Skip to main content

Structured Development Approach for Amorphous Systems

  • Chapter
  • First Online:
Formulating Poorly Water Soluble Drugs

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 3))

Abstract

A structured development approach is presented to guide the development of stable and commercially viable amorphous formulations. The proposed approach should not only enable the delivery of poorly soluble drugs but also help reduce the API needs, reduce in vivo screening, minimize risks for late-stage development, and ensure consistent quality. During initial assessment, a guided evaluation of the physicochemical properties of the API helps to assess the degree of difficulty for the development. A range of tests including in silico evaluation, high-throughput screening assays, and miniaturized screening tools provide a road map for selecting the appropriate polymer, drug loading, and suitable manufacturing process. A dedicated section provides a review of the characterization tools to assess and quantify the crystallinity, understanding the phase behavior of amorphous solid dispersion, and designing the in vitro dissolution methods. Finally, a reference chart is provided that summarizes the key concepts proposed as part of the structured development approach that can serve as a blueprint for the development of amorphous formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acartürk F, Kislal Ö et al (1992) The effect of some natural polymers on the solubility and dissolution characteristics of nifedipine. Int J Pharm 85(1–3):1–6

    Article  Google Scholar 

  • Albano AA, Phuapradit W, et al (2002) Stable complexes of poorly soluble compounds in ionic polymers. US Patent Office, United States of America, F. Hoffmann-La Roche Ltd, 7

    Google Scholar 

  • Albers J (2008) Hot-melt extrusion with poorly soluble drugs. Heinrich-Heine-University, Düsseldorf

    Google Scholar 

  • Aso Y, Yoshioka S (2006) Molecular mobility of nifedipine–PVP and phenobarbital–PVP solid dispersions as measured by 13 C-NMR spin-lattice relaxation time. J Pharm Sci 95(2):318–325

    Article  PubMed  CAS  Google Scholar 

  • Aso Y, Yoshioka S et al (2002) Effect of water on the molecular mobility of sucrose and poly(vinylpyrrolidone) in a colyophilized formulation as measured by 13 C-NMR relaxation time. Chem Pharm Bull 50(6):822–826

    Article  PubMed  CAS  Google Scholar 

  • Barillaro Vr, Pescarmona PP et al (2008) High-throughput study of phenytoin solid dispersions: formulation using an automated solvent casting method, dissolution testing, and scaling-up. J Comb Chem 10(5):637–643

    Article  PubMed  CAS  Google Scholar 

  • Bates S, Zografi G, Engers D, Morris R, Crowley K, Newman A (2006) Analysis of amorphous and nanocrystalline solids from their X-ray diffraction patterns. Pharm Res 23(10) 2333–2349. Epub 2006 Sep 22

    Article  PubMed  CAS  Google Scholar 

  • Breitenbach J (2002) Melt extrusion: from process to drug delivery technology. Eur J Pharm Biopharm 54(2):107–117

    Article  PubMed  CAS  Google Scholar 

  • Chan KLA, Kazarian SG (2004) FTIR spectroscopic imaging of dissolution of a solid dispersion of nifedipine in poly(ethylene glycol). Mol Pharm 1(4):331–335

    Article  PubMed  CAS  Google Scholar 

  • Chiou WL, Riegelman S (1971) Pharmaceutical applications of solid dispersion systems. J Pharm Sci 60(9):1281–1302

    Article  PubMed  CAS  Google Scholar 

  • Chiou WL, Riegelmann S (1970) Oral absorption of griseofulvin in dogs: increased absorption via solid dispersion in polyethylene glycol 6000. J Pharm Sci 59:937–942

    Article  PubMed  CAS  Google Scholar 

  • Chokshi RJ, Sandhu HK et al (2005) Characterization of physico-mechanical properties of indomethacin and polymers to assess their suitability for hot-melt extrusion processs as a means to manufacture solid dispersion/solution. J Pharm Sci 94(11):2463–2474

    Article  PubMed  CAS  Google Scholar 

  • Chokshi RJ, Shah NH et al (2008) Stabilization of low glass transition temperature indomethacin formulations: impact of polymer-type and its concentration. J Pharm Sci 97(6):2286–2298

    Article  PubMed  CAS  Google Scholar 

  • Corrigan OI, Holohan EM, Reilly MR (1985) Physicochemical properties of indomethacin and related compounds co-spray dried with polyvinylpyrrolidone. Drug Dev Ind Pharm 11(2&3):677–695

    Article  CAS  Google Scholar 

  • Crowley MM, Zhang F et al (2007) Pharmaceutical applications of hot-melt extrusion: part I. Drug Dev Ind Pharm 33(9):909–926

    Article  PubMed  CAS  Google Scholar 

  • Curatolo W, Nightingale J et al (2009) Utility of hydroxypropylmethylcellulose acetate succinate (HPMC-AS) for initiation and maintenance of drug supersaturation in the GI milieu. Pharm Res 26(6):1419–1431

    Article  PubMed  CAS  Google Scholar 

  • De Maesschalk R, Stokbroekx S, et al (2010) Development of a 96-well plate dissolution method for screening solid dispersions: COMPARISON to classical USP methods and its use in predicting oral bioavailability in animals. AAPS Annual Meeting and Exposition, Ernest N. Morial Convention Center, New Orleans

    Google Scholar 

  • DiNunzio JC, Miller DA et al (2008) Amorphous compositions using concentration enhancing polymers for improved bioavailability of itraconazole. Mol Pharm 5(6):968–980

    Article  PubMed  CAS  Google Scholar 

  • Doherty C, York P (1987) Mechanisms of dissolution of frusemide Pvp solid dispersions. Int J Pharm 34(3):197–205

    Article  CAS  Google Scholar 

  • Engers D, Teng J et al (2010) A solid-state approach to enable early development compounds: selection and animal bioavailability studies of an itraconazole amorphous solid dispersion. J Pharm Sci 99(9):3901–3922

    PubMed  CAS  Google Scholar 

  • Forster A, Hempenstall J et al (2001a) The potential of small-scale fusion experiments and the gordon-taylor equation to predict the suitability of drug/polymer blends for melt extrusion. Drug Dev Ind Pharm 27(6):549–560

    Article  PubMed  CAS  Google Scholar 

  • Forster A, Hempenstall J et al (2001b) Selection of excipients for melt extrusion with two poorly water-soluble drugs by solubility parameter calculation and thermal analysis. Int J Pharm 226(1–2):147–161

    Article  PubMed  CAS  Google Scholar 

  • Friesen DT, Shanker R et al (2008) Hydroxypropyl methylcellulose acetate succinate-based spray-dried dispersions: an overview. Mol Pharm 5(6):1003–1019

    Article  PubMed  CAS  Google Scholar 

  • Gordon M, Taylor JS (1952) Ideal copolymers and the second-order transitions of synthetic rubbers. I. Noncrystalline copolymers. J Appl Chem 2:493–500

    Article  CAS  Google Scholar 

  • Greenhalgh DJ, Williams AC et al (1999) Solubility parameters as predictors of miscibility in solid dispersions. J Pharm Sci 88(11):1182–1190

    Article  PubMed  CAS  Google Scholar 

  • Gupta J, Nunes C et al (2011) Prediction of solubility parameters and miscibility of pharmaceutical compounds by molecular dynamics simulations. J Phys Chem B 115(9):2014–2023

    Article  PubMed  CAS  Google Scholar 

  • Gupta P, Kakumanu VK et al (2004) Stability and solubility of celecoxib-pvp amorphous dispersions: a molecular perspective. Pharm Res 21:1762–1769

    Article  PubMed  CAS  Google Scholar 

  • Guzmán HR, Tawa M et al (2007) Combined use of crystalline salt forms and precipitation inhibitors to improve oral absorption of celecoxib from solid oral formulations. J Pharm Sci 96(10):2686–2702

    Article  PubMed  Google Scholar 

  • Hancock BC, Parks M (2000) What is the true solubility advantage for amorphous pharmaceuticals? Pharm Res 17(4):397–404

    Article  PubMed  CAS  Google Scholar 

  • Hancock BC, York P et al (1997) The use of solubility parameters in pharmaceutical dosage form design. Int J Pharm 148:1–21

    Article  CAS  Google Scholar 

  • Huang J, Wigent RJ et al (2008) Drug-polymer interaction and its significance on the physical stability of nifedipine amorphous dispersion in microparticles of an ammonio methacrylate copolymer and ethylcellulose binary blend. J Pharm Sci 97(1):251–262

    Article  PubMed  CAS  Google Scholar 

  • Janssens S, De Zeure A et al (2010) Influence of preparation methods on solid state supersaturation of amorphous solid dispersions: a case study with itraconazole and eudragit E100. Pharm Res 27(5):775–785

    Article  PubMed  CAS  Google Scholar 

  • Janssens S, Nagels S et al (2008) Formulation and characterization of ternary solid dispersions made up of Itraconazole and two excipients, TPGS 1000 and PVPVA 64, that were selected based on supersaturation screening study. Eur J Pharm Biopharm 69:158–166

    Article  PubMed  CAS  Google Scholar 

  • Janssens S, Guy VdM (2010) Review: physical chemistry of solid dispersions. J Pharm Pharmacol 12:15

    Google Scholar 

  • Kaushal AM, Chakraborti AK et al (2008) FTIR studies on differential intermolecular association in crystalline and amorphous states of structurally related non-steroidal anti-inflammatory drugs. Mol Pharm 5(6):937–945

    Article  PubMed  CAS  Google Scholar 

  • Kislalioglu MS, Khan MA et al (1991) Physical characterization and dissolution properties of ibuprofen: eudragit coprecipitates. J Pharm Sci 80(8):799–804

    Article  PubMed  CAS  Google Scholar 

  • Konno H, Handa T et al (2008) Effect of polymer type on the dissolution profile of amorphous solid dispersions containing felodipine. Eur J Pharm Biopharm 70(2):493–499

    Article  PubMed  CAS  Google Scholar 

  • Konno H, Taylor LS (2006) Influence of different polymers on the crystallization tendency of molecularly dispersed amorphous felodipine. J Pharm Sci 95(12):2692–2705

    Article  PubMed  CAS  Google Scholar 

  • Lauer M, Grassmann O et al (2011) Atomic force microscopy-based screening of drug-excipient miscibility and stability of solid dispersions. Pharm Res 28(3):572–584

    Article  PubMed  CAS  Google Scholar 

  • Law D, Schmitt EA et al (2004) Ritonavir-PEG 8000 amorphous solid dispersions: in vitro and in vivo evaluations. J Pharm Sci 93(3):563–570

    Article  PubMed  CAS  Google Scholar 

  • Lee T, Lee J (2003) Drug-carrier screening on a chip. Pharm Tech N Am 27(1):40–48

    CAS  Google Scholar 

  • Leuner C, Dressman J (2000) Improving drug solubility for oral delivery using solid dispersions. Eur J Pharm Biopharm 50(1):47–60

    Article  PubMed  CAS  Google Scholar 

  • Loftsson T, Fririksdóttir H et al (1996) The effect of water-soluble polymers on aqueous solubility of drugs. Int J Pharm 127(2):293–296

    Article  CAS  Google Scholar 

  • Marsac P, Konno H et al (2008) Recrystallization of nifedipine and felodipine from amorphous molecular-level solid dispersions containing poly(vinylpyrrolidone) and sorbed water. Pharm Res 25(3):647–656

    Article  PubMed  CAS  Google Scholar 

  • Marsac PJ, Konno H et al (2006) A comparison of the physical stability of amorphous felodipine and nifedipine systems. Pharm Res 23:2306–2316

    Article  PubMed  CAS  Google Scholar 

  • Marsac PJ, Rumondor ACF et al (2010) Effect of temperature and moisture on the miscibility of amorphous dispersions of felodipine and poly(vinyl pyrrolidone). J Pharm Sci 99(1):169–185

    Article  PubMed  CAS  Google Scholar 

  • Masters K (1991) Spray drying handbook. Longman Scientific & Technical, Wiley, Burnt Mill

    Google Scholar 

  • Miller D, DiNunzio J et al (2008) Targeted intestinal delivery of supersaturated itraconazole for improved oral absorption. Pharm Res 25(6):1450–1459

    Article  PubMed  CAS  Google Scholar 

  • Miyazaki T, Yoshioka S et al (2004) Ability of polyvinylpyrrolidone and polyacrylic acid to inhibit the crystallization of amorphous acetaminophen. J Pharm Sci 93:2710–2717

    Article  PubMed  CAS  Google Scholar 

  • Moneghini M, Carcano A et al (1998) Studies in dissolution enhancement of atenolol. Int J Pharm 175:177–183

    Article  CAS  Google Scholar 

  • Oksanen CA, Zografi G (1990) The relationship between the glass transition temperature and water vapor absorption by poly(vinylpyrrolidone). Pharm Res 7(9):654–657

    Article  PubMed  CAS  Google Scholar 

  • Overhoff KA, Engstrom JD et al (2007) Novel ultra-rapid freezing particle engineering process for enhancement of dissolution rates of poorly water-soluble drugs. Eur J Pharm Biopharm 65(1):57–67

    Article  PubMed  CAS  Google Scholar 

  • Patterson JE, James MB et al (2007) Preparation of glass solutions of three poorly water soluble drugs by spray drying, melt extrusion and ball milling. Int J Pharm 336(1):22–34

    Article  PubMed  CAS  Google Scholar 

  • Patterson JE, James MB et al (2008) Melt extrusion and spray drying of carbamazepine and dipyridamole with polyvinylpyrrolidone/vinyl acetate copolymers. Drug Dev Ind Pharm 34:95–106

    Article  PubMed  CAS  Google Scholar 

  • Paudel A, Van Humbeeck J et al (2010) Theoretical and experimental investigation on the solid solubility and miscibility of naproxen in poly(vinylpyrrolidone). Mol Pharm 7(4):1133–1148

    Article  PubMed  CAS  Google Scholar 

  • Qian F, Tao J et al (2007) Mechanistic investigation of pluronic® based nano-crystalline drug-polymer solid dispersions. Pharm Res 24(8):1551–1560

    Article  PubMed  CAS  Google Scholar 

  • Rowe R, Shesky P et al (2010) Handbook of pharmaceutical excipients, 4th edn. APhA Publications, Washington

    Google Scholar 

  • Rumondor A, Stanford L et al (2009a) Effects of polymer type and storage relative humidity on the kinetics of felodipine crystallization from amorphous solid dispersions. Pharm Res 26(12):2599–2606

    Article  PubMed  CAS  Google Scholar 

  • Rumondor ACF, Marsac PJ et al (2009b) Phase behavior of poly(vinylpyrrolidone) containing amorphous solid dispersions in the presence of moisture. Mol Pharm 6(5):1492–1505

    Article  PubMed  CAS  Google Scholar 

  • Serajuddin ATM (1999) Solid dispersion of poorly water-soluble drugs: early promises, subsequent problems, and recent breakthroughs. J Pharm Sci 88:1058–1066

    Article  PubMed  CAS  Google Scholar 

  • Shah N, Harpreet S, Phuapradit W, Iyer R, Albano A, Desai D, Choi DS, Tang K, Chokshi H, Malick W, Radinov R, Shankar A, Wolff S, Mair HJ (2008) Solid complexes with ionic polymers: pharmaceutical technology is pleased to recognize the winners of its innovations in pharma science awards. Pharm Technol 32(12):2

    Google Scholar 

  • Shanbhag A, Rabel S, Nauka E, Casadevall G, Shivanand P, Eichenbaum G, Mansky P (2008) Method for screening of solid dispersion formulations of low-solubility compounds-Miniaturization and automation of solvent casting and dissolution testing. Int J Pharm 351(1–2):209–218

    Article  PubMed  CAS  Google Scholar 

  • Simonelli AP, Mehta SC et al (1969) Dissolution rates of high energy polyvinylpyrrolidone (PVP)-sulfathiazole coprecipitates. J Pharm Sci 58(5):538–549

    Article  PubMed  CAS  Google Scholar 

  • Singh H, Atef E et al (2007) High throughput screening of solid dispersion using solvent evaporation technique aaps annual meeting and exposition. San Diego Convention Center, San Diego

    Google Scholar 

  • Six K, Verreck G et al (2004) Increased physical stability and improved dissolution properties of itraconazole, a class II drug, by solid dispersions that combine fast- and slow-dissolving polymers. J Pharm Sci 93(1):124–131

    Article  PubMed  CAS  Google Scholar 

  • Swinney K, Herman J et al (2009) Configuration of an automated screening tool to facilitate solid dispersion development AAPS Annual Meeting and Exposition. Los Angeles Convention Center, Los Angeles

    Google Scholar 

  • Tanno F, Nishiyama Y et al (2004) Evaluation of hypromellose acetate succinate (HPMC-AS) as a carrier in solid dispersions. Drug Dev Ind Pharm 30(1):9–17

    Article  PubMed  CAS  Google Scholar 

  • Taylor LS, Zografi G (1997) Spectroscopic characterization of interactions between PVP and indomethacin in amorphous molecular dispersions. Pharm Res 14:1691–1698

    Article  PubMed  CAS  Google Scholar 

  • Usui F, Maeda K et al (1997) Inhibitory effects of water-soluble polymers on precipitation of RS-8359. Int J Pharm 154(1):59–66

    Article  CAS  Google Scholar 

  • Van den Mooter G, Wuyts M et al (2001) Physical stabilisation of amorphous ketoconazole in solid dispersions with polyvinylpyrrolidone K25. Eur J Pharm Sci 12(3):261–269

    Article  PubMed  Google Scholar 

  • Van Eerdenbrugh B, Taylor LS (2010) Small scale screening to determine the ability of different polymers to inhibit drug crystallization upon rapid solvent evaporation. Mol Pharm 7(4):1328–1337

    Article  PubMed  Google Scholar 

  • Vandecruys R, Peeters J et al (2007) Use of screening method to determine excipients which optimize the extend and stability of supersaturated drug solutions and application of this system to solid formulation design. Int J Pharm 342:168–175

    Article  PubMed  CAS  Google Scholar 

  • Warren DB, Benameur H et al (2010) Using polymeric precipitation inhibitors to improve the absorption of poorly water-soluble drugs: a mechanistic basis for utility. J Drug Target 18:704–731

    Article  PubMed  CAS  Google Scholar 

  • Wyttenbach N, Siam M, et al (2011) New approach for the screening of polymers for amorphous drug stabilization (SPADS): case study of indomethacin. AAPS Annual Meeting and Exposition, Walter E. Washington Convention Center, Washington

    Google Scholar 

  • Yamashita T, Kokubo T et al (2010) Antiprecipitant screening system for basic model compounds using bio-relevant media. J Assoc Lab Automat 15(4):306–312

    Article  CAS  Google Scholar 

  • Yang Z, Han CD (2008) Rheology of miscible polymer blends with hydrogen bonding. Macromolecules 41(6):2104–2118

    Article  CAS  Google Scholar 

  • Yoo S-u, Krill SL et al (2009) Miscibility/stability considerations in binary solid dispersion systems composed of functional excipients towards the design of multi-component amorphous systems. J Pharm Sci 98(12):4711–4723

    Article  PubMed  CAS  Google Scholar 

  • Yu L (2001) Amorphous pharmaceutical solids: preparation, characterization and stabilization. Adv Drug Deliv Rev 48:27–42

    Article  PubMed  CAS  Google Scholar 

  • Zhao Y, Inbar P et al (2011) Prediction of the thermal phase diagram of amorphous solid dispersions by flory-huggins theory. J Pharm Sci 100(8):3196–3207

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Navnit Shah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Shah, N., Sandhu, H., Choi, D.S., Kalb, O., Page, S., Wyttenbach, N. (2012). Structured Development Approach for Amorphous Systems. In: Williams III, R., Watts, A., Miller, D. (eds) Formulating Poorly Water Soluble Drugs. AAPS Advances in the Pharmaceutical Sciences Series, vol 3. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1144-4_8

Download citation

Publish with us

Policies and ethics