Clinical Presentations and Pathogenicity Mechanisms of Bacterial Foodborne Infections

Chapter
Part of the Food Science Text Series book series (FSTS)

Abstract

Foodborne infections are estimated to affect one in four Americans each year. Most of these infections are caused by the Norwalk-like viruses, but Campylobacter and nontyphoidal Salmonella species together account for about one fourth of cases of illness in which a pathogen can be detected. Less common bacterial infections, such as with Listeria monocytogenes and the Shiga toxin-producing Escherichia coli, cause fewer infections but are also important because of their severe complications and high mortality rate. This chapter describes the clinical presentations, molecular determinants, and pathogenicity mechanisms of very important bacterial foodborne pathogens as well as the associated diseases in humans.

Keywords

Diarrhea Integrin Meningitis Microbe Perforation 

References

  1. Acheson, D.W.K., and G.T. Keusch. 1995. Shigella and enteroinvasive E. coli. In Infections of the gastrointestinal tract, ed. M.J. Blaser, P.D. Smith, and J.I. Ravdin, 763–784. New York: Raven.Google Scholar
  2. Allos, B.M. 2001. Campylobacter jejuni infections: update on emerging issues and trends. Clinical Infectious Diseases 32: 1201–1206.CrossRefGoogle Scholar
  3. Alouf, J.E., and M.R. Popoff. 2005. The comprehensive sourcebook of bacterial protein toxins, 3rd ed. London: Academic.Google Scholar
  4. Asperger, H., M. Wagner, and E. Brandl. 2001. An approach towards public health and food-borne human listeriosis—The Austrian Listeria monitoring. Berliner und Münchener Tierärztliche Wochenschrift 114: 446–452.Google Scholar
  5. Backert, S., and W. Koenig. 2005. Interplay of bacterial toxins with host defence: molecular mechanisms of immunomodulatory signalling. International Journal of Medical Microbiology 295: 519–530.CrossRefGoogle Scholar
  6. Backert, S., and M. Selbach. 2005. Tyrosine-phosphorylated bacterial effector proteins: the enemies within. Trends in Microbiology 13: 476–484.CrossRefGoogle Scholar
  7. Beutler, B., Z. Jiang, P. Georgel, K. Crozat, B. Croker, S. Rutschmann, X. Du, and K. Hoebe. 2006. Genetic analysis of host resistance: toll-like receptor signaling and immunity at large. Annual Review of Immunology 24: 353–389.CrossRefGoogle Scholar
  8. Biswas, D., H. Niwa, and K. Itoh. 2004. Infection with Campylobacter jejuni induces tyrosine-phosphorylated proteins into INT-407 cells. Microbiology and Immunology 48: 221–228.Google Scholar
  9. Blaser, M.J., and J. Engberg. 2008. Clinical sspects of Campylobacter jejuni and Campylobacter coli infections. In Campylobacter, ed. I. Nachamkin, C.M. Szymanski, and M.J. Blaser, 99–121. Washington, DC: ASM Press.Google Scholar
  10. Boquet, P., and E. Lemichez. 2003. Bacterial virulence factors targeting Rho GTPases: parasitism or symbiosis? Trends in Cell Biology 13: 238–246.CrossRefGoogle Scholar
  11. Bosse, T., J. Ehinger, A. Czuchra, S. Benesch, A. Steffen, X. Wu, K. Schloen, H.H. Niemann, G. Scita, T.E. Stradal, C. Brakebusch, and K. Rottner. 2007. Cdc42 and phosphoinositide 3-kinase drive Rac-mediated actin polymerization downstream of c-Met in distinct and common pathways. Molecular and Cellular Biology 27: 6615–6628.CrossRefGoogle Scholar
  12. Bougneres, L., S.E. Girardin, S.A. Weed, A.V. Karginov, J.C. Olivo-Marin, J.T. Parsons, P.J. Sansonetti, and G.T. Van Nhieu. 2004. Cortactin and Crk cooperate to trigger actin polymerization during Shigella invasion of epithelial cells. The Journal of Cell Biology 166: 225–235.CrossRefGoogle Scholar
  13. Bourdet-Sicard, R., M. Rudiger, B.M. Jockusch, P. Gounon, P.J. Sansonetti, and G.T. Nhieu. 1999. Binding of the Shigella protein IpaA to vinculin induces F-actin depolymerization. The EMBO Journal 18: 5853–5862.CrossRefGoogle Scholar
  14. Boyd, J.F. 1985. Pathology of the alimentary tract in Salmonella typhimurium food poisoning. Gut 26: 935–944.CrossRefGoogle Scholar
  15. Boyd, E.F., F.S. Wang, T.S. Whittam, and R.K. Selander. 1996. Molecular genetic relationships of the salmonellae. Applied and Environmental Microbiology 62: 804–808.Google Scholar
  16. Burns, D., J.T. Barbieri, B.H. Iglewski, and R. Rappuoli. 2003. Bacterial protein toxins. Washington, DC: ASM Press.Google Scholar
  17. Burton, E.A., R. Plattner, and A.M. Pendergast. 2003. Abl tyrosine kinases are required for infection by Shigella flexneri. The EMBO Journal 22: 5471–5479.CrossRefGoogle Scholar
  18. Campellone, K.G., and J.M. Leong. 2003. Tails of two Tirs: actin pedestal formation by enteropathogenic E. coli and enterohemorrhagic E. coli O157:H7. Current Opinion in Microbiology 6: 82–90.CrossRefGoogle Scholar
  19. Celli, J., and B.B. Finlay. 2002. Bacterial avoidance of phagocytosis. Trends in Microbiology 10: 232–237.CrossRefGoogle Scholar
  20. Chen, L.F., and W.C. Greene. 2004. Shaping the nuclear action of NF-κB. Nature Reviews Molecular Cell Biology 5: 392–401.CrossRefGoogle Scholar
  21. Chikthimmah, N., and S.J. Knabel. 2001. Survival of Escherichia coli O157:H7, Salmonella typhimurium and Listeria monocytogenes in and on vacuum packaged Lebanon bologna stored at 3.6 and 13.0 degrees C. Journal of Food Protection 64: 958–963.Google Scholar
  22. Cleary, T.G. 2004. The role of Shiga-toxin-producing Escherichia coli in hemorrhagic colitis and hemolytic uremic syndrome. Seminars in Pediatric Infectious Diseases 15: 260–265.CrossRefGoogle Scholar
  23. Cossart, P., and P.J. Sansonetti. 2004. Bacterial invasion: the paradigms of enteroinvasive pathogens. Science 304: 242–248.CrossRefGoogle Scholar
  24. Cossart, P., and E. Veiga. 2008. Non-classical use of clathrin during bacterial infections. Journal of Microscopy 231: 524–528.CrossRefGoogle Scholar
  25. Crump, J.A., P.M. Griffin, and F.J. Angulo. 2002. Bacterial contamination of animal feed and its relationship to human food-borne illness. Clinical Infectious Diseases 35: 859–865.CrossRefGoogle Scholar
  26. Day Jr., W.A., J.L. Sajecki, T.M. Pitts, and L.A. Joens. 2000. Role of catalase in Campylobacter jejuni intracellular survival. Infection and Immunity 68: 6337–6345.CrossRefGoogle Scholar
  27. Dean, P., and B. Kenny. 2009. The effector repertoire of enteropathogenic E. coli: ganging up on the host cell. Current Opinion in Microbiology 12: 101–109.CrossRefGoogle Scholar
  28. Dean, P., M. Maresca, S. Schüller, A.D. Phillips, and B. Kenny. 2006. Potent diarrheagenic mechanism mediated by the cooperative action of three enteropathogenic Escherichia coli-injected effector proteins. Proceedings of the National Academy of Sciences of the United States of America 103: 1876–1881.CrossRefGoogle Scholar
  29. Demali, K.A., A.L. Jue, and K. Burridge. 2006. IpaA targets beta1 integrins and rho to promote actin cytoskeleton rearrangements necessary for Shigella entry. Journal of Biological Chemistry 281: 39534–39541.CrossRefGoogle Scholar
  30. Doganay, M. 2003. Listeriosis: clinical presentation. FEMS Immunology and Medical Microbiology 35: 173–175.CrossRefGoogle Scholar
  31. Donnenberg, M.S., and T.S. Whittam. 2001. Pathogenesis and evolution of virulence in enteropathogenic and enterohemorrhagic Escherichia coli. The Journal of Clinical Investigation 107: 539–548.CrossRefGoogle Scholar
  32. Dussurget, O. 2008. New insights into determinants of Listeria monocytogenes virulence. International Review of Cell and Molecular Biology 270: 1–38.CrossRefGoogle Scholar
  33. Eckburg, P.B., E.M. Bik, C.N. Bernstein, E. Purdom, L. Dethlefsen, M. Sargent, S.R. Gill, K.E. Nelson, and D.A. Relman. 2005. Diversity of the human intestinal microbial flora. Science 308: 1635–1638.CrossRefGoogle Scholar
  34. Eckmann, L., and M.F. Kagnoff. 2005. Intestinal mucosal responses to microbial infection. Springer Seminars in Immunopathology 27: 181–196.CrossRefGoogle Scholar
  35. Fang, G., V. Araujo, and R.L. Guerrant. 1991. Enteric infections associated with exposure to animals or animal ­products. Infectious Disease Clinics of North America 5: 681–701.Google Scholar
  36. Farber, J.M., and P.I. Peterkin. 1991. Listeria monocytogenes, a food-borne pathogen. Microbiological Reviews 55: 476–511.Google Scholar
  37. Forsythe, S.J. 2000. Food poisoning microorganisms. In The microbiology of safe food, ed. S.J. Forsythe, 87–148. Abingdon: Blackwell Science.CrossRefGoogle Scholar
  38. Frankel, G., and A.D. Phillips. 2008. Attaching effacing Escherichia coli and paradigms of Tir-triggered actin polymerization: getting off the pedestal. Cellular Microbiology 10: 549–556.CrossRefGoogle Scholar
  39. Friedman, C.R., J. Neimann, H.C. Wegener, and R.V. Tauxe. 2000. Epidemiology of Campylobacter jejuni infections in the United States and other industrialized nations. In Campylobacter, ed. I. Nachamkin and M.J. Blaser, ­121–138. Washington, DC: ASM Press.Google Scholar
  40. Gal-Mor, O., and B.B. Finlay. 2006. Pathogenicity islands: a molecular toolbox for bacterial virulence. Cellular Microbiology 8: 1707–1719.CrossRefGoogle Scholar
  41. Ge, Z., D.B. Schauer, and J.G. Fox. 2008. In vivo virulence properties of bacterial cytolethal-distending toxin. Cellular Microbiology 10: 1599–1607.CrossRefGoogle Scholar
  42. Gerber, A., H. Karch, F. Allerberger, H.M. Verweyen, and L.B. Zimmerhackl. 2002. Clinical course and the role of shiga toxin-producing Escherichia coli infection in the hemolytic-uremic syndrome in pediatric patients, ­1997–2000, in Germany and Austria: a prospective study. The Journal of Infectious Diseases 186: 493–500.CrossRefGoogle Scholar
  43. Gerlach, R.G., and M. Hensel. 2007. Salmonella pathogenicity islands in host specificity, host pathogen-interactions and antibiotics resistance of Salmonella enterica. Berliner und Münchener Tierärztliche Wochenschrift 120: 317–327.Google Scholar
  44. Ghosh, S., and M.S. Hayden. 2008. New regulators of NF-kappaB in inflammation. Nature Reviews Immunology 8: 837–848.CrossRefGoogle Scholar
  45. Griffin, P.M., L.C. Olmstead, and R.E. Petras. 1990. Escherichia coli 0157:H7-associated colitis: a clinical and ­histological study of 11 cases. Gastroenterology 99: 142–149.Google Scholar
  46. Guerry, P. 2007. Campylobacter flagella: not just for motility. Trends in Microbiology 15: 456–461.CrossRefGoogle Scholar
  47. Hacker, J., B. Hochhut, B. Middendorf, G. Schneider, C. Buchrieser, G. Gottschalk, and U. Dobrindt. 2004. Pathogenomics of mobile genetic elements of toxigenic bacteria. International Journal of Medical Microbiology 293: 453–461.CrossRefGoogle Scholar
  48. Hamon, M., H. Bierne, and P. Cossart. 2006. Listeria monocytogenes: a multifaceted model. Nature Reviews Microbiology 4: 423–434.CrossRefGoogle Scholar
  49. Hancock, D., T. Besser, J. Lejeune, M. Davis, and D. Rice. 2001. The control of VTEC in the animal reservoir. International Journal of Food Microbiology 66: 71–78.CrossRefGoogle Scholar
  50. Hapfelmeier, S., and W.D. Hardt. 2005. A mouse model for S. typhimurium-induced enterocolitis. Trends in Microbiology 13: 497–503.CrossRefGoogle Scholar
  51. Haraga, A., M.B. Ohlson, and S.I. Miller. 2008. Salmonellae interplay with host cells. Nature Reviews Microbiology 6: 53–66.CrossRefGoogle Scholar
  52. Hayward, R.D., J.M. Leong, V. Koronakis, and K.G. Campellone. 2006. Exploiting pathogenic Escherichia coli to model transmembrane receptor signalling. Nature Reviews Microbiology 4: 358–370.CrossRefGoogle Scholar
  53. Hickey, T.E., A.L. McVeigh, D.A. Scott, R.E. Michietutti, A. Bixby, S.A. Carroll, A.L. Bourgeois, and P. Guerry. 2000. Campylobacter jejuni cytolethal distending toxin mediates release of interleukin-8 from intestinal epithelial cells. Infection and Immunity 68: 6535–6541.CrossRefGoogle Scholar
  54. Hitchins, A.D., and R.C. Whiting. 2001. Food-borne Listeria monocytogenes risk assessment. Food Additives and Contaminants 18: 1108–1117.CrossRefGoogle Scholar
  55. Hof, H. 2004. An update on the medical management of listeriosis. Expert Opinion on Pharmacotherapy 5: 1727–1735.CrossRefGoogle Scholar
  56. Hooper, L.V., and J.I. Gordon. 2001. Commensal host-bacterial relationships in the gut. Science 292: 1115–1118.CrossRefGoogle Scholar
  57. Hornef, M.W., M.J. Wick, M. Rhen, and S. Normark. 2002. Bacterial strategies for overcoming host innate and adaptive immune responses. Nature Immunology 3: 1033–1040.CrossRefGoogle Scholar
  58. Hu, L., and D.J. Kopecko. 1999. Campylobacter jejuni 81–176 associates with microtubules and dynein during invasion of human intestinal cells. Infection and Immunity 67: 4171–4182.Google Scholar
  59. Hu, L., and D.J. Kopecko. 2008. Cell biology of human host cell entry by Campylobacter jejuni. In Campylobacter, ed. I. Nachamkin, C.M. Szymanski, and M.J. Blaser, 297–313. Washington, DC: ASM Press.Google Scholar
  60. Hu, L., J.P. McDaniel, and D.J. Kopecko. 2006. Signal transduction events involved in human epithelial cell invasion by Campylobacter jejuni 81–176. Microbial Pathogenesis 40: 91–100.CrossRefGoogle Scholar
  61. Huang, Z., S.E. Sutton, A.J. Wallenfang, R.C. Orchard, X. Wu, Y. Feng, J. Chai, and N.M. Alto. 2009. Structural insights into host GTPase isoform selection by a family of bacterial GEF mimics. Nature Structural and Molecular Biology 16: 853–860.CrossRefGoogle Scholar
  62. Jennison, A.V., and N.K. Verma. 2004. Shigella flexneri infection: pathogenesis and vaccine development. FEMS Microbiology Reviews 28: 43–58.CrossRefGoogle Scholar
  63. Jepson, M.A., and M.A. Clark. 2001. The role of M cells in Salmonella infection. Microbes and Infection 3: 1183–1190.CrossRefGoogle Scholar
  64. Jepson, M.A., S. Pellegrin, L. Peto, D.N. Banbury, A.D. Leard, H. Mellor, and B. Kenny. 2003. Synergistic roles for the Map and Tir effector molecules in mediating uptake of enteropathogenic Escherichia coli (EPEC) into non-phagocytic cells. Cellular Microbiology 5: 773–783.CrossRefGoogle Scholar
  65. Johansson, J., P. Mandin, A. Renzoni, C. Chiaruttini, M. Springer, and P. Cossart. 2002. An RNA thermosensor controls expression of virulence genes in Listeria monocytogenes. Cell 110: 551–561.CrossRefGoogle Scholar
  66. Johnson, J.L., M.P. Doyle, R.G. Cassens, and J.L. Schoeni. 1998. Fate of Listeria monocytogenes in tissues of experimentally infected cattle and in hard salami. Applied and Environmental Microbiology 54: 497–501.Google Scholar
  67. Kanipes, M.I., L.C. Holder, A.T. Corcoran, A.P. Moran, and P. Guerry. 2004. A deep-rough mutant of Campylobacter jejuni 81–176 is noninvasive for intestinal epithelial cells. Infection and Immunity 72: 2452–2455.CrossRefGoogle Scholar
  68. Karlyshev, A.V., D. Linton, N.A. Gregson, A.J. Lastovica, and B.W. Wren. 2000. Genetic and biochemical evidence of a Campylobacter jejuni capsular polysaccharide that accounts for Penner serotype specificity. Molecular Microbiology 35: 529–541.CrossRefGoogle Scholar
  69. Kelly, J.K., and D.A. Owen. 1997. Bacterial diarrheas and dystenteries. In Pathology of infectious diseases, ed. D.H. Connor, F.W. Chandler, and D.A. Schwartz, 421–429. Stamford: Appleton & Lange.Google Scholar
  70. Kelly, J., A. Oryshak, M. Wenetsek, J. Grabiec, and S. Handy. 1990. The colonic pathology of E. coli 0157:H7 ­infection. The American Journal of Surgical Pathology 14: 87–92.CrossRefGoogle Scholar
  71. Ketley, J.M. 1997. Pathogenesis of enteric infection by Campylobacter. Microbiology 143: 5–21.CrossRefGoogle Scholar
  72. Knutton, S., D.R. Lloyd, and A.S. McNeish. 1987. Adhesion of enteropathogenic Escherichia coli to human intestinal enterocytes and cultured human intestinal mucosa. Infection and Immunity 55: 69–77.Google Scholar
  73. Konkel, M.E., S.F. Hayes, L.A. Joens, and W. Cieplak Jr. 1992. Characteristics of the internalization and intracellular survival of Campylobacter jejuni in human epithelial cell cultures. Microbial Pathogenesis 13: 357–370.CrossRefGoogle Scholar
  74. Konkel, M.E., M.R. Monteville, V. Rivera-Amill, and L.A. Joens. 2001. The pathogenesis of Campylobacter jejuni-mediated enteritis. Current Issues in Intestinal Microbiology 2: 55–71.Google Scholar
  75. Kotloff, K.L., J.P. Winickoff, B. Ivanoff, J.D. Clemens, D.L. Swerdlow, P.J. Sansonetti, G.K. Adak, and M.M. Levine. 1999. Global burden of Shigella infections: implications for vaccine development and implementation of control strategies. Bulletin of the World Health Organization 77: 651–666.Google Scholar
  76. Kraus, M.D., B. Amatya, and Y. Kimula. 1999. Histopathology of typhoid enteritis: morphologic and immunophenotypic findings. Modern Pathology 12: 949–955.Google Scholar
  77. Krause-Gruszczynska, M., M. Rohde, R. Hartig, H. Genth, G. Schmidt, T. Keo, W. Koenig, W.G. Miller, M.E. Konkel, and S. Backert. 2007. Role of the small Rho GTPases Rac1 and Cdc42 in host cell invasion of Campylobacter jejuni. Cellular Microbiology 9: 2431–2444.CrossRefGoogle Scholar
  78. Kuhle, V., and M. Hensel. 2004. Cellular microbiology of intracellular Salmonella enterica: functions of the type III secretion system encoded by Salmonella pathogenicity island 2. Cellular and Molecular Life Sciences 61: 2812–2826.CrossRefGoogle Scholar
  79. Lamps, L.W. 2007. Infective disorders of the gastrointestinal tract. Histopathology 50: 55–63.CrossRefGoogle Scholar
  80. Lara-Tejero, M., and J.E. Galan. 2000. A bacterial toxin that controls cell cycle progression as a deoxyribonuclease-1 like protein. Science 290: 354–357.CrossRefGoogle Scholar
  81. Larson, C.L., J.E. Christensen, S.A. Pacheco, S.A. Minnich, and M.E. Konkel. 2008. Campylobacter jejuni secretes proteins via the flagellar type III secretion system that contribute to host cell invasion and gastroenteritis. In Campylobacter, ed. I. Nachamkin, C.M. Szymanski, and M.J. Blaser, 315–332. Washington, DC: ASM Press.Google Scholar
  82. Lastovica, A.J. 1996. Campylobacter/Helicobacter bacteraemia in Cape Town, South Africa 1977–95. In Campylobacters, helicobacters and related organisms, ed. D.G. Newell, J.M. Ketley, and R.A. Feldman, 475–479. New York: Plenum Press.Google Scholar
  83. Liston, A., and S. McColl. 2003. Subversion of the chemokine world by microbial pathogens. BioEssays 25: 478–488.CrossRefGoogle Scholar
  84. Mao, Y., C. Zhu, and E.C. Boedeker. 2003. Food-borne enteric infections. Current Opinion in Gastroenterology 19: 11–22.CrossRefGoogle Scholar
  85. Mathan, M.M., and V.I. Mathan. 1991. Morphology of rectal mucosa of patients with shigellosis. Reviews of Infectious Diseases 13(Suppl. 4): 314–318.CrossRefGoogle Scholar
  86. McGovern, V.J., and L.J. Slavutin. 1979. Pathology of Salmonella colitis. The American Journal of Surgical Pathology 3: 483–490.CrossRefGoogle Scholar
  87. Mead, P.S., L. Slutsker, V. Dietz, L.F. McCaig, J.S. Bresee, C. Shapiro, P.M. Griffin, and R.V. Tauxe. 1999. Food-related illness and death in the United States. Emerging Infectious Diseases 5: 607–625.CrossRefGoogle Scholar
  88. Monack, D.M., A. Mueller, and S. Falkow. 2004. Persistent bacterial infections: the interface of the pathogen and the host immune system. Nature Reviews Microbiology 2: 747–765.CrossRefGoogle Scholar
  89. Monteville, M.R., J.E. Yoon, and M.E. Konkel. 2003. Maximal adherence and invasion of INT 407 cells by Campylobacter jejuni requires the CadF outer-membrane protein and microfilament reorganization. Microbiology 149: 153–165.CrossRefGoogle Scholar
  90. Moser, I., W. Schroeder, and J. Salnikow. 1997. Campylobacter jejuni major outer membrane protein and a 59-kDa protein are involved in binding to fibronectin and INT-407 cell membranes. FEMS Microbiology Letters 157: 233–238.CrossRefGoogle Scholar
  91. Nachamkin, I., C.M. Szymanski, and M.J. Blaser. 2008. Campylobacter. Washington, DC: ASM Press.Google Scholar
  92. Nhieu, G.T., J. Enninga, P. Sansonetti, and G. Grompone. 2005. Tyrosine kinase signaling and type III effectors orchestrating Shigella invasion. Current Opinion in Microbiology 8: 16–20.CrossRefGoogle Scholar
  93. Niess, J.H., S. Brand, X. Gu, L. Landsman, S. Jung, B.A. McCormick, J.M. Vyas, M. Boes, H.L. Ploegh, J.G. Fox, D.R. Littman, and H.C. Reinecker. 2005. CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science 307: 254–258.CrossRefGoogle Scholar
  94. Niyogi, S.K. 2005. Shigellosis. Journal of Microbiology 43: 133–143.Google Scholar
  95. Oelschlaeger, T.A., P. Guerry, and D.J. Kopecko. 1993. Unusual microtubule-dependent endocytosis mechanisms ­triggered by Campylobacter jejuni and Citrobacter freundii. Proceedings of the National Academy of Sciences of the United States of America 90: 6884–6888.CrossRefGoogle Scholar
  96. Ogawa, M., Y. Handa, H. Ashida, M. Suzuki, and C. Sasakawa. 2008. The versatility of Shigella effectors. Nature Reviews Microbiology 6: 11–16.CrossRefGoogle Scholar
  97. Olsen, S.J., G. Miller, T. Breuer, M. Kennedy, C. Higgins, J. Walford, G. McKee, K. Fox, W. Bibb, and P. Mead. 2002. A waterborne outbreak of Escherichia coli O157:H7 infections and hemolytic uremic syndrome: implications for rural water systems. Emerging Infectious Diseases 8: 370–375.CrossRefGoogle Scholar
  98. Palm, N.W., and R. Medzhitov. 2009. Pattern recognition receptors and control of adaptive immunity. Immunological Reviews 227: 221–233.CrossRefGoogle Scholar
  99. Pamer, E.G. 2004. Immune responses to Listeria monocytogenes. Nature Reviews Immunology 4: 812–823.CrossRefGoogle Scholar
  100. Patel, J.C., and J.E. Galan. 2005. Manipulation of the host actin cytoskeleton by Salmonella – all in the name of entry. Current Opinion in Microbiology 8: 10–15.CrossRefGoogle Scholar
  101. Pédron, T., and P. Sansonetti. 2008. Commensals, bacterial pathogens and intestinal inflammation: an intriguing ménage à trois. Cell Host and Microbe 3: 344–347.CrossRefGoogle Scholar
  102. Pegues, D.A., E.L. Hohmann, and S.I. Miller. 1995. Salmonella including S. typhi. In Infections of the gastrointestinal tract, ed. M.J. Blaser, P.D. Smith, and J.I. Ravdin, 785–809. New York: Raven.Google Scholar
  103. Pei, Z., C. Burucoa, B. Grignon, S. Baqar, X.Z. Huang, D.J. Kopecko, A.L. Bourgeois, J.L. Fauchere, and M.J. Blaser. 1998. Mutation in the peb1A locus of Campylobacter jejuni reduces interactions with epithelial cells and intestinal colonization of mice. Infection and Immunity 66: 938–943.Google Scholar
  104. Phalipon, A., and P.J. Sansonetti. 2007. Shigella’s ways of manipulating the host intestinal innate and adaptive immune system: a tool box for survival? Immunology and Cell Biology 85: 119–129.CrossRefGoogle Scholar
  105. Poly, F., and P. Guerry. 2008. Pathogenesis of Campylobacter. Current Opinion in Gastroenterology 24: 27–31.CrossRefGoogle Scholar
  106. Potturi-Venkata, L.P., S. Backert, S.L. Vieira, and O.A. Oyarzabal. 2007. Evaluation of logistic processing to reduce cross-contamination of commercial broiler carcasses with Campylobacter spp. Journal of Food Protection 70: 2549–2554.Google Scholar
  107. Roberts, A.J., and M. Wiedmann. 2003. Pathogen, host and environmental factors contributing to the pathogenesis of listeriosis. Cellular and Molecular Life Sciences 60: 904–918.Google Scholar
  108. Rottner, K., T.E. Stradal, and J. Wehland. 2005. Bacteria-host-cell interactions at the plasma membrane: stories on actin cytoskeleton subversion. Developmental Cell 9: 3–17.CrossRefGoogle Scholar
  109. Salyers, A.A., and D.D. Whitt. 1994. Bacterial pathogenesis. Washington, DC: ASM Press.Google Scholar
  110. Sansonetti, P.J. 2004. War and peace at mucosal surfaces. Nature Reviews Immunology 4: 953–964.CrossRefGoogle Scholar
  111. Sansonetti, P.J. 2006. Shigellosis: an old disease in new clothes? PLoS Medicine 3: e354.CrossRefGoogle Scholar
  112. Scheiring, J., S.P. Andreoli, and L.B. Zimmerhackl. 2008. Treatment and outcome of Shiga-toxin-associated hemolytic uremic syndrome (HUS). Pediatric Nephrology 23: 1749–1760.CrossRefGoogle Scholar
  113. Schlumberger, M.C., and W.D. Hardt. 2006. Salmonella type III secretion effectors: pulling the host cell’s strings. Current Opinion in Microbiology 9: 46–54.CrossRefGoogle Scholar
  114. Schroeder, G.N., and H. Hilbi. 2008. Molecular pathogenesis of Shigella spp.: controlling host cell signaling, invasion, and death by type III secretion. Clinical Microbiology Reviews 21: 134–156.CrossRefGoogle Scholar
  115. Seeliger, H.P.R., and D. Jones. 1986. Listeria. In Bergey’s manual of systematic bacteriology, ed. J. Butler, ­1235–1245. Baltimore: Williams and Wilkins.Google Scholar
  116. Sougioultzis, S., and C. Pothoulakis. 2003. Bacterial infections: small intestine and colon. Current Opinion in Gastroenterology 19: 23–30.CrossRefGoogle Scholar
  117. Speelman, P., I. Kabir, and M. Islam. 1984. Distribution and spread of colonic lesions in shigellosis: a colonoscopic study. Journal of Infectious Diseases 150: 899–903.CrossRefGoogle Scholar
  118. Stecher, B., and W.D. Hardt. 2008. The role of microbiota in infectious disease. Trends in Microbiology 16: 107–114.CrossRefGoogle Scholar
  119. Takeuchi, A. 1967. Electron microscope studies of experimental Salmonella infection. I. Penetration into the intestinal epithelium by Salmonella typhimurium. The American Journal of Pathology 50: 109–136.Google Scholar
  120. Tam, C.C. 2001. Campylobacter reporting at its peak year of 1998: don’t count your chickens yet. Communicable Disease and Public Health 4: 194–199.Google Scholar
  121. Tato, C.M., and C.A. Hunter. 2002. Host-pathogen interactions: subversion and utilization of the NF-κB pathway during infection. Infection and Immunity 70: 3311–3317.CrossRefGoogle Scholar
  122. Thanassi, D.G., and S.J. Hultgren. 2000. Multiple pathways allow protein secretion across the bacterial outer ­membrane. Current Opinion in Cell Biology 12: 420–430.CrossRefGoogle Scholar
  123. Tilney, L.G., and D.A. Portnoy. 1989. Actin filaments and the growth, movement, and spread of the intracellular ­bacterial parasite. Listeria monocytogenes. The Journal of Cell Biology 109: 1597–1608.CrossRefGoogle Scholar
  124. Tsolis, R.M., G.M. Young, J.V. Solnick, and A.J. Bäumler. 2008. From bench to bedside: stealth of enteroinvasive pathogens. Nature Reviews Microbiology 6: 883–892.CrossRefGoogle Scholar
  125. Vallance, B.A., C. Chan, M.L. Robertson, and B.B. Finlay. 2002. Enteropathogenic and enterohemorrhagic Escherichia coli infections: emerging themes in pathogenesis and prevention. Canadian Journal of Gastroenterology 16: 771–778.Google Scholar
  126. van Spreeuwel, J.P., G.C. Duursma, C.J. Meijer, R. Bax, P.C. Rosekrans, and J. Lindeman. 1985. Campylobacter colitis: histological immunohistochemical and ultrastructural findings. Gut 26: 945–951.CrossRefGoogle Scholar
  127. Wassenaar, T.M., and M.J. Blaser. 1999. Pathophysiology of Campylobacter jejuni infections of humans. Microbes and Infection 1: 1023–1033.CrossRefGoogle Scholar
  128. Watarai, M., S. Funato, and C. Sasakawa. 1996. Interaction of Ipa proteins of Shigella flexneri with alpha5beta1 integrin promotes entry of the bacteria into mammalian cells. The Journal of Experimental Medicine 183: 991–999.CrossRefGoogle Scholar
  129. Watson, R.O., and J.E. Galán. 2008. Campylobacter jejuni survives within epithelial cells by avoiding delivery to lysosomes. PLoS Pathogens 4: e14.CrossRefGoogle Scholar
  130. Wing, E.J., and S.H. Gregory. 2002. Listeria monocytogenes: clinical and experimental update. Journal of Infectious Diseases 185: 18–24.CrossRefGoogle Scholar
  131. Wooldridge, K.G., and J.M. Ketley. 1997. Campylobacter – host cell interactions. Trends in Microbiology 5: 96–102.CrossRefGoogle Scholar
  132. Wooldridge, K.G., P.H. Williams, and J.M. Ketley. 1996. Host signal transduction and endocytosis of Campylobacter jejuni. Microbial Pathogenesis 21: 299–305.CrossRefGoogle Scholar
  133. World Health Organization. 2004. Global burden of disease (GBD) 2002 estimates. WHO, Geneva, Switzerland. http://www.who.int/topics/global_burden_of_disease/en/.
  134. Xicohtencatl-Cortes, J., V. Monteiro-Neto, Z. Saldaña, M.A. Ledesma, J.L. Puente, and J.A. Girón. 2009. The type 4 pili of enterohemorrhagic Escherichia coli O157:H7 are multipurpose structures with pathogenic attributes. Journal of Bacteriology 191: 411–421.CrossRefGoogle Scholar
  135. Yoshida, S., Y. Handa, T. Suzuki, M. Ogawa, M. Suzuki, A. Tamai, A. Abe, E. Katayama, and C. Sasakawa. 2006. Microtubule-severing activity of Shigella is pivotal for intercellular spreading. Science 314: 985–989.CrossRefGoogle Scholar
  136. Zheng, J., J. Meng, S. Zhao, R. Singh, and W. Song. 2008. Campylobacter-induced interleukin-8 secretion in ­polarized human intestinal epithelial cells requires Campylobacter-secreted cytolethal distending toxin- and Toll-like ­receptor-mediated activation of NF-kappaB. Infection and Immunity 76: 4498–4508.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Nicole Tegtmeyer
    • 1
  • Manfred Rohde
    • 2
  • Steffen Backert
    • 1
  1. 1.University College Dublin, School of Biomolecular and Biomedical Sciences, Science Center WestDublin 4Ireland
  2. 2.Helmholtz Centre for Infection ResearchBraunschweigGermany

Personalised recommendations