Advertisement

Ultraspectral Sounder Data Compression by the Prediction-Based Lower Triangular Transform

  • Shih-Chieh Wei
  • Bormin Huang
Chapter

Abstract

The Karhunen–Loeve transform (KLT) is the optimal unitary transform that yields the maximum coding gain. The prediction-based lower triangular transform (PLT) features the same decorrelation and coding gain properties as KLT but with lower complexity. Unlike KLT, PLT has the perfect reconstruction property which allows its direct use for lossless compression. In this paper, we apply PLT to carry out lossless compression of the ultraspectral sounder data. The experiment on the standard ultraspectral test dataset of ten AIRS digital count granules shows that the PLT compression scheme compares favorably with JPEG-LS, JPEG2000, LUT, SPIHT, and CCSDS IDC 5/3.

Keywords

Prediction Error Compression Ratio Perfect Reconstruction Lossless Compression Arithmetic Coder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    H. H. Aumann and L. Strow, “AIRS, the first hyper-spectral infrared sounder for operational weather forecasting,” Proc. of IEEE Aerosp. Conf., 4, pp. 1683–1692, 2001.Google Scholar
  2. 2.
    H. J. Bloom, “The Cross-track Infrared Sounder (CrIS): a sensor for operational meteorological remote sensing,” Proc. of the 2001 Int. Geosci. and Remote Sens. Symp., pp. 1341–1343, 2001.Google Scholar
  3. 3.
    T. Phulpin, F. Cayla, G. Chalon, D. Diebel, and D. Schlussel, “IASI onboard Metop: Project status and scientific preparation,” 12th Int. TOVS Study Conf., Lorne, Victoria, Australia, pp. 234–243, 2002.Google Scholar
  4. 4.
    W. L. Smith, F. W. Harrison, D. E. Hinton, H. E. Revercomb, G. E. Bingham, R. Petersen, and J. C. Dodge, “GIFTS – the precursor geostationary satellite component of the future Earth Observing System,” Proc. of the 2002 Int. Geosci. and Remote Sens. Symp., 1, pp. 357–361, 2002.Google Scholar
  5. 5.
    B. Huang, W. L. Smith, H.-L. Huang, and H. M. Woolf, “Comparison of linear forms of the radiative transfer equation with analytic Jacobians”, Appl. Optics, vol. 41, no. 21, pp. 4209–4219, 2002.CrossRefGoogle Scholar
  6. 6.
    B. Huang, A. Ahuja, and H.-L. Huang, “Lossless compression of ultraspectral sounder data,” Hyperspectral Data Compression, G. Motta and J. Storer; Eds., Springer-Verlag, pp. 75–106, 2005.Google Scholar
  7. 7.
    P. Toivanen, O. Kubasova, and J. Mielikainen, “Correlation-based band-ordering heuristic for lossless compression of hyperspectral sounder data”, IEEE Geosci. Remote Sens. Lett., vol. 2, no. 1, pp.50–54, 2005.CrossRefGoogle Scholar
  8. 8.
    B. Huang, A. Ahuja, H.-L. Huang, T. J. Schmit, and R. W. Heymann, “Lossless compression of 3D hyperspectral sounding data using context-based adaptive lossless image codec with bias-adjusted reordering,” Optical Engineering, vol. 43, no. 9, pp. 2071–2079, 2004.CrossRefGoogle Scholar
  9. 9.
    S.-M. Phoong and Y.-P. Lin, “Prediction-based lower triangular transform,” IEEE Trans. Signal Processing, vol. 48, no. 7, pp. 1947–1955, 2000.MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    C.-C. Weng, C.-Y. Chen and P. P. Vaidyanathan, “Generalized triangular decomposition in transform coding,” IEEE Trans. Signal Processing, vol. 58, no. 2, pp. 566–574, 2010.MathSciNetCrossRefGoogle Scholar
  11. 11.
    B. Huang, and Y. Sriraja, “Lossless compression of hyperspectral imagery via lookup tables with predictor selection,” Proc. SPIE, vol. 6365, pp.63650L.1, 2006.Google Scholar
  12. 12.
    ISO/IEC 14495–1 and ITU Recommendation T.87, “Information Technology – lossless and near-lossless compression of continuous-tone still images,” 1999.Google Scholar
  13. 13.
    D. S. Taubman and M. W. Marcellin, JPEG2000: Image compression fundamentals, standards, and practice, 2002.Google Scholar
  14. 14.
    A. Said, and W. A. Pearlman, “A new, fast, and efficient image codec based on set partitioning in hierarchical trees,” IEEE Trans. Circuits. Sys. Video Tech., vol. 6, pp. 243–250, June 1996.CrossRefGoogle Scholar
  15. 15.
    CCSDS, “Consultative Committee for Space Data Systems,” http://www.ccsds.org.
  16. 16.
    B. Huang, A. Ahuja, H.-L. Huang, T.J. Schmit, R.W. Heymann, “Fast precomputed VQ with optimal bit allocation for lossless compression of ultraspectral sounder data”, Proc. IEEE Data Comp. Conf., pp. 408–417, March 2005.Google Scholar
  17. 17.
    G. H. Golub and C. F. V. Loan, Matrix computations, John Hopkins University Press, 1996.Google Scholar
  18. 18.
    A. Gersho and R. M. Gray, Vector quantization and signal compression, Kluwer Academic Publishers, 1992.Google Scholar
  19. 19.
    I. Witten, R. Neal, and J. Cleary, “Arithmetic coding for data compression”, Comm. ACM, vol. 30, no. 6, pp. 520–540, June 1987.CrossRefGoogle Scholar
  20. 20.
    M. R. Nelson, “Arithmetic coding and statistical modeling”, Dr. Dobb’s Journal, pp. 16–29, February 1991.Google Scholar
  21. 21.
    Y. You, Audio coding- theories and applications, Springer, 2010.Google Scholar
  22. 22.
    K. Sayood, Introduction to data compression, 2nd Ed., Morgan Kaufmann Publishers, 2000.Google Scholar
  23. 23.
    N. S. Jayant and P. Noll, Digital coding of waveforms- principles and applications to speech and video, Prentice Hall, 1984.Google Scholar
  24. 24.
    J. Serra-Sagrista, F. Garcia, J. Minguillon, D. Megias, B. Huang, and A. Ahuja, “Wavelet lossless compression of ultraspectral sounder data,” Proc. Int. Geosci. Rem. Sens. Symp., vol. 1, pp. 148–151, July 2005.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Information ManagementTamkang UniversityTamsuiTaiwan
  2. 2.Space Science and Engineering CenterUniversity of WisconsinMadisonUSA

Personalised recommendations