed reactor and integration with product removal by pervaporation. Biotechnol Bioeng 38:518–527

    PubMed  CAS  Google Scholar 

  • Gapes JR (2000) The economics of acetone-butanol fermentation: theoretical and market considerations. J Mol Microbiol Biotechnol 2:27–32

    PubMed  CAS  Google Scholar 

  • Girbal L, Soucaille P (1998) Regulation of solvent production in Clostridium acetobutylicum. Trends Biotechnol 16:11–16

    CAS  Google Scholar 

  • Glassner D (2009) Hydrocarbon fuels from plant biomass. Oral presentation. Conference Biomass 2009: Fueling our future, 17–18 March 2009, National Harbor, Maryland, USA

    Google Scholar 

  • González-Pajuelo M, Meynial-Salles I, Mendes F, Andrade JC, Vasconcelos I, Soucaille P (2005) Metabolic engineering of Clostridium acetobutylicum for the industrial production of 1,3-propanediol from glycerol. Metab Eng 7:329–336

    PubMed  Google Scholar 

  • Green EM, Bennett GN (1996) Inactivation of an aldehyde/alcohol dehydrogenase gene from C. acetobutylicum ATCC 824. Appl Biochem Biotechnol 57–58:213–221

    PubMed  Google Scholar 

  • Green EM, Bennett GN (1998) Genetic manipulation of acid and solvent formation in Clostridium acetobutylicum ATCC 824. Biotechnol Bioeng 58:215–221

    PubMed  CAS  Google Scholar 

  • Groot WJ, Luyben K (1986) In situ recovery by adsorption in the butanol/isopropanol batch fermentation. Appl Microbiol Biotechnol 25:29–31

    CAS  Google Scholar 

  • Groot WJ, Van der Oever CE, Kossen NWF (1984) Pervaporation for simultaneous product recovery in the butanol/isopropanol batch fermentation. Biotechnol Lett 6:709–714

    CAS  Google Scholar 

  • Groot WJ, van der Lans RGJM, Luyben KCAM (1989) Batch and continuous butanol fermentations with free cells: integration with product recovery by gas-stripping. Appl Microbiol Biotechnol 32:305–308

    CAS  Google Scholar 

  • Groot WJ, den Reyer MCH, de la Faille TB, van der Lans RGJM, Luyben KCAM (1991) Integration of pervaporation and continuous butanol fermentation with immobilized cells. I: experimental results. Chem Eng J 46:B1–B10

    CAS  Google Scholar 

  • Groot WJ, van der Lans RGJM, Luyben KCAM (1992) Technologies for butanol recovery integrated with fermentations. Process Biochem 27:61–75

    CAS  Google Scholar 

  • Hanai T, Atsumi S, Liao JC (2007) Engineered synthetic pathway for isopropanol production in Escherichia coli. Appl Environ Microbiol 73:7814–7818

    CAS  Google Scholar 

  • Harris LM, Blank L, Desai RP, Welker NE, Papoutsakis ET (2001) Fermentation characterization and flux analysis of recombinant strains of Clostridium acetobutylicum with an inactivated solR gene. J Ind Microbiol Biotechnol 27:322–328

    PubMed  CAS  Google Scholar 

  • Heap JT, Pennington OJ, Cartman ST, Carter GP, Minton NP (2007) The ClosTron: a universal gene knock-out system for the genus Clostridium. J Microbiol Methods 70:452–464

    PubMed  CAS  Google Scholar 

  • Heap JT, Cartman ST, Pennington OJ, Cooksley CM, Scott JC, Blount B, Burns DA, Minton NP (2009) Development of genetic knock-out systems for Clostridia. In: Brüggemann H, Gottschalk G (eds) Clostridia molecular biology in the post-genomic era. Caister Academic Press, Norfolk, UK, pp 179–198

    Google Scholar 

  • Hermann M, Fayolle F, Marchal R, Podvin L, Sebald M, Vandecasteele JP (1985) Isolation and characterization of butanol-resistant mutants of Clostridium acetobutylicum. Appl Environ Microbiol 50:1238–1243

    PubMed  CAS  Google Scholar 

  • Hiu SF, Zhu CX, Yan RT, Chen JS (1987) Butanol-ethanol dehydrogenase and butanol-ethanol-isopropanol dehydrogenase: Different alcohol dehydrogenases in two strains of Clostridium beijerinckii (Clostridium butylicum). Appl. Environ. Microbiol. 53(4):697–703.

    PubMed  CAS  Google Scholar 

  • Hu S, Zheng H, Gu Y, Zhao J, Zhang W, Yang Y, Wang S, Zhao G, Yang S, Jian W (2011) Comparative genomic and transcriptomic analysis revealed genetic characteristics related to solvent formation and xylose utilization in Clostridium acetobutylicum EA 2018. BMC Genomics 12(1):93

    CAS  Google Scholar 

  • Huang JC, Meagher MM (2001) Pervaporative recovery of n-butanol from aqueous solutions and ABE fermentation broth using thin-film silicalite-filled silicone composite membranes. J Membr Sci 192:231–242

    CAS  Google Scholar 

  • Huang TJ, Sorensen CM, Varghese P (1990) Process for the production of ethers. In: office Up (ed), US 4,906,787

    Google Scholar 

  • Inui M, Suda M, Kimura S, Yasuda K, Suzuki H, Toda H, Yamamoto S, Okino S, Suzuki N, Yukawa H (2008) Expression of Clostridium acetobutylicum butanol synthetic genes in Escherichia coli. Appl Microbiol Biotechnol 77:1305–1316

    PubMed  CAS  Google Scholar 

  • Ishizaki A, Michiwaki S, Crabbe E, Kobayashi G, Sonomoto K, Yoshino S (1999) Extractive acetone-butanol-ethanol fermentation using methylated crude palm oil as extractant in batch culture of Clostridium saccharoperbutylacetonicum N1-4 (ATCC 13564). J Biosci Bioeng 87:352–356

    PubMed  CAS  Google Scholar 

  • Johnson JL, Chen J-S (1995) Taxonomic relationships among strains of Clostridium acetobutylicum and other phenotypically similar organisms. FEMS Microbiol Rev 17:233–240

    CAS  Google Scholar 

  • Johnson JL, Toth J, Santiwatanakul S, Chen JS (1997) Cultures of “Clostridium acetobutylicum” from various collections comprise Clostridium acetobutylicum, Clostridium beijerinckii, and two other distinct types based on DNA-DNA reassociation. Int J Syst Bacteriol 47:420–424

    PubMed  CAS  Google Scholar 

  • Jojima T, Inui M, Yukawa H (2008) Production of isopropanol by metabolically engineered Escherichia coli. J Appl Microbiol Biotechnol 77:1219–1224

    CAS  Google Scholar 

  • Jones DT (2001) Applied acetone-butanol fermentation. In: Bahl H, Dürre P (eds) Clostridia biotechnology and medical application. Wiley-VCH, Weinheim, Germany, pp 125–168

    Google Scholar 

  • Jones DT, Keis S (1995) Origins and relationship of industrial solvent-producing clostridial strains. FEMS Microbiol Rev 17:233–240

    Google Scholar 

  • Jones DT, Woods DR (1986) Acetone-butanol fermentation revisited. Microbiol Rev 50:484–524

    PubMed  CAS  Google Scholar 

  • Karberg M, Guo HT, Zhong J, Coon R, Perutka J, Lambowitz AM (2001) Group II introns as controllable gene targeting vectors for genetic manipulation of bacteria. Nat Biotechnol 19:1162–1167

    PubMed  CAS  Google Scholar 

  • Keis S, Shaheen R, Jones D (2001) Emended descriptions of Clostridium acetobutylicum and Clostridium beijerinckii, and descriptions of Clostridium saccharoperbutylacetonicum sp. nov. and Clostridium saccharobutylicum sp. nov. Int J Syst Evol Microbiol 51:2095–2103

    PubMed  CAS  Google Scholar 

  • Khramtsov N, Henck SA, Amerik A, Taillon BE (2010) Methods for the production of n-butanol. Arbor Fuel Inc., USA

    Google Scholar 

  • Kosaka T, Nakayama S, Nakaya K, Yoshino S, Furukawa K (2007) Characterization of the sol operon in butanol-hyperproducing Clostridium saccharoperbutylacetonicum strain N1-4 and its degeneration mechanism. Biosci Biotechnol Biochem 71:58–68

    PubMed  CAS  Google Scholar 

  • Ladisch MR (1991) Fermentation-derived butanol and scenarios for its uses in energy-related applications. Enzyme Microb Technol 13:280–283

    CAS  Google Scholar 

  • Lide DR (2008) Handbook of chemistry and physics, 89th edn. CRC Press, Boca Ratón, FL

    Google Scholar 

  • Lin Y-L, Blaschek HP (1983) Butanol production by a butanol-tolerant strain of Clostridium acetobutylicum in extruded corn broth. Appl Environ Microbiol 45:966–973

    PubMed  CAS  Google Scholar 

  • Linden JC, Moreira AR, Lenz TG (1986) Acetone and butanol. In: Cooney CL, Humphrey AE (eds) Comprehensive biotechnology The principles of biotechnology: engineering consideration. Pergamon press, Oxford, pp 915–931

    Google Scholar 

  • Liu Z, Ying Y, Li F, Ma C, Xu P (2010) Butanol production by Clostridium beijerinckii ATCC 55025 from wheat bran. J Ind Microbiol Biotechnol 37:495–501

    PubMed  CAS  Google Scholar 

  • López-Contreras AM, Smidt H, van der Oost J, Claassen PAM, Mooibroek H, de Vos WM (2001) Clostridium beijerinckii cells expressing Neocallimastix patriciarum glycoside hydrolases show enhanced lichenan utilization and solvent production. Appl Environ Microbiol 67: 5127–5133

    PubMed  Google Scholar 

  • López-Contreras AM, Gabor K, Martens AA, Renckens BAM, Claassen PAM, van der Oost J, de Vos WM (2004) Substrate-induced production and secretion of cellulases by Clostridium acetobutylicum. Appl Environ Microbiol 70:5238–5243

    PubMed  Google Scholar 

  • López-Contreras AM, Kuit W, Siemerink MAJ, Kengen SWM, Springer J, Claassen PAM (2010) Production of longer-chain alcohols from lignocellulosic biomass: butanol, isopropanol and 2,3-butanediol. In: Waldron K (ed) Bioalcohol production, vol 3, Woodhead publishing series in energy. Woodhead Publishing, Cambridge, UK, pp 415–460

    Google Scholar 

  • Maddox IS, Anne EM (1983) Production of n-Butanol by fermentation of wood hydrolysate. Biotechnol Lett 5:175–178

    CAS  Google Scholar 

  • Maddox IS, Qureshi N, Gutierrez NA (1993) Utilization of whey by Clostridia and process technology. In: Woods DR (ed) The Clostridia and biotechnology. Butterworth-Heinemann, Stoneham, pp 343–370

    Google Scholar 

  • Marchal R, Ropars M, Vandecasteele JP (1986) Conversion into acetone and butanol of lignocellulosic substrates pretreated by steam explosion. Biotechnol Lett 8:365–370

    CAS  Google Scholar 

  • Marchal R, Ropars M, Pourquié J, Fayolle F, Vandecasteele JP (1992) Large-scale enzymatic hydrolysis of agricultural lignocellulosic biomass. Part 2: conversion into acetone-butanol. Bioresour Technol 42:205–217

    CAS  Google Scholar 

  • Marlatt JA, Datta R (1986) Acetone-butanol fermentation process: development and economic evaluation. Biotechnol Prog 2:23–28

    PubMed  CAS  Google Scholar 

  • Matsumura M, Takehara S, Kataoka H (1992) Continuous butanol/isopropanol fermentation in down-flow column reactor coupled with pervaporation using supported liquid membrane. Biotechnol Bioeng 39:148–156

    PubMed  CAS  Google Scholar 

  • Meyer CL, Papoutsakis ET (1989) Increased levels of ATP and NADH are associated with increased solvent production in continuous cultures of Clostridium acetobutylicum. Appl Microbiol Biotechnol 30:450–459

    CAS  Google Scholar 

  • Mielenz JR (2001) Ethanol production from biomass: technology and commercialization status. Curr Opin Microbiol 4:324–329

    PubMed  CAS  Google Scholar 

  • Mills GA (1994) Status and future opportunities for conversion of synthesis gas to liquid fuels. Fuel 73:1243–1279

    CAS  Google Scholar 

  • Milne C, Eddy J, Raju R, Ardekani S, Kim P-J, Senger R, Jin Y-S, Blaschek H, Price N (2011) Metabolic network reconstruction and genome-scale model of butanol-producing strain Clostridium beijerinckii NCIMB 8052. Bmc Sys Biol 5(1):130

    CAS  Google Scholar 

  • Mitchell WJ (1998) Physiology of carbohydrate to solvent conversion by Clostridia. Adv Microb Physiol 39:31–130

    PubMed  CAS  Google Scholar 

  • Moss JT, Berkowitz AM, Oehlschlaeger MA, Blet J, Warth V, Glaude P-A, Battin-Leclerc F (2008) An experimental and kinetic modeling study of the oxidation of the four isomers of butanol. J Phys Chem 112:10843–10855

    CAS  Google Scholar 

  • Ni Y, Sun Z (2009) Recent progress on industrial fermentative production of acetone–butanol–ethanol by Clostridium acetobutylicum in China. Appl Microbiol Biotechnol 83(3):415–423, 0175–7598 (Print) 1432–0614 (Online)

    PubMed  CAS  Google Scholar 

  • Nimcevic D, Gapes JR (2000) The acetone-butanol fermentation in pilot plant and pre-industrial scale. J Mol Microbiol Biotechnol 2:15–20

    PubMed  CAS  Google Scholar 

  • Nölling J, Breton G, Omelchenko MV, Marakova KS, Zeng Q, Gibson R, Lee HM, Dubios J, Qiu D, Hitti J, Sequencing Center Production FaBT GTC, Wolf YI, Tatusov RL, Sabathe F, Doucette-Stamm L, Soucaille P, Daly MJ, Bennett GN, Koonin EV, Smith DR (2001) Genome sequence and comparative analysis of the solvent-producing bacterium Clostridium acetobutylicum. J Bacteriol 183:4823–4838

    PubMed  Google Scholar 

  • O’Neil MJ, Smith A, Heckelman PE (eds) (2001) The Merck index. Merck & Co, Inc, Whitehouse Station

    Google Scholar 

  • Oudshoorn A, van der Wielen LAM, Straathof AJJ (2009) Assessment of options for selective 1-butanol recovery from aqueous solutions. Ind Eng Chem Res 28:7325–7336

    Google Scholar 

  • Ozbay N, Oktar N (2009) Thermodynamic study of liquid phase synthesis of ethyl tert-butyl ether using tert-butyl alcohol and ethanol. J Chem Eng Data 54:3208–3214

    CAS  Google Scholar 

  • Parekh M, Blaschek HP (1999) Butanol production by hypersolvent-producing mutant Clostridium beijerinckii BA101 in corn steep water medium containing maltodextrin [or glucose, maltose or xylose]. Biotechnol Lett 21:45–48

    CAS  Google Scholar 

  • Parekh M, Formanek J, Blaschek HP (1998) Development of a cost-effective glucose-corn steep medium for production of butanol by Clostridium beijerinckii. J Ind Microbiol Biotechnol 21:187–191

    CAS  Google Scholar 

  • Pasteur L (1862) Extrait des proces-verbaux. Soc Chim Paris: 52

    Google Scholar 

  • Pringsheim H (1906) Ueber den ursprung des fuselöls und eine alkohole bildende bakterienfrom. Zentr Bakteriol Parasitenk Infektionskr Abt 15:300–321

    Google Scholar 

  • Qureshi N, Blaschek HP (1999) Production of acetone butanol ethanol (ABE) by a hyper-producing mutant strain of Clostridium beijerinckii BA101 and recovery by pervaporation. Biotechnol Prog 15:594–602

    PubMed  CAS  Google Scholar 

  • Qureshi N, Blaschek HP (2000) Butanol production using Clostridium beijferinckii BA101 hyper-butanol producing mutant strain and recovery by pervaporation. Appl Biochem Biotechnol 84–86:225–235

    PubMed  Google Scholar 

  • Qureshi N, Blaschek HP (2001) ABE production from corn: a recent economic evaluation. J Ind Microbiol Biotechnol 27:292–297

    PubMed  CAS  Google Scholar 

  • Qureshi N, Lolas A, Blaschek HP (2001a) Soy molasses as fermentation substrate for production of butanol using Clostridium beijerinckii BA101. J Ind Microbiol Biotechnol 26:290–295

    PubMed  CAS  Google Scholar 

  • Qureshi N, Meagher MM, Huang J, Hutkins RW (2001b) Acetone butanol ethanol (ABE) recovery by pervaporation using silicalite–silicone composite membrane from fed-batch reactor of Clostridium acetobutylicum. J Membr Sci 187:93–102

    CAS  Google Scholar 

  • Qureshi N, Hughes S, Maddox IS, Cotta MA (2005) Energy-efficient recovery of butanol from model solutions and fermentation broth by adsorption. Bioprocess Biosyst Eng 27:215–222

    PubMed  CAS  Google Scholar 

  • Qureshi N, Li XL, Hughes S, Saha BC, Cotta MA (2006) Butanol production from corn fiber xylan using Clostridium acetobutylicum. Biotechnol Prog 22:673–680

    PubMed  CAS  Google Scholar 

  • Qureshi N, Saha B, Cotta M (2007) Butanol production from wheat straw hydrolysate using Clostridium beijerinckii. Bioprocess Biosyst Eng 30:419–427

    PubMed  CAS  Google Scholar 

  • Qureshi N, Ezeji TC, Ebener J, Dien BS, Cotta MA, Blaschek HP (2008) Butanol production by Clostridium beijerinckii. Part I: use of acid and enzyme hydrolyzed corn fiber. Bioresour Technol 99:5915–5922

    PubMed  CAS  Google Scholar 

  • Qureshi N, Saha BC, Dien B, Hector RE, Cotta MA (2010a) Production of butanol (a biofuel) from agricultural residues: Part I – Use of barley straw hydrolysate. Biomass Bioenergy 34: 559–565

    CAS  Google Scholar 

  • Qureshi N, Saha BC, Hector RE, Dien B, Hughes S, Liu S, Iten L, Bowman MJ, Sarath G, Cotta MA (2010b) Production of butanol (a biofuel) from agricultural residues: Part II – Use of corn stover and switchgrass hydrolysates. Biomass Bioenergy 34:566–571

    CAS  Google Scholar 

  • Ravagnani A, Jennert KC, Steiner E, Grunberg R, Jefferies JR, Wilkinson SR, Young DI, Tidswell EC, Brown DP, Youngman P, Morris JG, Young M (2000) Spo0A directly controls the switch from acid to solvent production in solvent-forming clostridia. Mol Microbiol 37:1172–1185

    PubMed  CAS  Google Scholar 

  • Ren C, Gu Y, Hu S, Wu Y, Wang P, Yang Y, Yang C, Yang S, Jiang W (2010) Identification and inactivation of pleiotropic regulator CcpA to eliminate glucose repression of xylose utilization in Clostridium acetobutylicum. Metab Eng 12:446–454

    PubMed  CAS  Google Scholar 

  • Roffler SR, Blanch HW, Wilke CR (1987) In-situ recovery of butanol during fermentation. Bioprocess Eng 2:181–190

    CAS  Google Scholar 

  • Rogers P, Chen J-S, Zidwick MJ (2006) Organic acid and solvent production. Part III: butanol, acetone and iso-propanol; 1,3 and 1,2 propanediol production; and 2,3 butanediol production. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The Prokaryotes: symbiotic associations, biotechnology, applied microbiology, vol 1. Springer, New York, pp 672–755

    Google Scholar 

  • Roos JW, McLaughlin JK, Papoutsakis ET (1985) The effect of pH on nitrogen supply, cell lysis, and solvent production in fermentations of C. acetobutylicum. Biotechnol Bioeng 27:681–694

    PubMed  CAS  Google Scholar 

  • Rose AH (1961) Acetone-butanol fermentation. In: Rose AH (ed) Industrial microbiology. Butterworth, London, pp 160–166

    Google Scholar 

  • Schardinger F (1905) Bacillus macerans, ein aceton bildender rottebacillus. Zentr Bakt Parasitenk 14:772–781

    CAS  Google Scholar 

  • Schoutens GH, Groot WJ (1985) Economic feasibility of the production of isopropanol-butanol-ethanol fuels from whey permeate. Process Biochem 20:117–121

    CAS  Google Scholar 

  • Schuster KC, Goodacre R, Gapes JR, Young M (2001) Degeneration of solventogenic Clostridium strains monitored by Fourier transform infrared spectroscopy of bacterial cells. J Ind Microbiol Biotechnol 27:314–321

    PubMed  CAS  Google Scholar 

  • Shaheen R, Shirley M, Jones DT (2000) Comparative fermentations studies of industrial strains belonging to four species of solvent- producing Clostridia. J Mol Microbiol Biotechnol 2:115–124

    PubMed  CAS  Google Scholar 

  • Shao L, Hu S, Yang Y, Gu Y, Chen J, Yang Y, Jiang W, Yang S (2007) Targeted gene disruption by use of a group II intron (targetron) vector in Clostridium acetobutylicum. Cell Res 17: 963–965

    PubMed  CAS  Google Scholar 

  • Shen CR, Liao JC (2008) Metabolic engineering of Escherichia coli for 1-butanol and 1-propanol production via the keto-acid pathways. Metab Eng 10:312–320

    PubMed  CAS  Google Scholar 

  • Sillers R, Al-Hinai MA, Papoutsakis ET (2009) Aldehyde-alcohol dehydrogenase and/or thiolase overexpression coupled with CoA transferase downregulation lead to higher alcohol titers and selectivity in Clostridium acetobutylicum fermentations. Biotechnol Bioeng 102:38–49

    PubMed  CAS  Google Scholar 

  • Soucaille P, Joliff G, Izard A, Goma G (1987) Butanol tolerance and autobacteriocin production by Clostridium acetobutylicum. Curr Microbiol 14:295–299

    CAS  Google Scholar 

  • Soucaille P, Figge R, Croux C (2008) Process for chromosomal integration and DNA sequence replacement in clostridia. US, p 27

    Google Scholar 

  • Stephens GM, Holt RA, GottschalK JC, Morris JG (1985) Studies on the stability of solvent production by Clostridium acetobutylicum in continuous culture. J Appl Bacteriol 59:597–605

    Google Scholar 

  • Taconi KA, Venkataramanan KP, Johnson DT (2009) Growth and solvent production by Clostridium pasteurianum ATCC 6013 utilizing biodiesel-derived crude glycerol as the sole carbon source. Environ Progress Sust Energy 28:100–110

    CAS  Google Scholar 

  • Tomas CA, Alsaker KV, Bonarius HPJ, Hendriksen WT, Yang H, Beamish JA, Paredes CJ, Papoutsakis ET (2003a) DNA array-based transcriptional analysis of asporogenous, nonsolventogenic Clostridium acetobutylicum strains SKO1 and M5. J Bacteriol 185:4539–4547

    PubMed  CAS  Google Scholar 

  • Tomas CA, Welker NE, Papoutsakis ET (2003b) Overexpression of groESL in Clostridium acetobutylicum results in increased solvent production and tolerance, prolonged metabolism, and changes in the cell’s transcriptional program. Appl Environ Microbiol 69:4951–4965

    PubMed  CAS  Google Scholar 

  • Vane LM (2005) A review of pervaporation for product recovery from biomass fermentation processes. J Chem Technol Biotechnol 80:603–629

    CAS  Google Scholar 

  • Vasconcelos I, Girbal L, Soucaille P (1994) Regulation of carbon and electron flow in Clostridium acetobutylicum grown in chemostat culture at neutral pH on mixtures of glucose and glycerol. J Bacteriol 176:1443–1450

    PubMed  CAS  Google Scholar 

  • von Abendroth G, Stripp S, Silakov A, Croux C, Soucaille P, Girbal L, Happe T (2008) Optimized over-expression of [FeFe] hydrogenases with high specific activity in Clostridium acetobutylicum. Int J Hydrogen Res 33:6076–6081

    Google Scholar 

  • Walton MT, Martin JL (1979) Production of butanol-acetone by fermentation. In: Peppler HJ, Perlman D (eds) Microbial technology, vol 1. Academic press, New York, pp 187–209

    Google Scholar 

  • Westhuizen A, Jones DT, Woods DR (1982) Autolytic activity and butanol tolerance of Clostridium acetobutylicum. Appl Environ Microbiol 44:1277–1281

    Google Scholar 

  • Withers ST, Gottlieb SS, Lieu B, Newman JD, Keasling JD (2007) Identification of isopentenol bisynthetic genes from Bacillus subtillis by a screening method based on isoprenoid precursor toxicity. Appl Environ Microbiol 73:6277–6283

    Google Scholar 

  • Wilkinson SR, Young DI, Morris JG, Young M (1995) Molecular genetics and the initiation of solventogenesis in Clostridium beijerinckii (formerly Clostridium acetobutylicum) NCIMB 8052. FEMS Microbiol Rev 17:275–285

    PubMed  CAS  Google Scholar 

  • Woods DR (1995) The genetic engineering of microbial solvent production. Trends Biotechnol 13:259–264

    PubMed  CAS  Google Scholar 

  • Woolley RC, Morris JG (1990) Stability of solvent production by Clostridium acetobutylicum in continuous culture: strain differences. J Appl Bacteriol 69:718–728

    CAS  Google Scholar 

  • Yang X, Tsao GT (1995) Enhanced acetone-butanol fermentation using repeated fed-batch operations coupled with cell recycle by membrane and simoultaneus removal of inhibitory products by adsorption. Biotechnol Bioeng 47:444–450

    PubMed  CAS  Google Scholar 

  • Yazdani SS, González R (2007) Anaerobic fermentation of glycerol: a path to economic viability for the biofuels industry. Curr Opin Biotechnol 18:213–219

    PubMed  CAS  Google Scholar 

  • Young M (1993) Development and explotation of conjugative gene transfer in Clostridia. In: Woods DR (ed) The Clostridia and biotechnology. Butterworth-Heinemann, Stoneham

    Google Scholar 

  • Young M, Minton NP, Walter LS (1989) Recent advances in the genetics of the clostridia. FEMS Microbiol Rev 63:301–326

    CAS  Google Scholar 

  • Yu EKC, Deschatelets L, Saddler JN (1984) The bioconversion of wood hydrolyzate to butanol and butanediol. Biotechnol Lett 6:327–332

    CAS  Google Scholar 

  • Yuan L (2007) Supply-demand analysis of n-butanol and octanol both home and abroad as well as their technical development trends. Petroleum Petrochem Today 15:33–44 (In Chinese)

    Google Scholar 

  • Zappe H, Jones WA, Jones DT, Woods DR (1988) Structure of an endo-β−1,4-glucanase gene from Clostridium acetobutylicum P262 showing homology with endoglucanase genes from Bacillus spp. Appl Environ Microbiol 54:1289–1292

    PubMed  CAS  Google Scholar 

  • Zhang K, Sawaya MR, Eisenberg DS, Liao JC (2008) Expanding metabolism for biosynthesis of nonnatural alcohols. Proc Natl Acad Sci 105:20653–20658

    PubMed  CAS  Google Scholar 

  • Zhong J, Karberg M, Lambowitz AM (2003) Targeted and random bacterial gene disruption using a group II intron (targetron) vector containing a retrotransposition-activated selectable marker. Nucleic Acids Res 31:1656–1664

    PubMed  CAS  Google Scholar 

  • Zverlov VV, Berezina O, Velikodvorskaya GA, Schwarz WH (2006) Bacterial acetone and butanol production by industrial fermentation in the Soviet Union: use of hydrolyzed agricultural waste for biorefinery. Appl Microbiol Biotechnol 71:587–597

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Work in the research group of authors Ana M. López-Contreras, Jan Springer, and Pieternel A. M. Claassen was supported by the Dutch Ministry of Economic Affairs through the program EOS-LT (Subsidy for Research on Energy, www.senternovem.nl/eos). Support by the Bio-Based Sustainable Industrial Chemistry (B-BASIC, www.b-basic.nl) program of NWO-ACTS in The Netherlands is gratefully acknowledged by all the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana María López-Contreras .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

López-Contreras, A.M., Kuit, W., Springer, J., Claassen, P.A.M. (2012). Novel Strategies for Production of Medium and High Chain Length Alcohols. In: Hallenbeck, P. (eds) Microbial Technologies in Advanced Biofuels Production. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1208-3_11

Download citation

Publish with us

Policies and ethics