Advertisement

Emerging Technologies to Increase the Bioavailability of Poorly Water-Soluble Drugs

Chapter
Part of the AAPS Advances in the Pharmaceutical Sciences Series book series (AAPS, volume 3)

Abstract

The need for novel formulation and process-based techniques to enhance aqueous solubility has increased substantially in recent years. This is primarily due to the limitations of traditional techniques such as physical and chemical stability of the drug substance or the need for toxic solvents that some techniques require. Alternative solubility-enhancement techniques have emerged in recent years to mitigate issues such as these. The purpose of this chapter is to describe emerging technologies for solubility enhancement, allowing the reader to gain an understanding of their utility.

Keywords

Block Copolymer Critical Micelle Concentration Dissolution Rate Mesoporous Silica Solid Dispersion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Adams ML, Lavasanifar A, Kwon GS (2003) Amphiphilic block copolymers for drug delivery. J Pharm Sci 92:1343–1355PubMedCrossRefGoogle Scholar
  2. Alade SL, Brown RE, Paquet A Jr (1986) Polysorbate 80 and E-Ferol Toxicity. Pediatrics 77:593PubMedGoogle Scholar
  3. Alakhov V, Pietrzynski G, Patel K, Kabanov A, Bromberg L, Hatton TA (2004) Pluronic block copolymers and Pluronic poly(acrylic acid) microgels in oral delivery of megestrol acetate. J Pharm Pharmacol 56:1233–1241PubMedCrossRefGoogle Scholar
  4. Aliabadi HM, Lavasanifar A (2006) Polymeric micelles for drug delivery. Expert Opin Drug Deliv 3:139–162PubMedCrossRefGoogle Scholar
  5. Allen C, Maysinger D, Eisenberg A (1999) Nano-engineering block copolymer aggregates for drug delivery. Colloids Surf B Biointerfaces 16:3–27CrossRefGoogle Scholar
  6. Andersson J, Rosenholm J, Areva S, Lindén M (2004) Influences of material characteristics on ibuprofen drug loading and release profiles from ordered micro- and mesoporous silica ­matrices. Chem Mater 16:4160–4167CrossRefGoogle Scholar
  7. Batrakova E, Dorodnych T, Klinskii E, Kliushnenkova E, Shemchukova O, Goncharova O, Arjakov S, Alakhov V, Kabanov A (1996) Anthracycline antibiotics non-covalently incorporated into the block copolymer micelles: in vivo evaluation of anti-cancer activity. Br J Cancer 74:1545–1552PubMedCrossRefGoogle Scholar
  8. Batrakova E, Li S, Miller D, Kabanov A (1999) Pluronic P85 increases permeability of a broad spectrum of drugs in polarized bbmec and caco-2 cell monolayers. Pharm Res 16:1366–1372PubMedCrossRefGoogle Scholar
  9. Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CTW, Olson DH, Sheppard EW (1992) A new family of mesoporous molecular sieves prepared with liquid crystal templates. J Am Chem Soc 114:10834–10843CrossRefGoogle Scholar
  10. Behrens I, Pena AIV, Alonso MJ, Kissel T (2002) Comparative uptake studies of bioadhesive and non-bioadhesive nanoparticles in human intestinal cell lines and rats: the effect of mucus on particle adsorption and transport. Pharm Res 19:1185–1193PubMedCrossRefGoogle Scholar
  11. Benahmed A, Ranger M, Leroux J-C (2001) Novel polymeric micelles based on the amphiphilic diblock copolymer poly(N-vinyl-2-pyrrolidone)-block-poly(D, L-lactide). Pharm Res 18:323–328PubMedCrossRefGoogle Scholar
  12. Bernardos A, Aznar E, Coll C, Martínez-Mañez R, Barat JM, Marcos MD, Sancenón F, Benito A, Soto J (2008) Controlled release of vitamin B2 using mesoporous materials functionalized with amine-bearing gate-like scaffoldings. J Control Release 131:181–189PubMedCrossRefGoogle Scholar
  13. Breitenbach J (2002) Melt extrusion: from process to drug delivery technology. Eur J Pharm Biopharm 54:107–117PubMedCrossRefGoogle Scholar
  14. Bromberg L (2008) Polymeric micelles in oral chemotherapy. J Control Release 128:99–112PubMedCrossRefGoogle Scholar
  15. Capone C, Di Landro L, Inzoli F, Penco M, Sartore L (2007) Thermal and mechanical degradation during polymer extrusion processing. Polym Eng Sci 47:1813–1819CrossRefGoogle Scholar
  16. Cavallari C, Rodriguez L, Albertini B, Passerini N, Rosetti F, Fini A (2005) Thermal and fractal analysis of diclofenac/Gelucire 50/13 microparticles obtained by ultrasound-assisted atomization. J Pharm Sci 94:1124–1134PubMedCrossRefGoogle Scholar
  17. Chiou WL, Riegelman S (1971) Pharmaceutical applications of solid dispersion systems. J Pharm Sci 60:1281–1302PubMedCrossRefGoogle Scholar
  18. Crowley MM, Zhang F, Koleng JJ, McGinity JW (2002) Stability of polyethylene oxide in matrix tablets prepared by hot-melt extrusion. Biomaterials 23:4241–4248PubMedCrossRefGoogle Scholar
  19. Crowley MM, Zhang F, Repka MA, Thumma S, Upadhye SB, Battu SK, McGinity JW, Martin C (2007) Pharmaceutical applications of hot-melt extrusion: part I. Drug Dev Ind Pharm 33:909–926PubMedCrossRefGoogle Scholar
  20. Croy SR, Kwon GS (2006) Polymeric micelles for drug delivery. Curr Pharm Des 12:4669–4684PubMedCrossRefGoogle Scholar
  21. Deitzel JM, Kleinmeyer J, Harris D, Beck Tan NC (2001) The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer 42:261–272CrossRefGoogle Scholar
  22. Di Tommaso C, Como C, Gurny R, Möller M (2010) Investigations on the lyophilisation of MPEG-hexPLA micelle based pharmaceutical formulations. Eur J Pharm Sci 40:38–47PubMedCrossRefGoogle Scholar
  23. DiNunzio JC, Brough C, Miller DA, Brown A, Williams III RO, McGinity JW (2008) Fusion processing of itraconazole and griseofulvin solid dipsersions by a novel high energy manufacturing technology – KinetiSol® Dispersing. Abstract and Poster Presentation. Proceedings of the American Association of Pharmaceutical Scientists, November 16–20, 2008Google Scholar
  24. DiNunzio JC, Brough C, Hughey JR, Miller DA, Williams RO III, McGinity JW (2010a) Fusion production of solid dispersions containing a heat sensitive active ingredient by hot melt extrusion and kinetisol® dispersing. Eur J Pharm Biopharm 74:340–351PubMedCrossRefGoogle Scholar
  25. DiNunzio JC, Brough C, Miller DA, Williams RO III, McGinity JW (2010b) Applications of kinetisol® dispersing for the production of plasticizer free amorphous solid dispersions. Eur J Pharm Sci 40:179–187PubMedCrossRefGoogle Scholar
  26. DiNunzio JC, Brough C, Miller DA, Williams RO III, McGinity JW (2010c) Fusion processing of itraconazole solid dispersions by kinetisol® dispersing: a comparative study to hot melt extrusion. J Pharm Sci 99:1239–1253PubMedCrossRefGoogle Scholar
  27. DiNunzio JC, Hughey JR, Brough C, Miller DA, Williams RO III, McGinity JW (2010d) Production of advanced solid dispersions for enhanced bioavailability of itraconazole using kinetisol® dispersing. Drug Dev Ind Pharm 36:1064–1078PubMedCrossRefGoogle Scholar
  28. Doshi J, Reneker DH (1995) Electrospinning process and applications of electrospun fibers. J Electrostat 35:151–160CrossRefGoogle Scholar
  29. El’darov EG, Mamedov FV, Gol’dberg VM, Zaikov GE (1996) A kinetic model of polymer degradation during extrusion. Polym Degrad Stab 51:271–279CrossRefGoogle Scholar
  30. Fini A, Fernández-Hervás MJ, Holgado MA, Rodriguez L, Cavallari C, Passerini N, Caputo O (1997) Fractal analysis of β-cyclodextrin–indomethacin particles compacted by ultrasound. J Pharm Sci 86:1303–1309PubMedCrossRefGoogle Scholar
  31. Fini A, Holgado MA, Rodriguez L, Cavallari C (2002a) Ultrasound-compacted indomethacin/polyvinylpyrrolidone systems: Effect of compaction process on particle morphology and ­dissolution behavior. J Pharm Sci 91:1880–1890PubMedCrossRefGoogle Scholar
  32. Fini A, Rodriguez L, Cavallari C, Albertini B, Passerini N (2002b) Ultrasound-compacted and spray-congealed indomethacin/polyethyleneglycol systems. Int J Pharm 247:11–22PubMedCrossRefGoogle Scholar
  33. Follonier N, Doelker E, Cole ET (1994) Evaluation of hot-melt extrusion as a new technique for the production of polymer-based pellets for sustained relesae capsules containing high loadings of freely soluble drugs. Drug Dev Ind Pharm 20:1323–1339CrossRefGoogle Scholar
  34. Gaucher G, Dufresne M-H, Sant VP, Kang N, Maysinger D, Leroux J-C (2005) Block copolymer micelles: preparation, characterization and application in drug delivery. J Control Release 109:169–188PubMedCrossRefGoogle Scholar
  35. Gaucher G, Satturwar P, Jones M-C, Furtos A, Leroux J-C (2010) Polymeric micelles for oral drug delivery. Eur J Pharm Biopharm 76:147–158PubMedCrossRefGoogle Scholar
  36. Gelderblom H, Verweij J, Nooter K, Sparreboom A (2001) Cremophor EL: the drawbacks and advantages of vehicle selection for drug formulation. Eur J Cancer 37:1590–1598PubMedCrossRefGoogle Scholar
  37. Hamaguchi T, Matsumura Y, Suzuki M, Shimizu K, Goda R, Nakamura I, Nakatomi I, Yokoyama M, Kataoka K, Kakizoe T (2005) NK105, a paclitaxel-incorporating micellar nanoparticle ­formulation, can extend in vivo antitumour activity and reduce the neurotoxicity of paclitaxel. Br J Cancer 92:1240–1246PubMedCrossRefGoogle Scholar
  38. Hancock BC (2002) Disordered drug delivery: destiny, dynamics and the Deborah number. J Pharm Pharmacol 54:737–746PubMedCrossRefGoogle Scholar
  39. Hancock BC, Shamblin SL, Zografi G (1995) Molecular mobility of amorphous pharmaceutical solids below their glass transition temperatures. Pharm Res 12:799–806PubMedCrossRefGoogle Scholar
  40. Heikkilä T, Salonen J, Tuura J, Hamdy MS, Mul G, Kumar N, Salmi T, Murzin DY, Laitinen L, Kaukonen AM, Hirvonen J, Lehto VP (2007) Mesoporous silica material TUD-1 as a drug delivery system. Int J Pharm 331:133–138PubMedCrossRefGoogle Scholar
  41. Hughey JR, DiNunzio JC, Bennett RC, Brough C, Miller DA, Ma H, Williams RO III, McGinity JW (2010) Dissolution enhancement of a drug exhibiting thermal and acidic decomposition characteristics by fusion processing: a comparative study of hot melt extrusion and kinetisol® dispersing. AAPS PharmSciTech 11:760–774PubMedCrossRefGoogle Scholar
  42. Huh KM, Lee SC, Cho YW, Lee J, Jeong JH, Park K (2005) Hydrotropic polymer micelle system for delivery of paclitaxel. J Control Release 101:59–68PubMedCrossRefGoogle Scholar
  43. Ignatious F, Baldoni JM (2001) Electrospun pharmaceutical compositions. World Patent 0,154,667Google Scholar
  44. Ignatious F, Sun L, Lee C-P, Baldoni J (2010) Electrospun nanofibers in oral drug delivery. Pharm Res 27:576–588PubMedCrossRefGoogle Scholar
  45. Jones M-C, Leroux J-C (1999) Polymeric micelles – a new generation of colloidal drug carriers. Eur J Pharm Biopharm 48:101–111PubMedCrossRefGoogle Scholar
  46. Jonkman-De Vries JD, Flora KP, Bult A, Beijnen JH (1996) Pharmaceutical development of (investigational) anticancer agents for parenteral use-a review. Drug Dev Ind Pharm 22:475–494CrossRefGoogle Scholar
  47. Kabanov AV, Batrakova EV, Alakhov VY (2002) Pluronic® block copolymers as novel polymer therapeutics for drug and gene delivery. J Control Release 82:189–212PubMedCrossRefGoogle Scholar
  48. Kataoka K, Harada A, Nagasaki Y (2001) Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliv Rev 47:113–131PubMedCrossRefGoogle Scholar
  49. Kenawy E-R, Bowlin GL, Mansfield K, Layman J, Simpson DG, Sanders EH, Wnek GE (2002) Release of tetracycline hydrochloride from electrospun poly(ethylene-co-vinylacetate), poly(lactic acid), and a blend. J Control Release 81:57–64CrossRefGoogle Scholar
  50. Kim S, Kim JY, Huh KM, Acharya G, Park K (2008) Hydrotropic polymer micelles containing acrylic acid moieties for oral delivery of paclitaxel. J Control Release 132:222–229PubMedCrossRefGoogle Scholar
  51. Kozlov MY, Melik-Nubarov NS, Batrakova EV, Kabanov AV (2000) Relationship between pluronic block copolymer structure, critical micellization concentration and partitioning coefficients of low molecular mass solutes. Macromolecules 33:3305–3313CrossRefGoogle Scholar
  52. Kruk M, Jaroniec M, Ko CH, Ryoo R (2000) Characterization of the porous structure of SBA-15. Chem Mater 12:1961–1968CrossRefGoogle Scholar
  53. Kumar A, Ganjyal GM, Jones DD, Hanna MA (2008) Modeling residence time distribution in a twin-screw extruder as a series of ideal steady-state flow reactors. J Food Eng 84:441–448CrossRefGoogle Scholar
  54. Kwon GS (2003) Polymeric micelles for delivery of poorly water-soluble compounds. Begell House, Redding, CTGoogle Scholar
  55. Kwon GS, Kataoka K (1995) Block copolymer micelles as long-circulating drug vehicles. Adv Drug Deliv Rev 16:295–309CrossRefGoogle Scholar
  56. Kwon GS, Okano T (1996) Polymeric micelles as new drug carriers. Adv Drug Deliv Rev 21:107–116CrossRefGoogle Scholar
  57. Lavasanifar A, Samuel J, Kwon GS (2001) Micelles self-assembled from poly(ethylene oxide)-block-poly(N-hexyl stearate -aspartamide) by a solvent evaporation method: effect on the ­solubilization and haemolytic activity of amphotericin B. J Control Release 77:155–160PubMedCrossRefGoogle Scholar
  58. Lee SC, Huh KM, Lee J, Cho YW, Galinsky RE, Park K (2006) Hydrotropic polymeric micelles for enhanced paclitaxel solubility: in vitro and in vivo characterization. Biomacromolecules 8:202–208CrossRefGoogle Scholar
  59. Leuner C, Dressman J (2000) Improving drug solubility for oral delivery using solid dispersions. Eur J Pharm Biopharm 50:47–60PubMedCrossRefGoogle Scholar
  60. Lin W-J, Juang L-W, Lin C-C (2003) Stability and release performance of a series of pegylated copolymeric micelles. Pharm Res 20:668–673PubMedCrossRefGoogle Scholar
  61. Lipinski CA (2004) Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol 1:337–341CrossRefGoogle Scholar
  62. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 46:3–26PubMedCrossRefGoogle Scholar
  63. Mellaerts R, Aerts CA, Humbeeck JV, Augustijns P, den Mooter GV, Martens JA (2007) Enhanced release of itraconazole from ordered mesoporous SBA-15 silica materials. Chem Commun 1375–1377Google Scholar
  64. Mellaerts R, Jammaer JAG, Van Speybroeck M, Chen H, Humbeeck JV, Augustijns P, Van den Mooter G, Martens JA (2008a) Physical state of poorly water soluble therapeutic molecules loaded into sba-15 ordered mesoporous silica carriers: a case study with itraconazole and ­ibuprofen. Langmuir 24:8651–8659PubMedCrossRefGoogle Scholar
  65. Mellaerts R, Mols R, Jammaer JAG, Aerts CA, Annaert P, Van Humbeeck J, Van den Mooter G, Augustijns P, Martens JA (2008b) Increasing the oral bioavailability of the poorly water soluble drug itraconazole with ordered mesoporous silica. Eur J Pharm Biopharm 69:223–230PubMedCrossRefGoogle Scholar
  66. Moghimi SM, Hunter AC, Murray JC (2001) Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev 53:283–318PubMedGoogle Scholar
  67. Mondon K, Zeisser-Labouèbe M, Gurny R, Möller M (2011) Novel cyclosporin a formulations using mpeg-hexyl-substituted polylactide micelles: a suitability study. Eur J Pharm Biopharm 77:56–65PubMedCrossRefGoogle Scholar
  68. Muñoz B, Rámila A, Pérez-Pariente J, Díaz I, Vallet-Regí M (2002) MCM-41 organic ­modification as drug delivery rate regulator. Chem Mater 15:500–503CrossRefGoogle Scholar
  69. Murphy DK, Rabel S (2008) Thermal analysis and calorimetric methods for the characterization of new crystal forms. In: Adeyeye MC (ed) Preformulation in solid dosage form development, vol 178. Informa Healthcare, New York, pp 279–322Google Scholar
  70. Peltier S, Oger J-M, Lagarce F, Couet W, Benoît J-P (2006) Enhanced oral paclitaxel bioavailability after administration of paclitaxel-loaded lipid nanocapsules. Pharm Res 23:1243–1250PubMedCrossRefGoogle Scholar
  71. Qu F, Zhu G, Huang S, Li S, Qiu S (2006) Effective controlled release of captopril by silylation of mesoporous MCM-41. Chemphyschem 7:400–406PubMedCrossRefGoogle Scholar
  72. Rapoport N (2007) Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery. Progr Polym Sci 32:962–990CrossRefGoogle Scholar
  73. Reneker DH, Chun I (1996) Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology 7:216CrossRefGoogle Scholar
  74. Repka MA, Gerding TG, Repka SL, McGinity JW (1999) Influence of plasticizers and drugs on the physical-mechanical properties of hydroxypropylcellulose films prepared by hot melt extrusion. Drug Dev Ind Pharm 25:625–633PubMedCrossRefGoogle Scholar
  75. Repka MA, Prodduturi S, Stodghill SP (2003) Production and characterization of hot-melt extruded films containing clotrimazole. Drug Dev Ind Pharm 29:757–765PubMedCrossRefGoogle Scholar
  76. Rodriguez L, Cini M, Cavallari C, Passerini N, Saettone MF, Fini A, Caputo O (1998) Evaluation of theophylline tablets compacted by means of a novel ultrasound-assisted apparatus. Int J Pharm 170:201–208CrossRefGoogle Scholar
  77. Rodriguez L, Passerini N, Cavallari C, Cini M, Sancin P, Fini A (1999) Description and preliminary evaluation of a new ultrasonic atomizer for spray-congealing processes. Int J Pharm 183:133–143PubMedCrossRefGoogle Scholar
  78. Rosen MJ (1989) Surfactants and interfacial phenomena. Wiley, New YorkGoogle Scholar
  79. Rowe RC, Sheskey PJ, Quinn ME (2009) Handbook of Pharmaceutical Excipients. Pharmaceutical Press, Washington, DCGoogle Scholar
  80. Salonen J, Laine E, Niinisto L (2002) Thermal carbonization of porous silicon surface by acetylene. J Appl Phys 91:456–461CrossRefGoogle Scholar
  81. Salonen J, Laitinen L, Kaukonen AM, Tuura J, Björkqvist M, Heikkilä T, Vähä-Heikkilä K, Hirvonen J, Lehto VP (2005) Mesoporous silicon microparticles for oral drug delivery: Loading and release of five model drugs. J Control Release 108:362–374PubMedCrossRefGoogle Scholar
  82. Sancin P, Caputo O, Cavallari C, Passerini N, Rodriguez L, Cini M, Fini A (1999) Effects of ultrasound-assisted compaction on Ketoprofen/Eudragit® S100 Mixtures. Eur J Pharm Sci 7:207–213PubMedCrossRefGoogle Scholar
  83. Sant VP, Smith D, Leroux J-C (2004) Novel pH-sensitive supramolecular assemblies for oral delivery of poorly water soluble drugs: preparation and characterization. J Control Release 97:301–312PubMedCrossRefGoogle Scholar
  84. Sant VP, Smith D, Leroux J-C (2005) Enhancement of oral bioavailability of poorly water-soluble drugs by poly(ethylene glycol)-block-poly(alkyl acrylate-co-methacrylic acid) self-assemblies. J Control Release 104:289–300PubMedCrossRefGoogle Scholar
  85. Satturwar P, Eddine MN, Ravenelle F, Leroux J-C (2007) pH-responsive polymeric micelles of poly(ethylene glycol)-b-poly(alkyl(meth)acrylate-co-methacrylic acid): influence of the copolymer composition on self-assembling properties and release of candesartan cilexetil. Eur J Pharm Biopharm 65:379–387PubMedCrossRefGoogle Scholar
  86. Savić R, Eisenberg A, Maysinger D (2006) Block copolymer micelles as delivery vehicles of hydrophobic drugs: Micelle–cell interactions. J Drug Target 14:343–355PubMedCrossRefGoogle Scholar
  87. Sekiguchi K, Obi N (1961) Studies on absorption of eutectic mixture. I. Comparison of the behavior of eutectic mixture of sulfathiazole and that of ordinary sulfathiazole in man. Chem Pharm Bull (Tokyo) 9:866–872Google Scholar
  88. Serajuddin ATM (1999) Solid dispersion of poorly water-soluble drugs: Early promises, subsequent problems, and recent breakthroughs. J Pharm Sci 88:1058–1066PubMedCrossRefGoogle Scholar
  89. Shamblin SL, Tang X, Chang L, Hancock BC, Pikal MJ (1999) Characterization of the time scales of molecular motion in pharmaceutically important glasses. J Phys Chem B 103:4113–4121CrossRefGoogle Scholar
  90. Song SW, Hidajat K, Kawi S (2005) Functionalized SBA-15 materials as carriers for controlled drug delivery: influence of surface properties on matrix  −  drug interactions. Langmuir 21:9568–9575PubMedCrossRefGoogle Scholar
  91. Tang Q, Xu Y, Wu D, Sun Y (2006) A study of carboxylic-modified mesoporous silica in controlled delivery for drug famotidine. J Solid State Chem 179:1513–1520CrossRefGoogle Scholar
  92. Tang Q, Chen Y, Chen J, Li J, Xu Y, Wu D, Sun Y (2010) Drug delivery from hydrophobic-modified mesoporous silicas: control via modification level and site-selective modification. J Solid State Chem 183:76–83CrossRefGoogle Scholar
  93. Teng Y, Morrison ME, Munk P, Webber SE, Prochazka K (1998) Release kinetics studies of aromatic molecules into water from block polymer micelles. Macromolecules 31:3578–3587CrossRefGoogle Scholar
  94. Tian M, Qin A, Ramireddy C, Webber SE, Munk P, Tuzar Z, Prochazka K (1993) Hybridization of block copolymer micelles. Langmuir 9:1741–1748CrossRefGoogle Scholar
  95. Torchilin VP (2001) Structure and design of polymeric surfactant-based drug delivery systems. J Control Release 73:137–172PubMedCrossRefGoogle Scholar
  96. Torchilin V (2007) Micellar nanocarriers: pharmaceutical perspectives. Pharm Res 24:1–16PubMedCrossRefGoogle Scholar
  97. Trimaille T, Mondon K, Gurny R, Möller M (2006) Novel polymeric micelles for hydrophobic drug delivery based on biodegradable poly(hexyl-substituted lactides). Int J Pharm 319:147–154PubMedCrossRefGoogle Scholar
  98. Trimaille T, Gurny R, Möller M (2007) Poly(hexyl-substituted lactides): novel injectable ­hydrophobic drug delivery systems. J Biomed Mater Res A 80A:55–65CrossRefGoogle Scholar
  99. Ukmar T, Planinšek O (2010) Ordered mesoporous silicates as matrices for controlled release of drugs. Acta Pharm 60:373–385PubMedCrossRefGoogle Scholar
  100. Vallet-Regí M (2006) Ordered mesoporous materials in the context of drug delivery systems and bone tissue engineering. Chemistry 12:5934–5943PubMedCrossRefGoogle Scholar
  101. Vallet-Regi M, Rámila A, del Real RP, Pérez-Pariente J (2001) A new property of MCM-41: drug delivery system. Chem Mater 13:308–311CrossRefGoogle Scholar
  102. van Stam J, Creutz S, De Schryver FC, Jerome R (2000) Tuning of the exchange dynamics of unimers between block copolymer micelles with temperature, cosolvents, and cosurfactants. Macromolecules 33:6388–6395CrossRefGoogle Scholar
  103. Verreck G, Chun I, Peeters J, Rosenblatt J, Brewster ME (2003a) Preparation and characterization of nanofibers containing amorphous drug dispersions generated by electrostatic spinning. Pharm Res 20:810–817PubMedCrossRefGoogle Scholar
  104. Verreck G, Chun I, Rosenblatt J, Peeters J, Dijck AV, Mensch J, Noppe M, Brewster ME (2003b) Incorporation of drugs in an amorphous state into electrospun nanofibers composed of a water-insoluble, nonbiodegradable polymer. J Control Release 92:349–360PubMedCrossRefGoogle Scholar
  105. Verreck G, Decorte A, Heymansa K, Adriaensen J, Liu D, Tomasko D, Arien A, Peeters J, Van den Mooter G, Brewster ME (2006) Hot stage extrusion of p-amino salicylic acid with EC using CO2 as a temporary plasticizer. Int J Pharm 327:45–50PubMedCrossRefGoogle Scholar
  106. Wang G, Otuonye AN, Blair EA, Denton K, Tao Z, Asefa T (2009) Functionalized mesoporous materials for adsorption and release of different drug molecules: a comparative study. J Solid State Chem 182:1649–1660CrossRefGoogle Scholar
  107. Xu W, Gao Q, Xu Y, Wu D, Sun Y, Shen W, Deng F (2008) Controlled drug release from bifunctionalized mesoporous silica. J Solid State Chem 181:2837–2844CrossRefGoogle Scholar
  108. Yalkowsky SH (1981) Techniques of solubilization of drugs. Marcel Dekker, New YorkGoogle Scholar
  109. Yang Q, Wang S, Fan P, Wang L, Di Y, Lin K, Xiao F-S (2005) pH-responsive carrier system based on carboxylic acid modified mesoporous silica and polyelectrolyte for drug delivery. Chem Mater 17:5999–6003CrossRefGoogle Scholar
  110. Yasugi K, Nagasaki Y, Kato M, Kataoka K (1999) Preparation and characterization of polymer micelles from poly(ethylene glycol)-poly(,-lactide) block copolymers as potential drug carrier. J Control Release 62:89–100PubMedCrossRefGoogle Scholar
  111. Yu D-G, Shen X-X, Branford-White C, White K, Zhu L-M, Bligh SWA (2009a) Oral fast-­dissolving drug delivery membranes prepared from electrospun polyvinylpyrrolidone ultrafine fibers. Nanotechnology 20:055104PubMedCrossRefGoogle Scholar
  112. Yu D-G, Zhang X-F, Shen X-X, Brandford-White C, Zhu L-M (2009b) Ultrafine ibuprofen-loaded polyvinylpyrrolidone fiber mats using electrospinning. Polym Int 58:1010–1013CrossRefGoogle Scholar
  113. Yu D-G, Branford-White C, White K, Li X-L, Zhu L-M (2010a) Dissolution improvement of electrospun nanofiber-based solid dispersions for acetaminophen. AAPS PharmSciTech 11:809–817PubMedCrossRefGoogle Scholar
  114. Yu D-G, Gao L-D, White K, Branford-White C, Lu W-Y, Zhu L-M (2010b) Multicomponent amorphous nanofibers electrospun from hot aqueous solutions of a poorly soluble drug. Pharm Res 27:2466–2477PubMedCrossRefGoogle Scholar
  115. Zhang L, Eisenberg A (1995) Multiple morphologies of “crew-cut” aggregates of polystyrene-b-poly(acrylic acid) block copolymers. Science 268:1728PubMedCrossRefGoogle Scholar
  116. Zhu Y, Shah NH, Malick AW, Infeld MH, McGinity JW (2002) Solid-state plasticization of an acrylic polymer with chlorpheniramine maleate and triethyl citrate. Int J Pharm 241:301–310PubMedCrossRefGoogle Scholar
  117. Zhu Y, Mehta KA, McGinity JW (2006) Influence of plasticizer level on the drug release from sustained release film coated and hot-melt extruded dosage forms. Pharm Dev Technol 11:285–294PubMedCrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2012

Authors and Affiliations

  1. 1.Pharmaceutics Division, College of PharmacyUniversity of Texas at AustinAustinUSA

Personalised recommendations